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With the increasing demand for astronomical observations, telescope systems
are becoming increasingly complex. Thus, the observatory control software
needs to be more intelligent. It has to control each instrument inside the
observatory, finish the observational tasks autonomously, and report the
information to users if needed. We developed a distributed autonomous
observatory control framework named the Remote Autonomous Control
System 2nd (RACS2) to meet these requirements. Rich features are
integrated into the RACS2 framework. The RACS2 is a modular framework,
in which each device control software and system services are implemented as
different components. Furthermore, the RACS2 framework assimilates new
techniques, such as a lightweight message and serialization mechanism.
RACS2 also has good compatibility with other frameworks or ecosystems
such as Python and the EPICS (Experimental Physics and Industrial Control
System). The RACS2 framework can communicate with EPICS-based and
Python-based software. With the help of these features, key system
components like executor, scheduler are developed. The executor
component can support sophisticated tasks. Autonomous observation can
be achieved by the scheduler component. A set of web-based graphical
user interface (GUI) is designed to help control and manage the framework
remotely. Based on the RACS2 framework, we have implemented the Dome A
Twins (DATs) telescope’s observation system and the space object observation
system. The systems have been operated for more than 1 year. The
RACS2 framework also has been used in our other projects like camera
control system of Wide Field Survey Telescope (WFST) and its observatory
control system, and the design can be a useful reference for the development
of other frameworks.
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1 Introduction

Astronomical telescopes have undergone great changes since they
were first invented in the 17th century. Modern large-aperture
astronomical telescopes are large scientific systems consisting of
many subsystems, such as optical systems, camera systems, telescope
mounts, domes, weather stations and even adaptive optics or active
optics systems. On the other hand, since various environmental factors
(i.e., climate, light pollution, number of clear nights and air turbulence)
will affect the observation, candidate sites are often selected at plateaus,
mountains or Antarctica for better imaging quality and higher
observation efficiency. Many of these sites are far from cities and
are not suitable for human survival. Therefore, the remote-control
feature needs to be added to observatory control systems.

Many of these remote sites have extremely poor network
conditions, i.e., Antarctic observatories. For these observatories,
remote operation often suffers from very long network delay.
Network delay causes two kinds of problems: first, the emergency
events, i.e., weather changes, require the control system to react as
quickly as possible, and network delay makes the response of control
system very slow and unable to meet the requirements. The second
problem is that the observation task itself may become slow due to
the network delay if the observatory is controlled totally remotely.
Therefore, the control systems of these observatories must obtain
some kind of automatic/robotic control mechanism, to avoid
frequently communication between sites and users, and react to
emergency events quickly.

According to the concept of robotic autonomous observatories
introduced by A.J. Castro-Tirado (Castro-Tirado, 2010), telescope
systems are categorized into four levels by the degree of automation.
1. Automated Scheduled Telescopes, 2. Remotely Operated
Telescopes, 3. Autonomous Robotic Observatories (ARO), and 4.
Robotic Autonomous Observatory Networks (RAO). According to
this classification, many observatories are between ARO and RAO.

They can achieve some level of robotic observation, such as selecting
the next observation target according to plans, changing the
observation state according to sensor information and weather,
or sending notification to operators while automatically changing
the observation state. As the conclusion of this paper, robotic
astronomical networks will become the main stream in the near
future.

Another feature of the control system of modern
observatories is that they are normally distributed systems.
Basic observatories can be controlled by a single computer.
Therefore, the status synchronization and management of
control flow is rather simple. But for large telescopes, most
components are very sophisticated. A single-node system
doesn’t have enough calculation and storage resources to run
all these components simultaneously. Therefore, distributed
architectures are needed for large automatic telescopes. Each
of the components is a separate program running on different
nodes. As shown in Figure 1 (Wang et al., 2013a), the control
software of a typical modern large observatory consists of
5 subsystems, the Telescope Control System (TCS), the
Instrumentation Control System (ICS), the Observation
Control System (OCS), the Data Handling System (DHS), and
the User Interface (UI). The OCS is the center of the control
system, and it manages the resources and schedules of the whole
telescope. The OCS is the top layer of the control system and
other subsystems. The TCS controls the telescope mount to point,
track, and calibrate, and it also controls the telescope focuser
system. For more sophisticated optical telescopes that are
equipped with an Adaptive Optics System or an Active Optics
System, the TCS also needs to control these systems. The ICS
controls the focal plane instruments, including cameras,
spectrometers, filters, shutters, focusers, and diffusers. The
DHS stores the data and provides corresponding access
interfaces.

FIGURE 1
Telescope observational and control system framework.
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Modern observatories adopt various architecture and techniques
to implement their control systems. In order to achieve efficient and
reliable communication between components, different
communication libraries are used. And these control systems
develop their abstract layers of instruments and control flows,
respectively, so that the observation task and instrument
management can be accessed via consistent interfaces. For large
observatories, the control systems, including the frameworks, the
control flows and the interfaces are often dedicated.

For example, the Keck telescope built its original control system
in 1994 as introduced in (Lupton et al., 1994), which used the TCP/
IP communication and a set of custom workflow control library,
referred to as the Keck Task Library (KTL). In 2013, the control
system of Keck telescope has undergone an upgrade (Johnson et al.,
2013), the new system uses a customized EPICS Channel Access as
the communicationmiddleware tomaintain backward compatibility
towards the original EPICS device modules. For workflows control
and task management, the original Keck Task Library remains
usable.

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST)’s control system is built based on the Common Object
Request Broker Architecture (CORBA), and the communication
mechanism is the one implemented in the ACE ORB(TAO) (Wang
et al., 2006).

The Vera Rubin Observatory, also known as the Large Synoptic
Survey Telescope (LSST), has a control system which uses a Data
Distribution Service (DDS) based communication middleware
(Mills et al., 2016; Schumacher et al., 2006). One of the reasons
for using the DDS, as mentioned in Schumacher (Schumacher et al.,
2006), is that the publisher/subscriber architecture and event-based
communication model allows the program to communicate
anonymously, which is suitable for large systems.

The Square Kilometre Array (SKA)’s observation control
framework (Williams et al., 2016) is built based on TANGO
control framework (Gotz et al., 2009), which uses the CORBA
technique.

The Atacama Large Millimeter/Submillimeter Array (ALMA)
also uses a CORBA bases control framework (Chiozzi et al., 2002),
and the communication is achieved by the DDS middleware
(Caproni et al., 2016).

The Thirty Meter Telescope (TMT)’s control system has a
communication service named Connection and Command Service,
which is a communication middleware based on the AKKA
(Roestenburg et al., 2016), which is a library implemented the actor
model (Agha, 1986). The observation control framework of the TMT is
still under construction (Gillies et al., 2020; Dunn et al., 2006).

In conclusion, the control systems of large observatories, are
often dedicated, since their workflows and hardware systems are
often unique. Some general-purpose techniques such as the CORBA
might be used as the fundamental of control system, but higher-level
encapsulations of observatories’ workflows are inevitable. Our
laboratory has used some of the communication libraries and
observation control mechanisms mentioned above, as introduced
in (Wang et al., 2006; Wang et al., 2013b: Zhang et al., 2016)
respectively.

For small telescopes, general-purpose control frameworks, such
as the Remote Telescope System, 2nd version (RTS2) (Kubánek
et al., 2006) are popular. The RTS2 is developed for the Linux

platform. The RTS2 uses a set of its own communication protocol
(RTS2 protocol) to interchange commands between components
and execute the corresponding task accordingly (Kubánek et al.,
2008). It employs a centralized architecture: a service referred to as
CentralD provides functions such as naming service and node status
monitoring. The CentralD is the key service of the whole system.We
used the RTS2 to build the control system of small aperture telescope
in Antarctica (Zhang et al., 2016).

Although the RTS2 is widely used, it has some drawbacks and
limitations. Extending the RTS2 is very difficult. Users must climb a
very steep learning curve to understand the RTS2 class inheritance
mechanism, and all the extension codes must be written in C/C++.
Other programming languages are not supported. Furthermore, the
RTS2 must maintain the CentralD service, if the CentralD service
fails, so will the whole system. This can be a large problem for
complex telescope systems since distributed systems may encounter
partial failure. When such failure occurs (such as the CentralD
crashed and other service remain intact), we hope the rest of the
system can remain useable with some basic functions, and the
RTS2 cannot achieve such a goal. Since the RTS2 is maintained
by individual, the maintenance of the RTS2 is discontinued
since 2018.

To solve these drawbacks, the Remote Autonomous Control
System 2nd, RACS2, is designed and developed. The RACS2 is
scalable for different telescope systems, from small amateur
telescope systems to large scientific telescope systems consisting
of subsystems. The communication mechanism of the RACS2 is
implemented based on the lightweight message library ZeroMQ.
Control messages are serialized into binary stream with the
Protobuf. The communication library is fast and lightweighted,
the typical end-to-end delay (including serialization and
deserialization) between the RACS2 components is as low as
hundreds of microseconds. As for the architecture, the abstract of
telescope, camera, and other commonly used instruments are
provided. User can implement the support for new devices by
writing a simple wrapper. The observation tasks and instrument
control utilities are fully decoupled, and the observation tasks can be
dynamically scheduled. The RACS2 executor component allow users
to use different ways to describe the observation tasks, observation
task scripts from other frameworks can be ported to the RACS2 by
writing adapters. The RACS2 can be deployed on most Linux and
Unix distributions, and the binary release is available as a 10 MB zip
file. The RACS2 also provides interfaces towards multiple
programming languages (including Python) and other
frameworks. The interfaces of RACS2 are easy to understand. A
http webserver is built, so that users can control the system remotely
via a web-based GUI or http APIs. These features speed up the
development of the control systems and help users to further extend
the control systems.

2 System architecture

2.1 Layer of observation network and RACS2

Modern astronomical observation systems, such as the Stellar
Observations Network Group, SONG (Zheng-Zhou et al., 2018),
and the SiTian project (Liu et al., 2021), have shifted from single
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telescope to telescope networks. The typical software system
architecture of such an observatory network is shown in
Figure 2. The control framework is divided into two parts: the
control system of a single observatory (abbreviated as the
observation node, as shown in the right part of the Figure 2) and
the managing platform (as shown in the left part of the Figure 2).
Each observation node can be further decomposed into three layers:

Layer 1 Device/data source control layer. This layer interacts
with hardware directly and encapsulates the details of the low-level
operation.

Layer 2 Observation control and service coordination layer. This
layer will interact with Layer 1, and it will implement functions such
as observation task execution, data collection, log analysis and
system diagnosis, data processing, etc.

Layer 3 Interface layer. This layer provides a graphical user
interface (GUI) and an application programming interface (API).
The managing platform will interact with the observation nodes via
the interfaces provided by this layer. Human users can also use the
GUI provided by this layer.

The managing platform gathers information of nodes and sends
observation tasks to each node of the observation network. The
managing platform will analyze the data and store data into
databases. The managing platform provides UIs for the user to
interact with it.

The RACS2 focuses on distributed control in a single telescope
observatory. It draws the experience from frameworks such as the
RTS2 and EPICS and assimilates the idea of decentralization and
component auto discovery. A lightweight communication library is
used by the RACS2, and the framework specifies the remote
procedure call (RPC) interfaces between components. The

RACS2 framework uses a layered architecture, as shown in
Figure 3. The system consists of two layers: the RACS2 Common
Lib and RACS2 Components.

The RACS2 Common Lib is a C++ library that implements the
basic functions and interfaces of RACS2. All RACS2 components
are developed based on the RACS2 Common Lib. The
RACS2 components consist of device components and service
components. Each of the components is an independent executable
program. Together, they make up a network of components. This
scheme allows components to run on different devices in a local area
network, such as embedded industrial computers of large telescopes,
which makes the development of a control system easier.

2.2 RACS2 message mechanism

The Message Bus of RACS2 is shown in Figure 4.
The message bus of RACS is implemented based on the ZeroMQ

(Hintjens, 2013) and Google Protocol Buffer (ProtoBuf) (Google
Protocol Buffers Protobuf, 2015). The RACS2 implements an event-
driven mechanism based on the libUV (Marathe, 2015). Inside the
event loop, it uses the encapsulated socket interface provided by the
ZeroMQ to communicate between components. Both the peer-to-
peer mode and broadcast mode are implemented. Message
serialization and deserialization are performed by the ProtoBuf.
The RACS2 provides fine-grained grouping strategies to manage
these components. By default, all the components will enter a main
group, inside which the state change messages of each component
will be broadcast, and the user can organize components with
custom groups.

FIGURE 2
System architecture.
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The local area network component discovery mechanism is
implemented with beacon mode. Figure 5 shows an example:
Component 2 starts at T0, and it broadcasts its IP address and
the ZeroMQ Port. An already started component, Component1,
captures this message and tries to establish a connection with
Component2. At T1, a connection between Component 1 and
Component 2 is successfully established, and these components

send HELLO messages to each other. Upon receiving the HELLO
message, the component replies an INFO message. Inside the INFO
message, the metadata consist of the component’s name, type,
network address, properties, etc. When receiving the INFO
messages, the component will append the information to its
peer_list (further described in Section 2.3). By time T2, this
entire procedure is finished, and both components are aware of

FIGURE 3
Conceptual classes of the RACS2 framework.

FIGURE 4
The RACS2 message bus.
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each other. Such procedures can happen between the newcomer
component and other components.

This mechanism improves the scalability of the system and
makes it possible to expand the system online without modifying the
code and configuration files. Compared with the architecture of
polling each node by the central node, the decentralized architecture
saves network traffic and resources.

In the observational system, each instrument or observation
service is abstracted into a RACS2 component, and each property of
the component maps to the corresponding attribute of the
instrument. When a user changes the property, the framework
will operate the hardware or call some software function. Such
operations are performed by sending messages to the component.

Each message contains type information in the header, and there are
three types of messages:

1 ChangeProperty messages and PropertyChanged messages
identify the operations toward the Property of components. It
includes the name of the Property and its target value. When
receiving ChangeProperty messages, the component will
normally trigger some corresponding procedures, such as
operation toward an instrument or a software function, and
broadcast a PropertyChanged message to notify other
components that the procedure is finished. Figure 6 shows an
example: the target RA and DEC of a telescope mount are
abstracted into RA Property and DEC Property, respectively,

FIGURE 5
Diagram of the component discovery mechanism.

FIGURE 6
An example of the message sequence when change a property.
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so when users want to point some certain sky area, they can send a
ChangeProtperty message to the telescope mount component,
and the component will do the underlying job, such as sending a
command via a serial port. When the mount pointing is
completed, the telescope mount component will broadcast a
PropertyChanged message to every component in the group.

2 Log messages contain some log information. The log service
captures these messages and records them.

3 Command messages can be used to trigger some complicated
procedures. A command message contains a command name and
some arguments. For example, the initialization procedure of a
scientific camera contains many arguments, such as readout
speed, gain level, cooling configuration and so on, and the user
can define a command message to handle it. Sometimes, the same
work can be done with a group of property messages, but a
command message is simpler and more intuitive.

The message typing system facilitates the development of system
service components, such as logger, executor and scheduler. Unlike
many frameworks which use message system based on message
broker, the message mechanism of the RACS2 is simple and
lightweighted, a standalone message service is not needed, thus
help the deployment of the system.

2.3 RACS2 classes and events

The RACS2 is designed following the object-oriented paradigm.
Users can directly inherit Daemon and Client classes to implement
their own components. For some even more special requirements,

users can inherit Network, Logger, and other tool classes. This
design enhances the scalability of the system. Figure 7 is the class
diagram of the RACS2 framework. As the figure shows,
EventCallback, Daemon and Client are the base classes used by
other classes, and the derived classes are the tool classes mainly used
to realize specific functions.

Event-driven is a key feature of RACS2, and the event interfaces
are defined by the EventCallback class. Each interface of
EventCallback corresponds to an event type. The derived classes
do not need to implement all event interfaces. Since these interfaces
are merely a CPP function, the user can call them manually and
check the result, so the unit test for each derived class can be
implemented easily (compared with some complicated RPC call).

The event loop of RACS2 is built based on the libUV framework.
With the event loop, the callback functions mentioned above will be
triggered when the corresponding event occurs. onEnter, onJoin,
and onExit handle the component entering and leaving procedures
as we described in Section 2.2. Message handling is likewise, when a
message is received, the component will read the header of the
message to indicate its type and call onCommand, onLog or
onProperty to process Command, Log, and ChangeProperty
messages, respectively.

To avoid confusion, a naming convention has to be clarified
before any further description. The RACS2 documentation uses
word component, while the code list uses the word peer. These two
words are of the same meaning in the RACS2 framework and are
interchangeable. Each component holds a peer_list to record every
component in the network. The structure of peer_list is shown in
Figure 8. As shown in the figure, the peer_list is an indexed data
structure that records the information of every known component.

FIGURE 7
Class diagram of the RACS2 framework.
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The index of peer_list is the UUID of the corresponding component.
Recorded information includes the value and metadata of each
property, the available command, and other metadata (such as IP
address and port). When the component receives a
PropertyChanged message, it updates the value recorded in peer_
list. As described in Section 2.2, the peer_list is updated every time
components enter or leave the network. By storing the value of
properties inside peer_list, the component can access these values
without querying them from the network and therefore save some
network traffic.

2.4 Configuration management

The configuration management of RACS2 is based on
configuration files. The RACS2 configuration management

system has the function of searching, loading, and automatically
updating the configuration files. Each component maps to a
configuration file named after the component name. In addition,
there are independent configuration files, such as the EPICS
component mapping file, database configuration file, the FITS
header mapping file and site information.

The RACS2 provides a tool class calledConfManager. The structure
of the configuration of RACS2 is shown in Figure 9. Configuration data
are grouped into several profiles, and inside each profile are many key-
value pairs. The ConfManager will read the configuration files stored in
the file system (by default, the path is/etc.,.tc/racs2 for the Linux system)
and load all the key-value pairs recorded in these files. After the
initialization, components can access each configuration item by its
profile and key name from the ConfManager. The ConfManager also
allows components to update certain configuration item and store the
new value into the configuration file.

FIGURE 8
The peer_list data structure.

FIGURE 9
Structure of configuration files.
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A typical usage of the ConfManager is to store the choice of FITS
(Grosbøl, 1991) headers. FITS headers are often used to recordmany
important metadata, such as exposure time and gain level, into
image data files. For some custom observation tasks, scientists may
want to use some custom FITS headers. We use the ConfManager to
implement such a function: all the needed FITS headers are stored in
a configuration file. The ConfManager will load this file and read the
configuration items from it. When the camera component has
finished an exposure task and creates the FITS file, it will ask the
ConfManager about which custom headers are needed and where to
find their values (normally from other components) and then write
these FITS headers.

2.5 Programming interface

We developed a set of Python binding named Pyles, and users
can implement the RACS2 component in Python with Pyles. The
Pyles is implemented based on the C++ Pybind11 library. The
bound interfaces include the following C++ types: EventCallback,
Peer, Property, Network, and ProtoBuf types. In the
implementation of pyles, event loop is implemented with
asyncio library. Asyncio provides asynchronous I/O operation,
system signal control, idle work and other functions in Python
components. In addition, asyncio also provides support for Python
coroutines. The log class is implemented based on Python’s logging
module. It is compatible with the C + + version of the log class and
will also automatically send logs to the message bus. Python is
suitable for rapid development. Therefore, many
RACS2 components are implemented based on Python
language with Pyles, such as the log service, the executor and
the diagnostic system.

Another interface is the EPICS bridge. Since we have developed
many control software programs based on the EPICS, we want to
make use of these software programs. The EPICS bridge is a protocol
parser, it listens to the message queue of the RACS2, interprets the

message to the EPICS Channel-Access, and interprets the CA
message to the ZeroMQ message queue of RACS2. With the
EPICS bridge, EPICS IOCs can be accessed from the
RACS2 components.

Interfaces to other frameworks, such as web server or stream
processing systems can be implemented based on Pyles and the
corresponding python clients, thus improves the compatibility of the
RACS2 framework.

3 RACS2 system components

To make the RACS2 available for more users, we have
performed much work on interface adapting, user GUI and
automatic scheduling.

3.1 Observation control and service
coordination

Automatic observation is a key feature of an automatic
observation control system, it is usually divided into two parts:
the plan dispatcher and the command executor.

To avoid confusion, the terminology plan and script need to be
introduced here. In the following paragraphs, the word script means
literally a script, it is the definition of a sequence of operations. The
word plan means an actual observation task to do, many
observatories may use the word proposal to describe such thing.
For the RACS2 framework, different plans may share a same script if
they perform some similar tasks.

In many observation frameworks, the design of automatic
observation is often not flexible enough to meet the
requirements of complex telescope applications. For example,
the RTS2 has a set of finite state machines to implement
automatic observation. Xml files are used to describe the
observation tasks, each xml file contains several entries, each of
which represents a plan. Each entry includes target objects
information, time of observation, and other miscellaneous
information. The RTS2 executor will follow the xml file to
perform the observation. Regardless, it is difficult for human
users to write and read xml files, and only the sequential
observations are supported. Users have to change the code to
implement more powerful features, such as automatically find the
next target to observe. We want to solve these drawbacks by
introducing a set of more powerful observation executing
mechanisms into the RACS2.

Instead of using configuration files to record observation plans,
the RACS2 uses Python scripts to describe observation plans. Inside
the observation scripts, the user can access every component in the
network with the RACS2 python interface. Python language
intrinsic features are supported in observation scripts. For
example, async and await are usable, so the user can perform
asynchronous waiting in the script. For safety considerations, we
will check the import functions. Compared to xml files, Python
scripts can describe much more complicated procedures, including
judging and branching. Users can even use the python mathematic
libraries (such as numpy) and database interfaces (such as ORM)
inside the script.

FIGURE 10
Database schema of the observation database of RACS2.
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For simple observations, such as repeatedly pointing to some sky
area, starting tracking and taking pictures, the RACS2 also provides
some helpful utilities. Users can specify arguments for the script by
uploading CSV files with lists of arguments. The RACS2 executor
will automatically execute the script with each set of arguments in
the CSV file.

# Acquire the parameters
ra = float (args [0])
dec = float (args [1])
exptime = float (args [2])
# Acquire the components
cam = racs2.get_peer (“CAM”)
tel = racs2.get_peer (“TEL”)
# Set the properties of each component
racs2.setprop (cam,“EXPTIM”, exptime)
racs2.setprop (tel,“TargetR”, ra)
racs2.setprop (tel,“TargetDE”, dec)
# Tell the telescope to move to the position
racs2.sendcmd (tel,“mov”)
# Wait until the telescope points to the position and starts
tracking, with a timeout of 30 s
await racs2.wait_status (tel, “IDL”, 30)
# Send exposure command, at the same time the telescope is
tracking the object
racs2.sendcmd (cam,“expos”)
# Wait until the exposure finish
await racs2.wait_status (cam,“IDL”, exptime+30)

The list above is a typical observation script used in the DomeA
Twins (DATs) project. This script shows features of
RACS2 observation scripts. At the beginning of the list is
arguments capturing. ra, dec, and exptime (exposure time) are
the arguments passed to the script. The RACS2 python library is
injected into the context at the beginning. With racs2.setprop, the
user can set the property of another component, and with
racs2.sendcmd, the user can send a command to another
component. The racs2.wait_status function allows the user to
asynchronously wait for a condition to satisfy before continuing
execution.

The scripts are stored inside an observation database. The
schema of the observation database is shown in Figure 10. Each
observation plan is recorded in a plan table. Every plan has a script_
id that points to the observation script it uses, as well as the
parameters that are stored in the plan_args table. The executor
will check the validity of the parameters at runtime according to the
information in the script_args table.

The RACS2 uses two system components to conduct the
observation: the scheduler component and the executor component.

The scheduler component analyzes the observation plans in the
database to select the next plan to execute, which will sent to the
executor then. When the observation plan is complete, the executor
will broadcast this event, so that the scheduler can sent the next
plane to it.

There are two default scheduling mechanisms, sequential or
repeat. For the sequential mode, plans are ordered by their desired
start time, and are sent to executor under this order. For the repeat
mode, the same plan will be sent to the Executor when current one is

finished. The Scheduler use a finite state machine to track the
execution status of the Executor. The state transition diagram is
shown in Figure 11. The scheduler can be paused or resumed by
sending command to it. For complicated usages, plan selection
process can be overridden to support customized scheduling
algorithms.

The Executor will execute the scripts sent by the scheduler. It
maintains state machines to describe the execution state of the task.
There are two execution states: IDLE and RUNNING.

The execution of the task is implemented based on the
coroutine of the ascynio library. When the executor receives a
script, it will check the grammar and delete unsafe operations by
checking the abstract syntax tree of the script and create a
coroutine to execute the script. Since the coroutine will not
block the executor thread, the executor can still receive other
commands, such as stop commands.

3.2 Log management and visualization

The log system of RACS2 can be divided into three parts: log
collection, log storage and log visualization. The framework of the
log system is shown in Figure 12.

The RACS2 provides the Logger component to capture the state
switch of components, log requests from other components and the
hardware and system running information. The logger organizes
this information and saves it into InfluxDB (Naqvi et al., 2017).
Different from general relation databases, the InfluxDB, as a Time
Series Database (TSDB), contains a timestamp as the primary key of
all tables. Therefore, it is an ideal storage backend for logs, and it
helps to analyze, display, and diagnose the data.

The log visualization is implemented based on Grafana. Grafana
can obtain data from the database and visualize it on the dashboard
in real time. The RACS2 also uses Grafana to send user notifications
when a variable exceeds the alarm threshold.

3.3 Fault diagnosis and alarm component

Two fault diagnosis mechanisms are provided in the
RACS2 framework: fault monitoring within a single component
and the alarm component, which monitors the software and
hardware exceptions.

The internal failure monitoring mechanism within a single
component comes from the design of the component. Each
RACS2 component has an error state in addition to its normal
state. Error states include three states: NOERROR, NOTREADY,
and OUTOFRANGE. In addition, each component can define a
unique variety of error states. For each subdivision state of the
component, each integer type and floating point classType Property
contains two attributes: min_limit and max_limit, which describes
both thresholds of a property. Once a variable exceeds its range, an
OUTOFRANGE event is triggered, and the error information is
written to the log.

The alarm component works as a service. The alarm component
will acquire information from other components and determine if
there are some exceptions. The rules for finding exceptions are
defined by users, and the alarm component uses a Python-based
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expert system to process these rules. If an unrecoverable failure
occurs, the alarm component stops telescope observation and
automatically sends notifications to users. Common recoverable
failures are usually due to a mistaken command or weather
factors, the alarm component will stop the observation at these
times and perform a user-defined recovery process.

3.4 Graphical user interface (GUI)

The graphical user interface (GUI) of RACS2 is implemented
with a B/S architecture. The RACS2 chose to use the web-based
GUI for two reasons. The first reason is that the web-based UI
can be accessed from any device (such as a cellphones or
laptops), so users do not have to deploy the UI by
themselves. The second reason is that the Web-Base UI
makes remote control simpler, the backend (Server) needs to
be deployed alongside the instruments, while the frontend (GUI)
can be accessed remotely, so the control can be done far away
from the observatory.

For the RACS2, the backend is an http server based on FastAPI.
The server APIs follow the RESTful (Rodriguez, 2008) discipline.
The frontend is based on the Vue framework. The GUI consists of
four subpages and integrates the functions of device monitoring,

device control, observation tasks management and user
management. Figure 13 shows the task management page of the
system. Users can edit the observation scripts, store the scripts into
the database, and trigger an observation task manually with the
frontend.

For security reasons, the backend has a permission hierarchy
system. Only authenticated users are allowed to access the GUI.
Important operations, such as editing the observation scripts and
reading the database, also need authentication. New users can be
added via the user management page.

The web interface covers the requirements of observation and
telescope diagnosis. Users can complete the observation task by
using the web interface remotely.

4 Test and its performance

4.1 RACS2 functional test

Tests and benchmarking are critical for program quality. Unit
tests are used to test each function in a program. The RACS2 project
integrates the Google Test framework (Sen, 2010) to implement the
unit test for functions and classes. The Python API and all Python-
based components are tested with the pytest framework. We also
conduct a performance test to measure the performance of the
RACS2 component network.

The entire project is managed with TeamCity, a Continuous
Integrated (CI) platform. When new code is submitted, the server
automatically compiles, publishes, and tests the project and
generates corresponding reports and software packages.

4.2 Performance benchmark

To measure the performance of the RACS2 framework, we
measured the relationship between messaging latency and
concurrency/message size of RACS2 under local area network
(LAN) and link local (LO) environments. Two kinds of
components, the server and the client, are started to perform the

FIGURE 11
State transition diagram of task execution.

FIGURE 12
Framework of the log system.
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test. The client component sends messages of exponential series size
to the server to measure the latency.

Multiple client components are started to simulate a real-word
concurrency situation. This method is shown in the following figure.
As shown in Figure 14, t1~tn is the latency from each client, and we
use the average latency as the result.

For the LAN group, the server components and client
component are started on two different computers (both
12Core@2.6GHz) under the same LAN (1,000 Mbps, Ethernet),
and for the LO group, the server and the client components are
started on the same physical server (12Core@2.6GHz).

The result is shown in Figure 15. The message size of 64 bytes,
1,024 bytes and 8,192 bytes are plotted in the figure. As shown in the
figure, the communication is affected significantly by the
concurrency. Latency of all setups are under 2000 us. Since most
of the messages used in actual projects are sized under 256 bytes, the
typical communication delay is less than 1 ms in most

circumstances. It is worth mentioning that the LAN group
outperforms LO group when concurrency is more than 10, the
reason is that for LO groups, when concurrency is more than the
number of processor cores, the performance of server component is
limited by processor resources. For LAN group, since the server
component is running at another machine, such limit is not
observed.

For comparison, we benchmarked the RTS2 framework in a
similar way. The RTS2 has a limitation of 8k bytes for the size of the
message, so the result is not one-to-one correspondent to the
RACS2’s. Since the RTS2 framework uses the raw socket, it out-
performs the RACS2 for short messages (size < 1k), but the
RACS2 shows advantages for long messages. We also found that
the latency of RTS2 spread more widely, which means that the
RACS2 has better determinacy than the RTS2.

5 Applications

At present, the RACS2 has been applied to telescopes for the
space debris observation, the observational devices in Antarctica and
the control system of the Wide Field Survey Telescope Camera
(WFCam) (Chen et al., 2022).

5.1 Space object observation

With an increasing number of rockets, satellites and other
spacecraft entering the orbital environment, space debris is also
increasing rapidly. Therefore, a number of small and medium-sized
optical telescopes are planned around the world to build a space
debris monitoring and warning platform.

One of these telescopes is currently under construction. It has a
reflecting telescope with a diameter of 60 cm and a focal ratio of

FIGURE 13
Script management page.

FIGURE 14
Sequence of test messages.
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F/2.2. The system has a GPS module to provide time service, a
serial port-based electronic focuser in the optical tube, an equatorial
mount, an electronic dome controlled by a serial port, a webcam, a
weather station with a web interface, and a panoramic camera.

It is also equipped with a PX4040 camera with a CMOS sensor
size of 9 µm and resolution of 4 K × 4 K@12 bit sampling, which was
developed by our laboratory. The frame rate can reach up to 10 fps
through the USB3 interface.

We used the RACS2 framework to develop the control and
monitor software for this observation. Every piece of equipment,
including the telescope mount, dome, camera, weather station,
webcam and other devices, is connected to the
RACS2 framework. Each subsystem can be accessed via the
RACS2 User Interface.

The observation task of space debris is different from those of
stellar. For the stellar observation, we send a target position to the
mount, enable the tracking procedure, and start taking the picture.
However, for space debris, we need to track the space debris by
sending a set of positions to the mount and adjusting the movement
speed of each axis of the mount. RACS2 provides enough flexibility
to accomplish such observation tasks. Because the observation tasks
are just some hot pluggable scripts for RACS2, we also implement
stellar tracking, flat-field observation and other observation tasks.
All these tasks can be called by users when needed.

This system has been running for more than 1 year and has
gathered a large amount of data.

5.2 Dome a twins

The Dome A Twins (DATs) telescope system is the second
generation of the Antarctic small telescope array after the Chinese
Small Telescope aRray (CSTAR). It includes two telescopes, each
with a diameter of 145 mm. Each telescope is equipped with a frame-

transfer scientific CCD camera E4720 with a resolution of 1K * 1K.
Since the whole telescope system will be installed at dome A,
Antarctica observatory, all instruments are specially designed for
temperatures as low as −80°C.

We built the control system of DATs based on RACS2. The
DATs needs to conduct long-term unattended observations in the
harsh environment of Antarctica. The DATs has an equatorial
mount, two CCD cameras and a power control subsystem. We
have already developed the basic control software of these
equipment based on the EPICS, so these EPICS IOCs are
connected to RACS2 with the EPICS bridge.

The RACS2 system for DATs shares some features of space
debris telescopes. All observation tasks of the DATs are stored in the
observation database before deploying to the Antarctic, and then the
observation tasks will be performed in the Antarctic for several
months. Since it is very difficult to access the web interface due to the
harsh network environment in the Antarctic, the operation toward
RACS2 can be performed with a command-line client via SSH
sessions. Regardless, the system management and fault handling
mechanism of the RACS2 can ensure that the system survives from
most simple exceptions.

At present, the DATs telescope with the RACS2 system has been
tested for several months at the Xuyi Station of the Purple Mountain
Observatory. It will be deployed to Dome A for scientific
observation soon.

6 Conclusion

The Remote Autonomous Control System 2nd is a modern
distributed remote autonomous telescope control framework. Due
to the decentralized distributed design, lightweight system structure,
complete application scheme and excellent performance, the
RACS2 is lightweight and easy to use. With the help of the

FIGURE 15
Communication latency of RACS2, under link local and local area network.
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modular design, components are decoupled, new features and
support for new devices can be added to the RACS2 by
developing new components. By introducing the new
communication mechanism, the latency is low and the
framework is lightweight. Because of these features, small teams
can implement their telescope control systems with RACS2 quite
easily, and the RACS2 can be a reference for other frameworks. At
present, the RACS2 has been successfully applied to telescopes for
space debris observation, the Antarctic telescopes and control
systems of wide-field survey telescope camera (WFCam). Still,
since the RACS2 is a newly designed framework, it lacks of
support for instruments in some ways. Some new features can be
added to RACS2 in the future, such as the mechanism for the
integration of multiple observatories, automatic observation based
on artificial intelligence, and components for some specific
astronomical applications, such as time-domain astronomy and
radio astronomy. The RACS2 can be adopted by other projects
to further construct the ecosystem of the RACS2.
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