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This review focusses strictly on existing plasma density models, including
ionospheric source models, empirical density models, physics-based and
machine-learning density models. This review is framed in the context of
radiation belt physics and space weather codes. The review is limited to the
most commonly used models or to models recently developed and promising. A
great variety of conditions is considered such as the magnetic local time variation,
geomagnetic conditions, ionospheric source regions, radial and latitudinal
dependence, and collisional vs. collisionless conditions. These models can
serve to complement satellite observations of the electron plasma density
when data are lacking, are for most of them commonly used in radiation belt
physics simulations, and can improve our understanding of the plasmasphere
dynamics.
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1 Introduction

The Earth’s plasmasphere is a region of cold (a few eV) plasma which originates from the
ionosphere and forms a rotating torus that surrounds the Earth (Storey, 1953; Carpenter,
1963; Carpenter, 1966). Reviews of the plasmasphere can be found in Goldstein (2006),
Kotova, 2007, Singh et al. (2011), Darrouzet and De Keyser (2013). For Earth’s radiation belt
codes computing the dynamics of energetic trapped electrons, accurate knowledge of the
electron density over the entire plasmasphere is crucial for parameterizing the various
diffusion coefficients (e.g., Glauert and Horne, 2005) used in modeling wave-particle
interactions, either from a modeled density (e.g., Dahmen et al., 2022) or from local
measurements (e.g., Ripoll et al., 2020b; Pierrard et al., 2021a). In addition, knowledge
of the position of the outer edge of the plasmasphere is required for specifying a location to
delineate between the high-density region where plasmaspheric hiss waves are present and
the low-density region where chorus waves occur, with each wave causing different local loss
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and acceleration processes through wave-particle interactions
(Thorne, 2010). The ion compositions are undoubtedly also very
important in radiation belt dynamics, for example, regarding the
wave-particle interactions with electromagnetic ion cyclotron
(EMIC) waves but this topic is not covered in this review.
Authors interested in this topic can read the recent extended
review of the known impact of the cold-ion and cold-electron
populations in the Earth’s magnetosphere by Delzanno et al.
(2021) with focus on the source of hot magnetospheric plasma,

solar-wind/magnetosphere coupling, magnetotail reconnection and
substorms, Kelvin–Helmholtz instabilities on the magnetopause,
wave–particle interactions, aurora structuring and spacecraft
charging.

Figures 1A–C show statistics of the electron plasma density
taken from Ripoll et al. (2022a) in which density is inferred from the
Electric Field and Waves (EFW) spacecraft potential (Wygant et al.,
2013) from Van Allen Probes B during the whole mission (09/2012-
07/2019) (see more details about the method and the accuracy of the

FIGURE 1
(A–C) Statistics of the electron plasma density (log10 of the density in units cm-3) from EFW on Van Allen Probes B during the whole mission (09/
2012-07/2019) for 3 Kp bins of geomagnetic activity (Ripoll et al., 2022a). (D–E) The physics-based Belgian SWIFF Plasmasphere Model (BSPM) model of
(color scale) the electron density and (black circles) the plasmapause during times of (D) quiet, (E) substorm, and (F) storm activity (Pierrard et al., 2021b).
The empirical Ozhogin et al. (2012) density model derived from the IMAGE Radio Plasma Imager (RPI) measurement plotted (G) versus L-shell (L) and
magnetic latitudes and (H) versus L-shell extracted at a few magnetic latitudes.
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cold plasma density in section 3.3). This figure illustrates the state of
the plasmasphere for 3 bins in Kp index spanning quiet to high levels
of geomagnetic activity, a range of conditions that models intend to
reproduce. During quiet times, the plasmasphere is approximately
circular in shape around the Earth, expanding out up to L-shell (L)
of ~5.5. With increasing activity, the plasmasphere evolves to
become asymmetric in shape, with density structures forming in
the morning and afternoon sectors. The increase of geomagnetic
activity produces a general erosion of the plasmasphere on the
dayside, an outward expansion of the plasma density in the dusk
sector, and an increase of density in some of the night-morning
sectors due to detached plasma regions rolling and wrapping around
Earth.

In this article, we review existing plasma density models,
including ionospheric source models, empirical density models,
physics-based and machine-learning density models. A great
variety of conditions is considered such as the magnetic local
time (MLT) variation, geomagnetic conditions, ionospheric
source regions, radial and latitudinal dependence, and collisional
vs. collisionless conditions. This review is framed in the context of
radiation belt physics (see review in Ripoll et al., 2020a) and space
weather codes. This implies the models are usually derived to be
applied on the large spatial scales and large temporal conditions.
Models that will be referred to and discussed are limited to those
most commonly used for radiation belt simulations. We also focus
on the more recent progress made during the last decade and to the
promising models or data, such as those from the National
Aeronautics and Space Administration’s (NASA) mission of the
Van Allen Probes (Mauk et al., 2013). Models or data discussed in
this review have gone through the calibration/correction analysis/
process required to qualify the proper data to use (such as spacecraft
potential correction, secondary electron effects, crosstalk effects
correction in particle detectors, calibration corrections and
modulation corrections on field detector antennae, etc.).

These models can be used to complement plasmaspheric
densities inferred from satellite observations where or when data
are lacking to fill data gaps, to be compared with these new data for
evaluation, to be aggregated together or with observations to form
more global models, or to analyze them for improving our
understanding of the plasmasphere dynamics. Some of these
models will serve as reference point or reference method from
which we can improve and build a new generation of electron
density models from the most recent observations, such as the
NASA Van Allen Probes and the Japan Aerospace Exploration
Agency (JAXA) Arase satellite missions (Miyoshi et al., 2018).
The accuracy of the plasma density is essential for the
computation of wave-particle interactions, which themselves
determine the dynamics of the radiation belts.

2 The ionospheric source for the
plasmasphere from the IRI model

The cold plasma in the plasmasphere has its origins in the
ionosphere. Because the ionosphere is strongly driven by the Sun,
the number density and temperature of the electrons, ions and
neutrals in the ionosphere depend on solar activity, season, and local
time, with a reset every day.

The earliest model of the topside ionosphere used only three
bins in geomagnetic latitude and a linear dependence on F10.7 radio
flux. In the 1990’s, a diffusive equilibrium model was used to
compute the density in the topside ionosphere. The diffusive
equilibrium model is a first-principles model that specifies the
plasma density along a flux tube given boundary conditions at
the footpoints (Angerami and Thomas, 1964). The boundary
conditions include the number density and temperature of
electrons, ions and neutrals. A diffusive equilibrium model is
applicable at low altitudes where collisions are frequent, but may
have limited utility at higher altitudes where the plasma is
collisionless.

The main empirical model of the ionosphere, the International
Reference Ionosphere (IRI), uses trigonometric functions to fit both
temporal (local, seasonal, and annual) and spatial variations in
measurements of electron density coming from worldwide
network of ionosondes, powerful incoherent scatter radars,
topside sounders, and in situ instruments flown on many
satellites and rockets, with the coefficients depending on solar
activity. IRI has several altitude regions of interest: the D, E, F1,
and F2 regions, and the topside ionosphere, which extends from the
F2 peak to the maximum altitude in the model, 2000 km in IRI-2012
(Bilitza et al., 2014) (see also Bilitza et al., 2017; Biliitza, 2018). The
IRI model is driven by several solar and ionospheric indices
including the sunspot number R, the solar radio flux at 10.7 cm
wavelength F10.7 (Tapping, 2013), and the ionosonde-based
ionospheric global (IG) index (Bilitza, 2018). Last version is IRI
2020 on irimodel.org.

More specifically, the transition from highly collisional to
collisionless in the topside ionosphere makes it a particularly
difficult region to model. In IRI-2007, the topside ionosphere
model from NeQuick (Coïsson et al., 2006) was included as the
default option. This model has been constructed from ISIS-2 topside
sounder data orbiting at 1,400 km (see also Gulyaeva, 2012). Further
extension to higher altitudes includes the work of Gulyaeva et al.
(2002) who took available topside sounder profiles up to 3,500 km
and built a connection of IRI to the bottom of the plasmasphere
(IRI-PLAS) (see also Gulyaeva, 2011; Gulyaeva et al., 2011). Reinisch
et al. (2007) also made an attempt to connect the IMAGE/RPI
density data (see section 3.2) with IRI 2001 topside using the vary-
Chap approach (see also discussion in Bilitza and Reinisch, 2008).
This model was further improved in Nsumei et al. (2012).

3 Empirical models

3.1 Empirical plasma density models

Early efforts tomodel the plasmaspheric electron density included
effects due to solar activity and season, with the first models providing
the density using simple empirical relations depending on the
McIlwain parameter L in Earth radii. Carpenter and Anderson
(1992) derived a “reference profile” of the plasmaspheric electron
density, valid for 2.25 < L < 8, to describe the saturated plasmasphere,
N(L) � 10(−0.3145L+3.0943), with additional dependences to include
perturbations due to season and phase of the solar cycle. This
model uses the International Sun-Earth Explorer (ISEE)
measurements and is limited to the local time interval of
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0–15 MLT omitting plasma expansion on the dusk side, which these
authors had aimed to treat separately (Carpenter and Anderson,
1992). Lyons and Thorne (1973) used a form N(L) � 1000(4/L)4,
that was consistent with Carpenter et al. (1964), to derive electron
lifetimes that yielded equilibrium flux profiles for L = [1,5] using a
Fokker-Planck radial diffusion code, even though the density model
was not valid below L = 2. Albert (1999) used an exponential, N(L) =
16400e−0.875L, instead of a power law in L. Sheeley et al. (2001) reported
N(L) = 1390 (3/L)4.8 ± 440 (3/L)3.6 in the plasmasphere for 3 ≤ L ≤ 7,
where the authors show that the standard deviation captures
differences between a newly filled and saturated plasmasphere.
They did not find a magnetic local time (MLT) dependence for
the plasmasphere, but did model the MLT-dependence of the plasma
trough. A combination of Albert (1999) within the plasmasphere and
Sheeley et al. (2001) within the plasma trough is used in the wave-
particle interaction simulations of Ripoll et al. (2017) when satellite
observations are lacking.

Gallagher et al. (2000) developed the Global Core Plasma
Model (GCPM), a single unified model of the whole
plasmasphere using an ‘amalgam’ of previously developed
‘region-specific’ models. GCPM addresses the density,
temperature and composition of the plasmasphere,
plasmapause, trough and polar cap. It depends on solar and
geomagnetic indices, but is intended to be ‘representative’ of
these conditions rather than used as a dynamic model. GCPM
uses a modified version of the reference profile of Carpenter and
Anderson (1992), N(L) = 10−0.79L+5.3, added to the perturbations
due to the solar cycle and season. It joins the topside ionosphere
model of IRI to the equatorial plasma density model by first
extrapolating the slope of the IRI model above the F2 peak
using an exponential function and extrapolating the slope of the
equatorial model downward in altitude with another exponential
function, then blending the two functions with hyperbolic
tangents. At higher latitudes, the shape of the exponential
function is determined from IRI above the F2 peak, but the
form is shifted by a constant so that the exponential decays to
the equatorial value. The plasmapause location and width depend
on local time. GCPM could be considered as the best compilation
of all empirical density models. However, the GCPM model has
not been directly coupled to radiation belt codes or wave particle
interactions codes (to the knowledge of the authors) but it has been
used for the validation of other plasma density models, themselves
used in radiation belt codes (e.g., Ozhogin et al., 2012).

3.2 Latitudinal dependence

There have been recent efforts to model the variation of
electron density with magnetic latitude. Denton et al. (2006) used
satellite measurements from Polar and the Combined Release and
Radiation Effects Satellite (CRRES) to model the latitudinal
variations as a power law of the radial distance R to any point
along the field line, N(L, R) � Neq(LRE/R)α, and fit α as a
function of L and equatorial density for L > 2. Denton et al.
(2006) fit this model to IMAGE RPI data and found that it did not
perform well at high magnetic latitudes. Reinisch et al. (2004) and
Huang et al. (2004) found that the following form fits data from
IMAGE RPI well:

N L, λ( ) � Neq L( ) 1 + γλ/λINV[ ] cos π/2( ) αλ/λINV( )( )[ ]
−β (1)

where λ is the magnetic latitude, λINV is the invariant magnetic
latitude, and the fitting parameters are α, β, γ. Ozhogin et al. (2012)
built on the earlier work of Reinisch et al. (2004) and fixed the values
of the fitting parameters to

α � 1.01 ± 0.03, β � 0.75 ± 0.08, γ � 0 and

Neq L( ) � 10− 0.4903±0.0315( )L+ 4.4693±0.0921( ) (2)

The Ozhogin et al. (2012) model is restricted to altitudes greater
than 2000 km and L > 1.5, up to L = 4, and does not address
dependence on MLT, season, solar activity, or differences in density
between the Northern and Southern hemispheres. This model is
plotted in Figures 1G, H to illustrate the increase of density with
latitude. Models of Carpenter and Anderson (1992), Gallagher et al.
(2000), Denton et al. (2006), Sheeley et al. (2001) and Ozhogin et al.
(2012) are compared in Figure 8 of Ozhogin et al. (2012).

Empirical and first-principles models of the cold plasma density
in the plasmasphere have been in development since the 1960’s, but
there is just one model (Ozhogin et al., 2012) that is valid below L =
2 and includes latitudinal dependence. To our knowledge, there was
no valid empirical model below L = 1.5, nor one that includes
variations due to solar activity, season, local time, and hemispheric
differences, in addition to L, λ below L = 2. Recently, Hartley et al.
(2023) combined Van Allen Probes data for latitudes below 20° with
Arase data up to 40° for 1 < L ≤ 3 and derived a new electron density
model with both a latitudinal and MLT dependence. Comparison
with the L dependence of the Ozhogin model shows good agreement
above L = 1.5. Below L = 1.5, a fitting form similar to the Ozhogin
model is adopted with new parameters defined as α � 1.03, β � 0.44.
An MLT dependence of the plasma density was identified, which is
consistent with the diurnal variation of ionosphere. This variation is
strongest at low L, but persists out to L = 3. All empirical electron
density models discussed in this article are listed and succinctly
synthetized in Table 1.

3.3 Empirical plasmapause models

There exist a variety of empirical plasmapause models currently
used in radiation belt simulations. They generally provide the radial
distance of the plasmapause in the equatorial plane as a simple
function of the geomagnetic activity level. Tu et al. (2009) used, for
instance, the CRRES data driven model of O’Brien and Moldwin
(2003), whereas Tu et al. (2013) implemented the Carpenter and
Anderson (1992) plasmapause model (noted CA92). The
CA92 plasmapause model is the most commonly used model to
our knowledge. It has been largely used for radiation belt studies
over the last 10 years (Subbotin and Shprits, 2009; Kim et al., 2011;
Shprits et al., 2013; Ripoll et al., 2016; Ripoll et al., 2019; Wang and
Shprits, 2019; Cervantes et al., 2020a; Cervantes et al., 2020b;
Malaspina et al., 2020; Saikin et al., 2021).

Recently, Ripoll et al. (2022a) derived both a plasmapause and a
100 #/cc density level models based on the entire Van Allen Probes
mission (2012-2019) from both the Electric and Magnetic Field
Instrument Suite and Integrated Science (EMFISIS) suite’s (Kletzing
et al., 2013) and the Electric Field and Waves (EFW) (Wygant et al.,
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2013) data. The cold plasma densities are either determined by the
upper hybrid resonance (UHR) method from EMFISIS
measurements (Kurth et al., 2015) or by using the spacecraft
floating potential (Escoubet et al., 2007; Torkar et al., 2016;
Torkar et al., 2019) measured by the Electric Field and Waves
(EFW) instrument (Wygant et al., 2013).

About the accuracy of these density measurements, we note the
densities derived along with the corresponding spacecraft potentials
are fit to a function with a non-linear least squares fit. The resulting
fits typically have a Pearson (R2) coefficient in the range of
~0.75–0.95 and an average percent error between the selected fit
derived densities and the densities used to perform the fit of ~15%.
Experiments with individual orbits show that fits of the functional
form can capture the density voltage relation over a range of
densities from ~few cm-3 up to 3,000 cm-3 with the lower
densities still agreeing with the EMFISIS UHR densities to within
10%. However, using the same fit for a longer period (larger than an
orbit) the EFW and EMFISIS densities may diverge by over factor of
two at densities <10 cm-3. The reason for this is the variability of the
plasma environment outside the plasmasphere. For periods during

which the upper hybrid resonance line is clearly resolved in the High
Frequency Receiver (HFR) spectral data, the EMFISIS density
product is generally more accurate than the EFW. However,
during times in which there are high levels of wave activity that
make identification of the upper hybrid line difficult or impossible,
resulting in increased uncertainty in the EMFISIS densities, the EFW
density fits still return densities by applying the relevant fit equation
to the spacecraft potential. Regarding the semi-automated process
for determining the EMFISIS density from the UHR (Kurth et al.,
2015), there is a 8.7% mean percentage difference between the
manual process and the semiautomatic process, which is less
than the ~10% resolution available for an individual
measurement. This difference is visible in Figure A2 of Goldstein
et al. (2014a), where the average difference is often low (~7%), is less
than 20% in general, but can be up to 100% for a very small number
of data points. Another main source of error is the spectral
resolution, due to the upper hybrid resonance that can only be
defined at specific values dictated by the binned frequency spectrum.
This translates to a density resolution of Δne/ne of about 10%. The
uncertainty increases when the spectra become difficult to interpret,

TABLE 1 Empirical electron density models discussed in this article.

Name/Reference Modeled quantity Data in use (or type
of physics)

Model validity
domain

Known limitation

Carpenter and Anderson (1992) Plasmasphere and plasma trough
density with MLT dependence.
Plasmapause

ISEE valid for 2.25 < L < 8 0 to 15 MLT. Underestimation of the
plasmapause position shown in Ripoll
et al. (2022a)

Lyons and Thorne (1973) Density Whistler measurements and
OGO-5

L = [1,5] Not valid below L = 2. Limited to within
the plasmasphere

Albert (1999) Density ISEE Based on Carpenter and
Anderson (1992)
averaged over MLT

Limited to within the plasmasphere

Sheeley et al. (2001) Density with MLT dependence CRRES 3 ≤ L ≤ 7 CRRES limitation in MLT and temporal
coverage. Gap at high L shell between
dawn and noon. No dependence on
magnetic activity

Albert (1999) within the
plasmasphere and Sheeley et al.
(2001) within the plasma trough

Density ISEE and CRRES valid for 2.25 < L < 7 Limitations of Carpenter and Anderson
(1992) and Sheeley et al. (2001)

GCPM Gallagher et al. (2000) 3D Density, temperature and
composition of the plasmasphere,
plasmapause, trough and polar cap

Compilation of all empirical
density models

L in [1, 8] Not a dynamic model and only
representative of typical conditions

Denton et al. (2004) Density with MLT dependence Polar L in [2, 8], ne < 1,500
#/cm-3

Limited to March 1996 to September 1997

Denton et al. (2006) Density with latitudinal
dependence

Polar and CRRES L in [2, 8] Power law form to describe the field line
distribution

Ozhogin et al. (2012) Density with latitudinal
dependence

IMAGE/RPI altitudes greater than
2000 km and L > 1.5, up
to L = 4

no MLT, season, solar activity, or
differences between both hemispheres

Berube et al. (2005) Equatorial density IMAGE/RPI L in 2–5 data between May 2000 and May 2001

Hartley et al. (2023) Density with latitudinal and MLT
dependences

Van Allen Probes data for
latitudes below 20° with
Arase data up to 40°

L in [1,3]. Continuous
with Ozhogin et al.
(2012) up to L = 4

Low L-shell model

Denton et al. (2012) Long-term (>1 day) density
refilling rates

IMAGE/RPI L in [2, 9] NoMLT dependence of refilling rate. Kp <
1.5. 34 quiet periods of ~2 days between
2001 and the end of 2005
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as discussed in Goldstein et al. (2014a). In most instances, the
spectral resolution uncertainty is estimated to be between 10% and
20% (Hartley et al., 2016). The EMFISIS and EFW densities from
~10 cm-3 to 3,000 cm-3 are statistically compared in Jahn et al.
(2020), who found that the EFW values predominantly fall in a
range of 50%–200% of their corresponding EMFISIS measured value
(e.g., 0.5 to 2 times the actual value), while most of the EFW to
EMFISIS points used for comparison are ~100% (e.g., nEFW ~
nEMFISIS). Further comparisons of the 100 #/cc level are carried
out in Ripoll et al. (2022a) in which Figures 1K, L confirm the good
agreement between both methods, with the bulk of normalized
differences below ±20%.

A comparison of the CA92 plasmapause model with Van Allen
Probes measurements is performed in Ripoll et al. (2022a). These
authors first recover the CA92 model using EMFISIS data and a
gradient method to localize the plasmapause, showing the practical
reliability of the CA92 model. However, direct comparisons of the
100 cm-3 level deduced from Van Allen Probes EFW measurements
and the CA92 model show the dense plasmasphere expands farther
out than predicted by the CA92 model. Departure of the
CA92 model from the 100 cm-3 EFW data increases as the
maximum value of the Kp index over the last 24 h (Kp) increases
and L-shell decreases, and storm-induced erosions are less deep than
predicted by the CA92 model (Ripoll et al., 2022a).

The model of O’Brien and Moldwin (2003) based on CRRES
data is the first to show the MLT dependence as well as the relevance
of parametrizing the plasmapause model with various indices, such
as Kp, AE, and Dst (see also Moldwin et al. (2002)). Carpenter et al.
(2000) states the experimental error in the CRRES density is
associated with measuring the UHR or plasma frequencies on the

SFR records. They estimated to be +/− 6% in spectral resolution (Δf/
f), which corresponds to +/− 12% in density. Kwon et al. (2015)
derived the median/mean plasmapause locations from the electron
density inferred from the Time History of Events and Macroscale
Interactions during Substorms (THEMIS) spacecraft potential
under steady quiet conditions (Kp ≤ 1). The comparison of their
plasmapause model with the estimated Lpp from models such as
GCPM (Gallagher et al., 2000), Moldwin et al. (2002), and O’Brien
and Moldwin (2003) with Kp = 1 shows the plasmapause is farther
extended ~1–2 L from the Earth (i.e., GCPM and CRESS based-
models models underestimate the extend of the plasmapause). Ripoll
et al. (2022a) show the underestimation of the plasmapause position
is caused by the gradient method that fails identifying gradients
particularly during quiet times and on the dusk.

Other plasmapause models include Bandić et al. (2016) based on
CRRES data, Cho et al. (2015), Liu and Liu (2014) and Liu et al.
(2015) based on THEMIS data, and Larsen et al. (2007) based on
IMAGE data. Verbanac et al. (2015) plasmapause model is based on
CLUSTER data and analytical relationships obtained from
geomagnetic and solar wind observations. Bandic et al. (2017)
derived a plasmapause model from a large dataset including
multiple sources. A comparison of these models is provided in
Pierrard et al. (2021c) showing a great variability of mean
plasmapause empirical models (see also Guo et al., 2021). All
empirical plasmapause models discussed in this article are listed
and succinctly synthetized in Table 2 (see also Table 1 in He et al.
(2017) listing the model dependences).

The large variability of the measurements underlying the mean
empirical plasmapause models (more generally mean plasma
density empirical models) is one major limitation of this type of

TABLE 2 Empirical plasmapause models discussed in this article.

Name/
References

Modeled quantity Data in use
(or type of physics)

Model validity
domain

Known limitation

O’Brien and
Moldwin (2003)

Plasmapause with MLT
dependence

CRRES L in [2, 8] CRRES limitation in MLT and temporal coverage.
Gap at high L shell between dawn and noon

Ripoll et al. (2022a) Plasmapause and 100 #/cc
level line, with MLT
dependence

Van Allen Probes L in [1.5, 6] Single index modeling

Kwon et al. (2015) Plasmapause THEMIS Kp~1 Limited to quiet times

Bandić et al. (2016) Plasmapause with MLT
dependence

CRRES L in [2, 8] Sector (12–18 MLT) contains significantly less data
than other sectors

Cho et al. (2015) Plasmapause THEMIS (2008–2012) L in [2, 8] Ascending phase of Solar Cycle 24. Sharper gradient
than commonly used. No MLT dependence

Liu and Liu (2014) Plasmapause with MLT
dependence

THEMIS D (2010-2011) L in [3, 6] Generalized in Liu et al. (2015)

Liu et al. (2015) Plasmapause with MLT
dependence

THEMIS (2009–2013) L in [2, 8] Limited to plasmapause crossings with one sharp
density gradient

Verbanac et al.
(2015)

Plasmapause with MLT
dependence

Cluster L in [2.9, 8.8] Limited to 311 plasmapause crossing

NSW-GDP Model
He et al. (2017)

Plasmapause with MLT
dependence

Multiple sources (18 satellites in
1977–2015). 48,899 plasmapause
locations

L in [2, 8] The maximum RMS error of 0.91 RE at 17 h MLT.
Minimum RMSE of 0.57 RE at midnight. Diurnal
plasmapause variations may be faded through
36 years data averagd in 1 h UT intervals
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models that calls for the use of either physic-based models or
machine learning technics.

4 Physic-based models of the
plasmasphere

4.1 Ionosphere-plasmasphere models

The 3D global ionosphere/plasmasphere fluid model SAMI3
(Huba and Krall, 2013; Krall and Huba, 2013) of the Naval Research
Laboratory (NRL) solves the continuity and momentum fluid
equations for seven ion species (H+, He+, N+, O+, N+

2, NO
+ and

O+
2) and includes the thermospheric wind-driven dynamo electric

field. It is based on SAMI2 (Huba et al., 2000). SAMI3 uses the
partial donor cell method (Hain, 1987; Huba, 2003) and a newly
implemented 4-order flux-corrected transport scheme for ExB
transport perpendicular to the magnetic field (Huba and Liu,
2020). The temperature equation is solved for three atomic ion
species and electrons. The model has a co-rotation potential, a
neutral wind dynamo potential (with winds from HWM93 (Hedin,
1987)), and a time-dependent Volland-Stern-Maynard-Chen
potential. In Huba and Krall (2013), SAMI3 density results are
compared at the equator for 4 MLT sectors with the quiet time
empirical electron density of Berube et al. (2005) defined as neq =
100.51L+4.56 for L in 2–5 from IMAGE RPI data betweenMay 2000 and
May 2001. They find the SAMI3 electron density is lower by a factor
2 attributed to a lower F10.7 index used in the simulation.

The SAMI3 model has been recently modified to support the
NASA ICON mission and provide ionosphere and thermosphere
properties during this mission (Huba et al., 2017). SAMI3 recently
integrated an improved model of counterstreaming H+ outflows
from the two hemispheres during storm using a two fluid species for
H+ (Krall and Huba, 2019) in order to avoid non-physical high-
altitude ‘top-down refilling’ density peaks (Krall and Huba, 2021).
SAMI3 is currently used to try to reproduce the formation of density
ducts in the plasmasphere (e.g., Jacobson and Erickson, 1993; Loi
et al., 2015) caused by the thermosphere composition and winds on
plasmaspheric refilling outflows (Krall et al., 2018) as observed from
the Murchison Widefield Array (MWA) interferometric radio
telescope in Australia (Helmboldt and Hurley-Walker, 2020).
SAMI3 recently coupled to the atmosphere/thermosphere code
WACCM-X (Whole Atmosphere Community Climate Model
with thermosphere and ionosphere extension) provided the first
high-resolution global simulation using realistic thermospheric
conditions of the formation and penetration of plasma bubbles
into the topside F layer (Huba and Liu, 2020). These structures will
further propagate to higher altitudes and introduce longitudinal and
seasonal dependence structures into the plasmasphere. Further
coupling of SAMI3 and applications are discussed in Huba (2023).

The Ionosphere-Plasmasphere-Electrodynamics (IPE) model is
derived in Maruyama et al. (2016) to investigate the connection
between terrestrial and space weather (e.g., Fuller-Rowell et al.,
2008). IPE provides 3D thermal plasma densities for nine ion
species, electron and ion temperatures, and parallel and
perpendicular velocities of the ionosphere and plasmasphere. The
parallel plasma transport is based on the Field Line Interhemispheric
Plasma (FLIP) Model (Richards et al., 2010). There is a detailed

model of the Earth’s magnetic field using Apex coordinates
(Richmond, 1995) and the International Geomagnetic Reference
Field IGRF (as in SAMI3). The transport is computed with the same
solver all the way from the equator to the pole on a global static grid
with a semi-Lagrangian scheme that allows for the global plasma
transport perpendicular to magnetic field lines. There is a self-
consistent photoelectron calculation enabling more accurate studies
of the longitudinal/UT dependence of the ionospheric mass loading
process. IPE is generally defined from 90 km to approximately
10,000 km. The spatial resolution of the radial direction in the
plasmasphere varies from 0.05 RE (L = 1.5) to 0.46 RE (L = 5).
IPE has used to reproduce the Weddle Sea Anomaly (Sun et al.,
2015) and for studying extreme plasmaspheric erosion as low as
L~1.7 (Obana et al., 2019). Current applications of IPE include
plasmaspheric drainage plumes, ionospheric storm enhanced
density (SED) plumes, plasmaspheric refilling, and plasmaspheric
composition. The Whole Atmosphere Model (WAM)(e.g., Akmaev
and Juang, 2008) has been coupled with IPE (WAM-IPE) and
provides today space weather forecast 24/7 at NOAA SWPC
(https://www.swpc.noaa.gov/products/wam-ipe). WAM-IPE has
recently be used to simulate ESF irregularities (Hysell et al., 2022).

The IRAP Plasmasphere Ionosphere Model (IPIM) uses a 16-
moment approach for strong temperature anisotropy at high
altitude and for accurately modeling the transition between
collision dominated at low altitude and collisionless media at
high altitude (Marchaudon and Blelly, 2015). IPIM solves the
interhemispheric hydrodynamics convection and corotation of six
ions and thermal electrons along flux tubes at different distances
from Earth. IPIM has a kinetic model for suprathermal electrons and
solves for the chemical reactions in the ionosphere. IPIM has been
used to simulate the depletion of the ionospheric F2 layer by a high-
speed stream for short-term behavior on the scale of a few hours
Simulations were found to be consistent with EISCAT radar and the
ionosonde measurements (Marchaudon et al., 2018). For the long-
term evolution of the plasmasphere-ionosphere system and during
quiet conditions, IPIM simulations indicate that the plasmasphere in
not stable in MLT and that no real dynamic equilibrium can be
reached (Marchaudon and Blelly, 2020).

4.2 Plasmasphere models

Different plasmasphere models combining semi-empirical
relations and physics-based backgrounds have been developed
to reproduce the inner magnetosphere, the plasmapause, and
even the plasma trough above the plasmasphere limit (see
Pierrard et al., 2009 for a review of the plasmasphere models
before 2009).

Pierrard and Stegen (2008) have developed the Belgian SWIFF
Plasmasphere Model (BSPM), a 3D dynamic kinetic model of the
plasmasphere. The BSPM model is based on physical mechanisms,
including the interchange instability for the formation of the
plasmapause (Pierrard and Lemaire, 2004), and provides the
density and the temperature of the electrons, protons and other
ions, both inside and outside the plasmasphere in the plasma trough.
It has been coupled to the ionosphere (Pierrard and Voiculescu,
2011) using the IRI model as a boundary condition and is
continuously improved by including other physical processes like
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plasmapause thickness and plasmaspheric wind (Pierrard et al.,
2021b). The input of the model is the date that determines the
geomagnetic indices Kp and Dst. The plasmapause position does
strongly correlate with the Bartels geomagnetic index, Kp index,
which is retained as the main parameter used in the model to
determine the plasmapause position. These indices may be predicted
values when forecasting is required, or observed values when past
events are simulated. They determine also the convection electric
field. As BSPM uses the IRI model, it also depends on IRI parameters
listed in Section 2. The BSPM model includes plasmapause erosion
during geomagnetic storms as well as refilling, and is able to
reproduce the plumes generated during storms and other
structures like shoulders. It uses the kinetic approach that allows
for the inclusion of non-Maxwellian distributions (Pierrard and
Lemaire, 2001). The last version of the BSPM model is shown in
Figures 1D–F for quiet, substorm, and storm activity. On 16 March
2015 1H (UT) with a quiet period with Kp~2 (and almost constant
during several hours), the plasmasphere is quite extended and
almost circular (to compare with Figure 1A). A few hours later
after a substorm injection on 16 March 2015 19 h (UT) with Kp~4,
there is formation of a plume in the dusk sector rotating with the
Earth (to compare with Figure 1B). On 17 March 2015 21 h (UT)
during an intense storm with Kp = 8-, the model shows a strong
erosion of the plasmasphere and formation of a long plume rotating
with Earth (to relate with the statistics of Figure 1C).

The kinetic approach based on particle-in-cell simulations has
also been combined with the fluid approach in Wang et al. (2015) to
develop a dynamic fluid-kinetic model for plasma transport within
the plasmasphere. A semi-kinetic model of plasmasphere refilling
following geomagnetic storms has also been recently developed by
Chatterjee and Schunk (2020b) and compared with hydrodynamic
models to explore their differences. In hydrodynamic plasmasphere
models, the non-linear inertial terms in the plasma transport
equations are retained (Chatterjee, 2018; Chatterjee and Schunk,
2019; Chatterjee and Schunk, 2020a; Chatterjee and Schunk, 2020b).
Limitations of such models are generally related to the difficulty to
reproduce the mechanisms implicated in the formation of the
plasmapause and the refilling process that is a key physics-based
problem to solve to obtain a fully coupled plasmasphere-ionosphere
model.

A two-dimensional physics-based plasmasphere model called
Cold Plasma (CPL) (Jordanova et al., 2006; Jordanova et al., 2014)
is used in a ring current-atmosphere interactions model of the
source and loss processes of refilling and erosion driven by
empirical inputs to simulate equatorial plasmaspheric electron
densities. The performance of CPL has been evaluated against in
situ measurements by the Van Allen Probes (Radiation Belt Storm
Probes) for two events (De Pascuale et al., 2018). This study finds
that severe erosion is best captured by an effective Kp-index for
scaling the inner-magnetospheric potential governing E x B flows
while refilling subsequent to moderate activity requires a solar wind
parameterization of the quiet time background after the onset of a
geomagnetic storm. Empirical models driving plasmasphere
dynamics can be improved by capturing localized enhancements
in electric field measurements and asymmetric profiles in electron
density observations. More specific simulations were dedicated to
comparisons with Van Allen Probes plasmapause observations
(Goldstein et al., 2014a; Goldstein et al., 2016).

4.3 Plasmapause models

Physics-based models also provide the plasmapause location
(e.g., Pierrard et al. (2021b)), with some models integrating Van
Allen Probes measurements and plasma trough densities (e.g., Botek
et al., 2021). Goldstein et al. (2003), Goldstein et al. (2005) developed
a plasmapause test particle (PTP) dynamic model that represents the
plasmaspheric boundary as an ensemble of E × B-drifting particles.
The PTP model uses an electric field which is driven by the solar
wind E field and Kp. The evolution of the plasmapause is modeled by
the changing shape of the curve defined by the aggregate of the test
particles evolving in a time-varying convection E-field. PTP
simulation for the moderately disturbed interval 18–20 January
2000 shows a narrow drainage plume followed by significant
plasmaspheric erosion, forming a second plume that coexists
with the residue of the first plume (Goldstein et al., 2014b).
Observations from three of the Los Alamos National Laboratory
geostationary satellites are globally consistent with this PTP
simulation in terms of the durations of plume sector transits
while the MLT widths and timings of the simulated plumes do
not precisely agree (Goldstein et al., 2014b). Goldstein et al. (2019)
further generated a plasmapause statistical model from the
simulations of 60 storms with Dst,PEAK ≤ −60nT based on Van
Allen probes data yielding over 7 million model plasmapause
locations. The epoch-binned PTP simulation results are
combined in order to create an analytical plasmapause model for
moderate storms (−120nT ≤ Dst,PEAK ≤ −60nT) and strong storms
(Dst,PEAK ≤ −120nT) that explicitly includes plumes. This model
depends on the duskside plasmapause radius and two fitted
coefficients, all three depend on epoch time (from −24 h to 36 h).

4.4 Global geospace model

A new promising approach is to couple a global geospace
model of the magnetosphere with a physics-based density model.
Figure 2 provides an example of the global geospace model,
GAMERA (Zhang et al., 2017; Sorathia et al., 2020; Sorathia
et al., 2021) coupled to RCM (Toffoletto et al., 2003). With a
two-way coupling, these models are subparts of the Multiscale
Atmosphere-Geospace Environment (MAGE) (e.g., Chen et al.,
2021; Pham et al., 2021; Lin et al., 2022). The details of GAMERA’s
core MHD numerics and its verification are presented in Zhang
et al. (2019). GAMERA uses high-order spatial reconstruction for
the preservation of sharp structures. For typical MHD problems,
Zhang et al. (2019) showed lower-order reconstruction (e.g.,
Second-order) requires four to eight times finer grid resolution
(corresponding to a 250-4,000 factor increase of the cost resolution
in 3D) as the higher-order (seventh- or eighth-order)
reconstruction to reach the same accuracy. In addition to
coupling the global MHD model to the inner magnetosphere
model via ring current pressure ingestion (e.g., Pembroke et al.,
2012), here the RCM is additionally evolving a cold fluid to model
the evolution of the plasmaspheric density. In this coupling, the
plasmasphere density is initialized using an empirical model
(Gallagher et al., 2000) and refilling rate (Denton et al., 2012),
and evolved using the same dynamically-calculated electrostatic
potential as in the MHD simulation (e.g., Merkin and Lyon, 2010).
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Note that RCM can further be coupled with SAMI3 as done by
Huba et al. (2017b) to study the ionosphere-plasmasphere system
response to the 17 March 2015 geomagnetic storm. The coupling
occurs through the electrostatic potential equation (Huba et al.,
2005; Huba and Sazykin, 2014) in which the conductance is
defined by the sum of the conductance associated with solar

activity computed by SAMI3 and the auroral enhanced
conductance provided by RCM.

Figure 2A depicts localized dipolarizations on the nightside and
the formation of a dayside plasmaspheric plume during the
17 March 2013 geomagnetic storm (Sorathia et al., 2018). There
is a complex interacting mesoscale process with nightside flows,

FIGURE 2
(A) Coupled GAMERA global geospace model and RCM simulation depicting localized nightside dipolarizations and dayside plasmaspheric plume.
Shown is the non-dipolar component of the northward magnetic field (left color bar) and contours of constant density (right color bar) in the equatorial
plane (Sorathia et al., 2018). (B) The neural network architecture of DEN2D in Chu et al. (2017a). (C) Predictions of diffusion coefficients for variable density
and wave properties from the neural network model of Ripoll et al. (2022b) during (top) quiet (Kp = 2) and (bottom) moderate (Kp = 4) activity. A Kp-
based model of plasma density and wave properties would find constant values in time. (D) Density and plasmapause location predicted by the DEN2D
neural network at midnight (noted mid) and in the plume (noted plume) based on the AL and Sym-H indices in February 2011 during a refilling event
showing dynamic rates of refilling (Chu et al., 2017b). (E) Equatorial density predicted by DEN2D and MLT sectors shown in (D).
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TABLE 3 First-principles physics models discussed in this article.

Name/References Modeled quantity Physics principles Model validity domain Known limitation

Ionosphere-Plasmasphere-
Electrodynamics
(IPE) (Maruyama et al., 2016)

3D densities for nine ion
species, electron and ion
temperatures, and parallel
and perpendicular
velocities of the ionosphere
and plasmasphere

Parallel plasma transport based
on the Field Line
Interhemispheric Plasma
(FLIP) Model Richards et al.
(2010). Detailed model of the
Earth’s magnetic field using
Apex coordinates Richmond
(1995) and IGRF.

from 90 km to approximately
10,000 km

Lack of kinetic processes

IPIM Marchaudon and Blelly
(2015)

Ionosphere-plasmasphere
model

2D interhemispheric fluid
model for 6 ions coupled with a
kinetic model for suprathermal
electrons. Includes a chemistry
solver

Defined for single L Change of flux tube volume during a
full rotation. Need an evolution of the
chemistry in the D region

3DPM Pierrard and Stegen
(2008)

Dynamic plasmapause, 3D
Density

3D dynamic kinetic model L = [2-8] Sharp plasmapause

SPM (SWIFF Plasmaphere
model) Pierrard and
Voiculescu (2011)

Dynamic plasmapause, 3D
Density

3D dynamic kinetic model,
improved version by adding
coupling with the ionosphere

from 60 km to L = 8 Limitations to reproduce the refilling
process

BSPM (Belgian SWIFF
Plasmasphere model)
Pierrard et al. (2021b)

Dynamic plasmapause, 3D
Density in plasmasphere
and plasm trough

3D dynamic kinetic model
coupled to the ionosphere,
improved version by adding
trough and refilling

from 60 km to L = 10 Plasmaspheric wind only on request

Wang et al. (2015) Electron density along the
magnetic field line

Dynamic fluid-kinetic model
with an overlapped transition
region (800 km–1,100 km in
altitude)

Defined for single L Limitations related to the difficulty to
reproduce the mechanisms
implicated in the formation of the
plasmapause and the refilling process

Chatterjee and Schunk (2019),
Chatterjee and Schunk
(2020a)

1D hydrodynamic
plasmasphere refilling
model along magnetic flux
tube

Fluid model. Three ions (H+,
He+, and O+) and two neutrals
(H and O)

Defined for single L Discontinuities in the early to middle
phases of refilling

Chatterjee and Schunk
(2020b)

Density refilling: 1D spce
and 1D velocity

Semi-kinetic model Defined for single L Do not include the effect of ion-
neutral charge exchange
mechanisms. 3D models needed for
more detailed and thorough
simulations

SAMI3 Huba and Krall
(2013), Krall and Huba (2013)

3D Density, velocity, ion
species

3D global ionosphere/
plasmasphere fluid model. Use
co-rotation potential, neutral
wind dynamo potential, and a
time-dependent Volland-
Stern-Maynard-Chen
potential. Use the partial donor
cell method. 4-order flux-
corrected transport scheme for
E x B transport perpendicular
to the magnetic field

Magnetic latitude range ± 88°.
90 km up to ~16 RE at the magnetic
equator

Used in practice till L~8. Non-
physical high-altitude ‘top-down
refilling’ for single fluid

Cold Plasma (CPL) Jordanova
et al. (2006), Jordanova et al.
(2014)

Density with MLT
dependence

2D fluid model L in [1.75,6.6] (via continuity
equation and prescribed empirical
or self-consistent electric field)

Empirical refilling timescales
determined from
ionospheric measurements of Hedin
(1987), and Bilitza (1986). Empirical
saturated flux tube densities
determined from ISEE observations
of Carpenter and Anderson (1992)

RCM Toffoletto et al. (2003) Density with MLT
dependence

2D cold fluid to model the
plasmaspheric density

L in [2,8] No field-aligned density structure.
Modeling plasmasphere refilling
requires separate model, typically
empirical refilling model like Denton
et al. (2012)

Plasmapause test particle
(PTP) dynamic model
Goldstein et al. (2003),
Goldstein et al. (2005)

Plasmapause with MLT
dependence

Test-particle model Validated at gobal scales (e.g.,
durations of plume sector transits)

Limited accuracy at meso-scales (e.g.,
MLT widths and timings of plumes)

(Continued on following page)
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boundary Kelvin-Helmholtz on the dayside and flanks, and rolling
dense plasmaspheric plume and structures. The plume is shown at
12 UT, i.e., 6 h after the CME impacted the Earth, with a typical
expansion in the dusk-day sector that reaches L~6 and has started to
roll around Earth.

The Kelvin-Helmoltz instability we see forming on the
magnetopause and rolling side way of the magnetosphere
(Merkin et al., 2013) may contribute to transfer shear and
turbulence to the plume as it expands and removes pockets of
dense plume plasma. In this way, the plumemay potentially inherit a
complex shape that is here captured by the global MHD model. The
dense plasmasphere has a circular aspect for levels above 1,000 #/cc
and there are structured plasma pockets of low density from 1-10
#/cc on the nightside beyond the main plasmapause gradient at L~3.
On the night side, the magnetic field (and similarly the electric field)
has a fine scale structure (with finger-like regions of higher field
value) that reach the L~6 region and imprint a fluctuating profile to
the dense pockets down to the plasmapause layer. As simulation
resolution increases, some aspects of these structures become finer
and more torturous. However, understanding the full cascade of
energies down to the smallest scales requires global kinetic
modeling.

These kinds of mesoscale structures play a critical role in
shaping both the global-scale and micro-scale processes of the
magnetosphere. Localized injections are believed to be an
important part of the transport of magnetic flux and energetic
particles into the inner magnetosphere (e.g., Gkioulidou et al.,
2014; Merkin et al., 2019), thus building the large-scale ring
current and affecting global dipolarization of the inner
magnetosphere, as well as resulting in density enhancements at
the dayside magnetopause that will alter local reconnection rates
(e.g., Zhang et al., 2017) with potentially global consequences.
Additionally, these mesoscale processes shape the different wave
populations of the inner magnetosphere: anisotropic ion injections
provide free energy for the ElectroMagnetic Ion Cyclotron (EMIC)
wave population and the evolving plasmapause boundary correlates
with the relative distribution of hiss and chorus waves, with
important consequence on flux enhancements of energetic
trapped particles in the radiation belts. Physics-based models
discussed in this article are listed and succinctly synthetized in
Table 3.

5 Machine learning models

Machine learning (ML) techniques have advanced significantly
over the past decade, especially during the past few years, mainly due
to three factors: enormously increased volumes of data, significantly
improved algorithms, and substantially more-powerful computation
hardware (especially Graphics Processing Unit (GPU) computation

that can accelerate the training by a factor of ~100) (Goodfellow
et al., 2016). Although the applications of ML techniques are not
entirely new in space physics, the unique combinations of the three
aforementioned factors are leading to a new era where proper ML
techniques could significantly enhance scientific progress, especially
in understanding the non-linear nature of many physical processes.
The combination of density data and models through machine
learning techniques is one of the future and promising paths.

Taking advantage of the improvements in ML techniques and
the extensive spatiotemporal coverage of NASA satellites, a series of
ML-based models have been developed to study the cold plasma
density for two purposes: 1) providing time- and history-dependent
global distributions of total electron density in the Earth’s
magnetosphere, and 2) automatic detection of upper-hybrid-
resonance frequency to calculate the total electron density.

AML-based method was first proposed to reconstruct the global
and time-varying distributions of any physical quantity Q that is
sparsely sampled at various locations within the magnetosphere at
any time (Bortnik et al., 2016). A feedforward neural network model
was developed using point measurements of total electron density
(i.e., cold plasma density) inferred from THEMIS spacecraft
potential as an illustrative example. The model additionally takes
the time series of the sym-H index as input and reconstructs global
distributions of electron density at any time. Later, an optimized
model of the electron density (DEN2D) near the equatorial plane
was developed using THEMIS data (Chu et al., 2017a). The optimal
input parameters of the DEN2Dmodel are determined to be sym-H,
AL, and F10.7 indices based on the neural network and neuron
illustrated in Figure 2B. Time series of these indices are used as input
so that the DEN2D model is both time- and history-dependent
(i.e., dependent on a time sequence). The DEN2Dmodel succeeds in
reconstructing various plasmaspheric features during a geomagnetic
storm, such as quiet time plasmasphere, erosion, and refilling of the
plasmasphere and plume formation. Figures 2D, E shows the
DEN2D density prediction extracted at both midnight and in the
afternoon/day sector during plume expansion in February 2011.
Analysis of these results demonstrated that refilling rates are
dynamically changing (Chu et al., 2017b). The uncertainty of the
DEN2D model can be estimated using a probabilistic model
(Camporeale et al., 2019). Using global density profiles from the
DEN2D model, it is shown that plasmaspheric hiss wave power is
better parameterizing by plasma density rather than L shell, which
should be adopted in current empirical models (Malaspina et al.,
2018). A three-dimensional model of the electron density (DEN3D)
was further developed using point measurements of the cold plasma
density inferred from the upper hybrid resonance obtained from
equatorial (ISEE and CRRES) and polar-orbiting satellites (POLAR
and IMAGE). It has been verified using the additional
measurements of density along the field line provided by IMAGE
RPI (Chu et al., 2017b). The DEN2D and DEN3Dmodels are shown

TABLE 3 (Continued) First-principles physics models discussed in this article.

Name/References Modeled quantity Physics principles Model validity domain Known limitation

Goldstein et al. (2019) Plasmapause with MLT
dependence

Statistical and analytical model
based on PTP simulations

Dst < −60 nT Defined for 2 types of storms:
moderate (−120nT ≤ Dst≤−60nT)
and strong (Dst≤−120nT)
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to represent a large fraction of the observed variability in plasma
density, with correlation coefficients on the order of 0.95, and a root-
mean-square (rms) uncertainty about a factor of 2. There is room for
improvement, since the model uncertainty is larger than the relative
error of the underlying density measurements that are typically close
to, or less than, 20% (Reinisch et al., 2004). For example, the
confined density enhancements or depletions (ducts) may
contribute to the model uncertainty since these localized
structures may not be accurately predicted using geomagnetic
indices. The DEN2D and DEN3D models can reconstruct the
electron density with much smaller bias and error compared to
previous empirical models (e.g., Global core plasma model
(Gallagher et al., 2000; Sheeley et al., 2001; Denton et al., 2004;
Denton et al., 2006), and the model of Ozhogin et al. (2012)),
although the model of Ozhogin et al. (2012) has competitive
performance inside the plasmasphere at the lowest L shells.
DEN3D’s predictive ability provides unprecedented opportunities
to gain insight into the 3-D behavior of plasmaspheric features (e.g.,
plasmaspheric erosion and refilling, as well as plume formation).
Using a recurrent neural network, Huang et al. (2022) shows that the
model could predict the formation and evolution of stable and
evident plume configuration.

An electron density model of equatorial electron densities
(PINE) was developed using Van Allen Probes measurements
(Zhelavskaya et al., 2017). The PINE model also successfully
reproduced erosion of the plasmasphere on the nightside and
plume formation and evolution. However, ML-based models in
space physics usually suffer from the problem of imbalanced
dataset, i.e., many days of quiet conditions and a few days of
storms (Camporeale, 2019). To overcome this difficulty, a
coupled model was developed by using data assimilation, which
is a weighted average of the neural-network-based PINE model for
quiet times and a physics-based plasmaspheric model for active
times, to provide the plasma density during both quiet times and
geomagnetic storms (Zhelavskaya et al., 2021). In addition to

modeling electron density, a neural-network-based model was
developed to reconstruct the time-varying plasmapause location
near the equatorial plane, which outperformed previous empirical
models within its database (Guo et al., 2021).

The application of ML density models in Fokker-Planck
diffusion model has been performed in Ma et al. (2018) and
Bortnik et al. (2018). Neural networks (and other ML techniques)
can also be used to perform assimilation and interpolation/
extrapolation of large datasets. Diffusion coefficients computed
from variable density and wave properties are directly embedded
in a machine learning model in Kluth et al. (2022). Predictions of
this model for 3 days of quiet (Kp = 2) and moderate (Kp = 4) times
following the storm are shown in Figure 2C (Ripoll et al., 2022b).
Temporal variations are related to the simultaneous change of
density and wave properties, calling for future models that will
couple density and wave properties together. A Kp-based model of
density and wave properties, as commonly used nowadays, would
find constant values of the diffusion coefficients in time at fixed
L-shell in Figure 2C while the ML model shows multiple variations
with time.

The ML techniques can also be applied to labor-intensive tasks.
For example, the electron densities can be inferred from plasma
wave spectra, which can be both time-consuming and challenging
(e.g., Kurth et al., 2015). A neural-network-based upper hybrid
resonance (UHR) determination algorithm (NURD) was developed
to automatically determine the electron density from plasma wave
measurements using Van Allen Probes data (Zhelavskaya et al.,
2016, 2018; 2020). NURD is applied to Van Allen Probes EMFISIS
data in Allison et al. (2021) to show that the plasma density has a
controlling effect over acceleration of radiation belt electrons to
ultra-relativistic energies. ML-based methods for automatically
determining the UHR frequency have also been applied to the
Arase satellite using convolutional neural network (Hasegawa
et al., 2019; Matsuda et al., 2020) and the CLUSTER mission
using several automated pipelines based on neural network

TABLE 4 Machine learning models of the electron density discussed in this article.

Name/References Modeled
quantity

Data in use (or type of physics) Model validity
domain

Known limitation

DEN2D Chu et al. (2017a) Density with
MLT dependence

THEMIS L in [2, 8] Same as DEN3D

DEN3D Chu et al. (2017b) 3D Density ISEE, CRRES, POLAR, IMAGE L in [1.5, 12] Limited to the ranges of the training
data, in spatial and activity coverage.
Cannot usually make predictions during
extreme geomagnetic storms

PINE Zhelavskaya et al. (2017) Density with
MLT dependence

Van Allen Probes L in [1.75, 6.15] Performance of neural networks limited
by training data. No extreme
geomagnetic storms in the PINE data

Neural network combined with
physics-based model using Kalman
filtering Zhelavskaya et al. (2021)

Density with
MLT dependence

Neural network from Van Allen Probes
(2012-2018) + Physics-based + Kalman
filter

L in [1.75, 6.15].
Assimilation up to L = 10

Performance of neural networks limited
by training data. No extreme
geomagnetic storms in the PINE data.
No MLT dependence of refilling rate.
Too low density at low L-shell

Recurent neural network model
(encoder-decoder model) Huang
et al. (2022)

Density with
MLT dependence

Recurent neural network model with
encoder-decoder model with Long
Short-Term Memory (LSTM)
architecture. Van Allen Probes data

L in [1.75, 6.15]. Decoder
of 270-min long. Encoder
of 200-h long

Limited validation: model evaluated for
only two plume events
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methods (Gilet et al., 2021). Machine models of the electron density
discussed in this article are listed and succinctly synthetized in
Table 4.

6 Conclusion and perspectives

This review article strictly focuses on existing plasma density
models, with an emphasis on those most commonly used (or most
recent or promising) in radiation belt physics or space weather
codes. Plasma density models describe the state of the plasmasphere
in radiation belt simulations and are at the heart of the coupling
between the ionosphere, which provides the plasma source, and the
magnetosphere, wherein the intensity and variability of wave-
particle interactions are conditioned by the plasma density (see
Thaller et al., 2022 and references therein). All models discussed in
this review article are listed in Tables 1, 2, 3, 4 with their main
properties listed.

This review shows that most of the current empirical density or
plasmapause models in use for the last decade are relatively simple in
their geomagnetic activity dependence, often including a
dependence on a single geomagnetic index, e.g., Kp (Carpenter
and Anderson (1992)), and not including a magnetic local time
dependence. Some of these models are incomplete, limited by either
short temporal coverage, such as those extracted from CRRES
measurements (e.g., O’brien and Moldwin, 2003), or omitting
magnetic local time sectors (Carpenter and Anderson (1992)) or
geomagnetic activity (Ozhogin et al. (2012). The variability of the
electron plasma density is also very large when sorted with a single
index, even if retaining magnetic local time dependence (see
Figure 3 of Ripoll et al., 2022a). The spatial and temporal
variations in plasma density depend on multiple parameters,
such as the refilling rate, which is itself dependent on UV
irradiance, the state of the thermosphere (neutral winds,
composition, etc.), and the time history and level of convective
processes due to geomagnetic activity, the coupling between the
magnetosphere and ionosphere, particle precipitation, and other
processes. For instance, the standard deviation of the 100 #/cc
density level (assimilable to the plasmapause) varies from ~±0.5L
for quiet times (Kp < 2, AE<300, Dst > −50) up to ~±1L for active
times (Ripoll et al., 2022a). This variability can be explained from the
multiple factors that influence the plasmaspheric density. For
instance, Denton et al. (2006) retained in their plasma mass
density model, the F10.7 EUV index, magnetic local time, the
solar wind dynamic pressure Pdyn, the phase of the year, and the
solar wind BZ in GSM coordinates (parameters listed in order of
decreasing importance). Chu et al. (2017a) found the optimal input
parameters of the neural network DEN2Dmodel are the sym-H, AL,
and F10.7 indices. This highlights that new models should keep the
main parameter dependences, including ionospheric and
geomagnetic variability, and the MLT dependence.

Density variations are well observed between L~1.5 and L~6 at
each pass of the Van Allen Probes (see Figure 2F in Ripoll et al.,
2017), thus directly influencing the diffusion coefficients describing
wave particle interactions in the radiation belts. Diffusion
coefficients vary linearly with the electron plasma frequency,
fpe(N), however changes in density further correlate with changes
in the power of plasmaspheric hiss waves, which typically reside

within the plasmasphere. Wave power is found to increase as density
increases (Malaspina et al., 2016; Malaspina et al., 2018; Thomas
et al., 2021). As a result, the simultaneous change in both density and
hiss power leads to strong and complex variations of the diffusion
coefficients (see Figure 5 in Ripoll et al., 2017). For instance,
substorm activity causes short duration (within ± 4 h) reductions
in density, and therefore a lowering of the amplitude of the whistler-
mode waves within the plasmasphere. Variation in these parameters
causes opposite effects in terms of pitch angle diffusion and,
eventually, an overall decrease of pitch-angle diffusion during the
main substorm activity (Ripoll et al., 2020b). Therefore, an accurate
description of the plasma density, and its variation with geomagnetic
activity, directly impacts the accuracy of modeling wave particle
interactions.

The large number of parameters and mutually
interdependent processes operating over different spatial and
temporal scales, as just described, require models that include
detailed physics or use machine learning methods in order to
accurately capture or model these diverse plasma density
features. Physics-based models have progressed well in the last
decade, for instance, from 2D to 3D (e.g., Huba and Krall, 2013;
Pierrard et al., 2021b) or by introducing new physical models or
couplings, for instance, with detailed atmospheric sources (e.g.,
Huba and Liu, 2020). Physics-based models intrinsically simulate
the geomagnetic activity and can retain various geomagnetic
indices, whether these codes are limited to the atmosphere/
ionosphere/plasmasphere system or are more global MHD
codes, such as the MAGE-GAMERA project (e.g., Sorathia
et al., 2021). It is only nowadays that physics-based models
have started to be coupled with radiation belt codes (e.g.,
Dahmen et al., 2022), due to the overall complexity and
multiplicity of the physical processes modeled in radiation belt
codes (Ripoll et al., 2020a). An undeniable strength of physics-
based models is that they can mitigate the inherent limitations of
sparse spatial coverage of the data, in particular for active times
(e.g., Zhelavskaya et al., 2021). Machine learning models also
account intrinsically for multiple dependences (e.g., Chu et al.,
2017a; Zhelavskaya et al., 2021), and are undoubtedly a
promising approach to combine multiple satellite observations
and produce the next-generation of global empirical plasma
density models. A neural network-based density model has
recently served to show that the plasma density has a
controlling effect over acceleration of radiation belt electrons
to ultra-relativistic energies (Allison et al., 2021). Contrary to
empirical fits that do not allow trustable extrapolation, machine
learning techniques, such as neural networks, are extremely
promising in terms of predictive capability, which is a
keystone for space weather codes. Progress in neural network
technics are also expected in the coming years. For instance, the
use of the recent physics-informed neural networks (e.g., Raissi
et al., 2019), in which the neural network is constrained to respect
any given physical law described by general non-linear partial
differential equations, could be an hybrid way between physics-
based models and machine learning technics, possibly well
applying to plasma density modeling. Finally, the close
relationship between plasmaspheric waves and plasmaspheric
density also highlights the need for more coupling between
them, whether that coupling is done when generating physical

Frontiers in Astronomy and Space Sciences frontiersin.org13

Ripoll et al. 10.3389/fspas.2023.1096595

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2023.1096595


models or embedded within macroscopic quantities such as
diffusion coefficients (e.g., Kluth et al., 2022).

In any case, allmodels eventually aim to capture the effect caused by
magnetic local time variations of the plasma density for various
geomagnetic conditions. There is an undeniable need of new
measurements to support model development and validation.
However, most measurements of the electron density used to build
and/or validate these models, are often single observation per time at a
single location in space, leading to a reliance on statistics to capture the
magnetic local time resolution. This reliance on statistics means that the
dynamics at any given location are averaged over, resulting in the loss of
some of the structures, their rate of change, and motion at any given
spatial location. This limitation is difficult to overcome, even when
combining observations from multiple satellites with machine learning
techniques. Future missions should consider the use of multiple
spacecraft/cubesats azimuthally separated across various magnetic
local times in order to provide better coverage and resolution of
plasma density dynamics coupled with simultaneous measurements
of the ambient electromagnetic waves, which ultimately impact the
models used in radiation belt and space weather codes.
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