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Introduction: Methods based on deep learning have recently been applied
to recover astrophysical parameters, thanks to the ability of these techniques
to capture information from complex data. One of these schemes is the
approximate Bayesian neural network (BNN), which has demonstrated to yield
a posterior distribution into the parameter space that is extremely helpful for
uncertainty quantification. However, modern neural networks tend to produce
overly confident uncertainty estimates and introduce bias when applying BNNs
to data.

Method: In this work, we implement multiplicative normalizing flows (MNFs), a
family of approximate posteriors for the parameters of BNNs with the purpose of
enhancing the flexibility of the variational posterior distribution, to extract Ωm, h,
and σ8 from the QUIJOTE simulations. We compared the latter method with the
standard BNNs and the Flipout estimator.

Results: We have found that the use of MNFs consistently outperforms the
standard BNNs with a percent difference in the mean squared error of 21{%}, in
addition to high-accuracy extraction of σ8 (r2 = 0.99), with precise and consistent
uncertainty estimates.

Discussions: These findings imply that MNFs provide a more realistic predictive
distribution closer to the true posterior, mitigating the bias introduced by the
variational approximation and allowing us to work with well-calibrated networks.

KEYWORDS

cosmology, N-body simulations, parameter estimation, artificial intelligence, deep
neural networks

1 Introduction

Cosmological simulations offer one of the most powerful ways to understand the initial
conditions of the Universe and improve our knowledge of fundamental physics (Stefano and
Kravtsov, 2011). These also open the possibility to fully explore the growth of structure in
both the linear and non-linear regimes. Currently, the concordance cosmological model,Λ-
CDM, gives an accurate description of most of the observations from the early to late stages
of the Universe using a set of few parameters (Dodelson, 2003). Recent observations from
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the Cosmic Microwave Background (CMB) have provided such
accurate estimation for the cosmological parameters and prompted
tension with respect to local scale measurements, along with a
well-known degeneracy on the total non-relativistic matter density
parameters (Tinker et al., 2011; Planck et al., 2020; Yusofi and
Ramzanpour, 2022). Conventionally, the way to capture information
from astronomical observations is to compare summary statistics
from data against theory predictions. However, two major
difficulties arise with this approach: first, it is not well understood
what kind of estimator (or at which degree of approximation of
order statistic is better to extract the maximum information from
observations). In fact, the most common choice is the power
spectrum (PS), which has shown to be powerful for making
inference (Dodelson, 2003). However, It is well-known that PS
is not able to fully characterize the statistical properties of non-
Gaussian density fields, yielding that it would not be suitable for
upcoming large scale structure (LSS) or 21-cm signals which are
highly non-Gaussian (Hamann et al., 2010; Mesinger et al., 2011;
Abdalla et al., 2022). Then, PS would miss relevant information
if only this statistic is used for parameter recovery (Gillet et al.,
2019). Second, cosmologists will require to store and process a
large number of data, which is computationally expensive. Clearly,
advanced computational frameworks along with new perspectives
on data collection, storage, and analysis must be developed in order
to interpret these observations (Dvorkin et al., 2022).

In recent years, artificial intelligence (AI) and deep neural
networks (DNNs) have emerged as promising tools to tackle the
aforementioned difficulties in the cosmological context due to
their capability for learning relationships between variables in
complex data, outperform traditional estimators, and handle the
demanding computational needs in astrophysics and cosmology
(Dvorkin et al., 2022). These standard DNNs have been used on a
variety of tasks because of their potential to solve inverse problems.
Nonetheless, they are prone to overfitting due to the excessive
number of parameters to be adjusted and the lack of explanations
of their predictions at given instances (Guo et al., 2017). The latter
is crucial for cosmological analysis where assessing robustness and
reliability of the model predictions is imperative. This problem can
be addressed by endowing DNNs with probabilistic properties that
permit quantifying posterior distributions on their outcomes and
provide themwith predictive uncertainties. One of these approaches
is the use of Bayesian neural networks (BNNs) that comprise
probabilistic layers to capture uncertainty over the network
parameters (weights) and are trained using Bayesian inference
(Chang, 2021). Several works have utilized BNNs in cosmological
scenarios where the combination of DNNs (through convolutional
neural networks, CNNs) and probabilistic properties allows building
models adapted to non-Gaussian data without requiring a priori
choice summary statistics (Ravanbakhsh et al., 2017; Gillet et al.,
2019; Lazanu, 2021; Wang et al., 2022), along with quantifying
predictive uncertainties (Hortúa et al., 2020b; a; Hortua, 2021;
Mancarella et al., 2022; List et al., 2020;Wagner-Carena et al., 2021).
Indeed, BNNs permit inferring posterior distributions instead of
point estimates for the weights. These distributions capture the
parameter uncertainty, and by subsequently integrating them, we
acquire uncertainties related to the network outputs. Nevertheless,
obtaining the posterior distributions is an intractable task, and
approximate techniques such as a variational inference (VI) must

be used to put them into practice (Graves, 2011; Gunapati et al.,
2022). Despite the approximate posterior distribution over the
weights employed in VI providing fast inference computation,
they can also introduce a degree of bias depending on how
complex (or simple) the choice of the approximate distribution
family is (Charnock et al., 2020). This issue yields overconfident
uncertainty predictions and an unsatisfactory closeness with respect
to the true posterior. Hortúa et al. (2020a) and Hortua (2021)
included normalizing flows on the top of BNNs to give the joint
parameter distribution more flexibility. However, that approach
is not implemented into the Bayesian framework, preserving the
bias.

In this paper, we attempt to enhance the flexibility of the
approximate posterior distribution over the weights of the network
by employing multiplicative normalizing flows (MNFs), resulting
in accurate uncertainty estimates provided by BNNs. We apply this
approach to N-body simulations taken from the QUIJOTE dataset
(Villaescusa-Navarro et al., 2020) to show how BNNs can not only
take advantage of non-Gaussian signals without requiring specifying
the summary statistic (such as PS) but also increase the complexity of
the posterior as they yield much larger performance improvements.
This paper is organized as follows: Section 2 offers a summary of
the BNNs framework and a detailed description of normalizing flow
implementation. Section 3 describes the dataset and analysis tools
used in this paper. Numerical implementation and configuration for
BNNs are described in Section 4. Section 5 presents the results we
obtained by training BNNs taking into account different approaches
in addition to the inference of cosmological parameters. It also
outlines the calibration diagrams to determine the accuracy of the
uncertainty estimates. Finally, Section 6 draws the main conclusions
of this work and possible further directions to the use of BNNs in
cosmology.

2 Variational Bayesian neural networks

Here, we go into detail about BNNs and their implementation
to perform parameter inference. We start with a brief introduction,
before focusing on improving the variational approximation. We
remind the reader to refer to Abdar et al. (2021); Gal (2016); and
Graves (2011) for further details.

2.1 Approximate BNNs

The goal of BNNs is to infer the posterior distribution p(w|D)
over the weights w of the network after observing the data D =
(X,Y). This posterior can be obtained from Bayes law: p(w|D) ∼
p(D|w)p(w), given a likelihood function p(D|w) and a prior on the
weights p(w). Once the posterior has been computed, the probability
distribution on a new test example x* is given by the following
equation:

p(y*|x*,D) = ∫
w
p(y*|x*,w)p (w|D)dw, (1)

where p (y*|x*,w) is the predictive distribution for a given value
of the weights. For neural networks, however, computing the exact
posterior is intractable; so, one must resort to approximate BNNs
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for inference (Gal, 2016). A popular method to approximate the
posterior is variational inference (Graves, 2011). Let q (w|θ) be
a family of simple distributions parameterized by θ. So, the goal
of VI is to select a distribution q (w|θ*) such that θ* minimizes
KL [q(w|θ)p(w|D)], KL [⋅‖⋅] being the Kullback–Leibler divergence.
This minimization is equivalent to maximizing the evidence lower
bound (ELBO) (Gal, 2016).

ELBO (θ) = 𝔼q(w|θ) [logp (Y|X,w)] −KL [q (w|θ)p (w)] , (2)

where 𝔼q(w|θ)[logp(Y|X,w)] is the expected log-likelihood with
respect to the variational posterior, and KL [q (w|θ)‖p(w)] is
the divergence of the variational posterior from the prior. We
observe from Eq. 2 that the KL divergence acts as a regularizer
forcing the variational posterior to move toward the modes of
the prior. A common choice for the variational posterior is a
product of independent (i.e., mean-field) Gaussian distributions,
one distribution for each parameter w in the network (Abdar et al.,
2021).

q (w|θ) =∏
ij
N (w;μij,σ

2
ij) , (3)

i and j being the indices of the neurons from the previous layer
and the current layer, respectively. Applying the reparametrization
trick, we arrive at wij = μij + σij*ϵij, where ϵij is drawn from a standard
normal distribution. Furthermore, if the prior is also a product of
independent Gaussians, the KL divergence between the prior and
the variational posterior be computed analytically, which makes this
approach computationally efficient.

2.1.1 Flipout
In case where sampling from q (w|θ) is not fully independent

for different examples in a mini-batch, we will obtain gradient
estimates with high variance. The Flipout method provides an
alternative to decorrelate the gradients within a mini-batch by
implicitly sampling pseudo-independent weights for each example
(Wen et al., 2018). The method requires two assumptions about
the properties of q (w|θ): symmetric with respect to zero, and the
weights of the network are independent. Under these assumptions,
the distribution is invariant to element-wise multiplication by a
random sign matrix ̂r, i.e., ŵ = w ◦ ̂r, implies that w ∼ q(w) ≈ ŵ ∼
q̂(ŵ). Therefore, the marginal distribution over gradients computed
for individual examples will be identical to the distribution
computed using shared weights samples. Hence, Flipout achieves
much lower variance updates when averaging over a mini-batch
than shared perturbation techniques Wen et al. (2018). We will
validate this approach experimentally by comparing it against
MNFs.

2.2 Uncertainty in BNNs

BNNs offer a groundwork to incorporate from the posterior
distribution both, the uncertainty inherent to the data (aleatoric
uncertainty) and the uncertainty in the model parameters due to a
limited amount of training data (epistemic uncertainty) (Kiureghian
andDitlevsen, 2009). Following thework ofHortúa et al. (2020b), let
us assume that the top of the BNNs consists of a mean vector μ ∈ ℝN

and a covariance matrix Σ ∈ ℝN(N+1)/21. Feeding a fixed input x*, T
through the network, we obtain its mean μt and covariance matrix
Σt .Then, an estimator for the approximate predictive covariance can
be written as follows:

Ĉov(y*,y*|x*) ≈ 1
T

T

∑
t=1

Σt
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Aleatoric

+ 1
T

T

∑
t=1
(μt − μ)(μt − μ)

T

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Epistemic

, (4)

with μ = 1
T
∑T

t=1μt. It should be noted that in case Σ is diagonal and
σ2 = diag(Σ), the last equation reduces to the results obtained in the
work of Kendall and Gal (2017) and Kwon et al. (2018).

V̂ar(y*|x*) ≈ 1
T

T

∑
t=1

σ2
t

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Aleatoric

+ 1
T

T

∑
t=1
(μt − μ̄)

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Epistemic

. (5)

In this scenario, BNNs can be used to learn the correlations
between the outputs and produce estimates of their uncertainties.
Unfortunately, the uncertainty computed from Eq. 4 and Eq. 5
tends to be miscalibrated, i.e., the predicted uncertainty (taking
into account both epistemic and aleatoric uncertainties) is
underestimated and prevents a robust detection of uncertain
predictions at inference (Guo et al, 2017). Therefore, calibration
diagrams along with methods to jointly calibrate aleatoric and
epistemic uncertainties must be employed before inferring
predictions from BNNs according to the work of Laves et al. (2020).
We come back to this point in Section 5.

2.3 Multiplicative normalizing flows

As mentioned previously, the most common family for the
variational posterior used in BNNs is the Gaussian mean-field
distributions defined in Eq. 3. This simple distribution is unable to
capture the complexity of the true posterior. Therefore, we expect
that by increasing the complexity of the variational posterior, we
gain significant performance due to the fact that we are now able to
sample from a complicated distribution that more closely resembles
the true posterior. Certainly, transforming the variational posterior
must be followed with fast computations and still being numerically
tractable. We now describe in detail the MNF method that provides
flexible posterior distributions in an efficient way by employing
auxiliary random variables and normalizing flows proposed by
Louizos and Welling (2017). MNFs propose that the variational
posterior can be expressed as an infinite mixture of distributions.

q (w|θ) = ∫q (w|z,θ)q (z|θ)dz, (6)

where θ is the learnable posterior parameter and z ∼ q (z|θ) ≡ q(z)2

is a vector with the same dimension of the input layer, which plays
the role of an auxiliary latent variable. Moreover, allowing for local
reparametrizations, the variational posterior for fully connected
layers becomes a modification of Eq. 3 written as follows:

w ∼ q (w|z) =∏
ij
N (w;ziμij,σ

2
ij) . (7)

1 The targets y ∈ ℝN.

2 The parameter θ will be omitted in this section for clarity of notation.
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It should be noted that by enhancing the complexity of q(z), we
can increase the flexibility of the variational posterior. This can be
done using normalizing flows since the dimensionality of z is much
lower than the weights. Starting from samples z0 ∼ q (z0) from fully
factorized Gaussian Eq. 3, a rich distribution q (zK) can be obtained
by applying a successively invertible K-transformations fK on z0.

zK =NF(z0) = fK◦⋯◦ f1 (z0) ;

logq (zK) = logq(z0) −
K

∑
k=1

log |det
∂ fk

∂zk−1
| .

(8)

Unfortunately, the KL divergence in Eq. 2 becomes generally
intractable as the posterior q(w) is an infinite mixture as shown in
Eq. 6.This is also addressed in thework of Ranganath et al. (2016) by
evoking Bayes law q (zK)q (w|zK) = q(w)q (zK |w) and introducing
an auxiliary distribution r (zK |w,ϕ) parameterized by ϕ, with the
purpose of approximating the posterior distribution of the original
variational parameters q (zK |w) to further lower bound the KL
divergence term.Therefore, the KL divergence term can be bounded
as follows:

−KL [q (w)p (w)] = −𝔼q(w)[log(
q (w)
p (w)
)]

≥ −𝔼q(w)[log(
q (w)
p (w)
) +KL [q (zK|w)r (zK|w,ϕ)]

= −𝔼q(w)[log(
q (w)
p (w)
) +𝔼q(zK|w)

×[log(
q (zK|w)

r (zK|w,ϕ)
)]]

= −𝔼q(w)[𝔼q(zK|w)[log(
q (w)
p (w)
)]

+𝔼q(zK|w)[log(
q (zK|w)

r (zK|w,ϕ)
)]]

= −𝔼q(w,zK)[log(
q (w)
p (w)
) + log(

q (zK|w)
r (zK|w,ϕ)

)]

= 𝔼q(w,zK) [−log (q (w)q (zK|w))

+ log r (zK|w,ϕ) + logp (w)] ⇒

−KL [q (w)p (w)] ≥ 𝔼q(w,zK) [−KL [q (w|zK)p (w)]

+ logq (zK) + log r (zK|w,ϕ)] , (9)

where we have taken into account that KL [P‖Q] ≥ 0, and the
equality is satisfied if P = Q. In the last line, the first term can be
analytically computed since it will be the KL divergence between
two Gaussian distributions, while the second term is given by the
normalizing flow generated by fK (in Eq. 8). Finally, the auxiliary
posterior term is parameterized by inverse normalizing flows as
follows (Touati et al., 2018):

z0 =NF−1 (zK) = g−11 ◦⋯◦g
−1
K (zK) ;

log r (zK|w,ϕ) = log r(z0|w,ϕ) +
K

∑
k=1

log|det
∂g−1k

∂zk
| ,

(10)

where one can parameterize g−1K as another normalizing flow. In the
paper by Louizos and Welling (2017), the authors also propose a
flexible parametrization of the auxiliary posterior given as follows:

z0 ∼ r (zK|w,ϕ) =∏
i
N (z0; ̃μi (w,ϕ) , ̃σ

2
i (w,ϕ)) . (11)

We will use the parameterization of the mean ̃μ and the variance
̃σ2 as in the original paper and the masked RealNVP (Dinh et al.,

2017) as the choice of normalizing flows. However, it is crucial to

keep inmind that even if we use normalizing flows which are known
to be a very powerful and expressive type of density estimator,
these models also overfit with little training data, leading to
poor out-of-distribution (OOD) input data (Nalisnick et al. (2019);
Kirichenko et al. 2020).

3 N-body simulation dataset

In this work, we work with 2000 simulated hypercubes taken
from the QUIJOTE project (Villaescusa-Navarro et al., 2020). They
were created using the TreePM code Gadget-III (Springel, 2005),
and their initial conditions were generated at z = 127 using 2LPT
according to the work of Scoccimarro (1998). The set chosen for
this work is made of standard simulations with different random
seeds with the intention of emulating the cosmic variance. Each
instance corresponds to a three-dimensional distribution of the
density field with size 643 voxels. The following cosmological
parameters are varied across the dataset: the matter density
Ωm ∈ [0.1,0.5], baryon density Ωb ∈ [0.03,0.07], reduced Hubble
constant h ∈ [0.5,0.9], primordial spectral index ns ∈ [0.8,1.2], and
matter fluctuation amplitude σ8 ∈ [0.6,1.0], while neutrino mass
(Mν = 0eV) and the equation of state parameter (w = −1) are
kept fixed. The dataset was split into training (70{%}), validation
(10{%}), and test (20{%}), while hypercubes were logarithmically
transformed and the cosmological parameters normalized between
0 and 1. In this paper, we will build BNNs with the ability
to predict three out of five aforementioned parameters, Ωm, σ8,
and h.

4 BNN implementation

We will consider three different BNN architectures based on
the discussion presented in Section 2: standard BNNs (prior and
variational posterior defined as a mean-field normal distribution)
[sBNNs]; BNNs with a Flipout estimator [FlipoutBNNs]; and
BNNs with MNFs [VBNNs]. Our pipelines are implemented using
TensorFlow v:2.9 and TensorFlow-probability v:0.19 (Abadi et al.,
2015). All BNNs designed in this paper are comprised of three
parts. First, all experiments start with a 643 -voxel input layer
corresponding to the normalized 3D density field followed by
the fully convolutional ResNet-18 backbone as it is presented
schematically in Table 1. All the ResBlocks are fully pre-activated
and their representation can be seen in Figure 1. The repository
classification model 3D was used to build the backbone of BNNs
(Solovyev et al., 2022). Subsequently, the second part of BNNs
represents the stochasticity of the network. This comprised of
just one layer, and it depends on the type of BNN used. For
sBNNs, we employ the dense variational layer which uses variational
inference to fit an approximate posterior to the distribution over
both the kernel matrix and the bias terms. Here, we use posterior
and prior (no-trainable) normal distributions. Experiments with
FlipoutBNNs, for instance, are made via a Flipout dense layer where
the mean-field normal distribution is also utilized to parameterize
the distributions. These two layers are already implemented in the
package TF-probability (Abadi et al., 2015). On the other hand,
for VBNNs, we have adapted the class DenseMNF implemented
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TABLE 1 Configuration of the backbone BNNs used for all experiments
presented in this paper.

ResNet-18 backbone

Layer name Input shape Output shape

Batch norm (Nbatch, 64,64,64,3) (Nbatch, 64,64,64,3)

3D convolutional (Nbatch, 70,70,70,3) (Nbatch, 32,32,32,64)

Batch norm + ReLU (Nbatch, 32,32,32,64) (Nbatch, 32,32,32,64)

Max pooling 3D (Nbatch, 34,34,34,64) (Nbatch, 16,16,16,64)

Batch norm + ReLU (Nbatch, 16,16,16,64) (Nbatch, 16,16,16,64)

ResBlock 1 [[[

[

(Nbatch,16,16,16,64)

(Nbatch,16,16,16,64)

]]]

]

(Nbatch, 16,16,16,64)

Batch norm + ReLU (Nbatch, 16,16,16,64) (Nbatch, 16,16,16,64)

ResBlock 2 [[[

[

(Nbatch,16,16,16,64)

(Nbatch,8,8,8,128)

]]]

]

(Nbatch, 8,8,8,128)

Batch norm + ReLU (Nbatch, 8,8,8,128) (Nbatch, 8,8,8,128)

ResBlock 3 [[[

[

(Nbatch,8,8,8,128)

(Nbatch,4,4,4,256)

]]]

]

(Nbatch, 4,4,4,256)

Batch norm + ReLU (Nbatch, 4,4,4,256) (Nbatch, 4,4,4,256)

ResBlock 4 [[[

[

(Nbatch,4,4,4,256)

(Nbatch,2,2,2,512)

]]]

]

(Nbatch, 2,2,2,512)

Batch norm + ReLU (Nbatch, 2,2,2,512) (Nbatch, 2,2,2,512)

Global avg pooling (Nbatch, 2,2,2,512) (Nbatch, 512)

FIGURE 1
Each ResBlock includes both skip connection configurations. (A)
ResBlock starts with this configuration applied to the input tensor. (B)
Output of the previous configuration is fed into this connection.

in the repositories TF-MNF-VBNN and MNF-VBNN (Louizos
and Welling, 2017) to our model. Here, we use 50 layers for
the masked RealNVP NF, and the maximum variance for layer
weights is around unity. Finally, the last part of all BNN accounts
for the output of the network, which depends on the aleatoric
uncertainty parameterization. We use a 3D multivariate Gaussian
distribution with nine parameters to be learned (three means μ for
the cosmological parameters and six elements for the covariance
matrix Σ).

The loss function to be optimized during training is given by
ELBO 2, where the second term is associated with the negative
log-likelihood (NLL)

−NLL ∼ 1
2
log|s ⋅Σ| + 1

2
(y− μ)⊤(s ⋅Σ)−1 (y− μ) (12)

averaged over the mini-batch. The scalar variable s is equal to one
during the training process, and it becomes a trainable variable
during post-training to recalibrate the probability density function
(Hortúa et al., 2020b; Laves et al., 2020). The optimizer used to
minimize the objective function is the Adam with first and second
moments exponential decay rates of 0.9 and 0.999, respectively
Kingma and Ba (2014). The learning rate starts from 10−3, and it will
be reduced by a factor of 0.8 in case any improvement has not been
observed after 10 epochs. Furthermore, we have applied a warm-up
period for which the model turns on progressively the KL term in
Eq. 2. This is achieved by introducing a β variable in the ELBO, i.e.,
β ⋅KL [q(w|θ)p(w)]; so, this parameter starts being equal to 0 and
grows linearly to 1 during 10 epochs (Sønderby et al., 2016). BNNs
were trained with 32 batches and early stopping callback to avoid
overfitting. The infrastructure put in place by the Google Cloud
Platform (GCP) uses NVIDIA-Tesla-T4 of 16 GB GDDR6 in an N1
machine series shared-core.

4.1 Metrics

We compare all BNN results in terms of performance, i.e.,
the precision of their predictions for the cosmological parameters
quantified through mean square error (MSE), ELBO, and plotting
the true vs. predicted values with its coefficient of determination.
Moreover, it is important to quantify the quality of the uncertainty
estimates. One of the ways to diagnose the quality of the uncertainty
estimates is through reliability diagrams. Following the work of
Laves et al. (2020) and Guo et al. (2017), we can define a perfect
calibration of regression uncertainty as follows:

𝔼σ̂2 [abs[(‖y − μ‖2 | σ̂2 = α2 ) − α2]] ∀{α2 ∈ ℝ | α2 ≥ 0 } , (13)

abs [.] being the absolute value function. Hence, the predicted
uncertainty σ̂2 is partitioned into K bins with equal width, and the
variance per bin is defined as follows:

var(Bk) ≔
1
|Bk|
∑
i∈Bm

1
N

N

∑
n=1
(μi,n − yi)

2, (14)

withN stochastic forward passes. On the other hand, the uncertainty
per bin is defined as follows:

uncert(Bk) ≔
1
|Bk|
∑
i∈Bk

σ̂2
i . (15)
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TABLE 2 Metrics for the test set for all BNN architectures. High UCE values indicate miscalibration. MSE and ELBO are computed only over the cosmological
parameters.

Metrics FlipoutBNNs VBNNs sBNNs

Ωm σ8 h Ωmh2 σ8Ω0.25
m Ωm σ8 h Ωmh2 σ8Ω0.25

m Ωm σ8 h Ωmh2 σ8Ω0.25
m

MSE 0.063 0.057 0.190

ELBO 20.85 19.71 31.57

r2 0.82 0.98 0.2 0.03 0.93 0.85 0.99 0.4 0.56 0.95 0.75 0.85 0.01 0.23 0.80

UCE 0.109 8.10 0.26 0.0008 0.0008 0.010 >1.0

FIGURE 2
Plots of true vs. predicted values provided by the best experiment VBNNs, for Ωm, σ8, and some derivative parameters. Points are the mean of the
predicted distributions, and error bars stand for the heteroscedastic uncertainty associated with epistemic plus aleatoric uncertainties at 1σ.

With these twoquantities, we can generate reliability diagrams to
evaluate the quality of the estimated uncertainty via plotting var(Bk)
vs. uncert(Bk). In addition,we can compute the expected uncertainty
calibration error (UCE) in order to quantify the miscalibration

UCE≔
K

∑
k=1

|Bk|
m
|var(Bk) − uncert(Bk)| , (16)

with the number of inputs m and set of indices Bk of inputs,
for which the uncertainty falls into the bin k. A more general
approach proposed by Hortúa et al. (2020b) consists in computing
the expected coverage probabilities defined as the x% of samples for
which the true value of the parameters falls in the x%-confidence
region defined by the joint posterior. Clearly, this option is more

precise since it captures higher-order statistics through the full
posterior distribution. However, for simplicity, we will follow the
UCE approach.

5 Analysis and results of parameter
inference with BNNs

In this section, we discuss the results obtained by comparing
three different versions of BNNs, the one with MNFs, the standard
BNN, and the third one using Flipout as an estimator. The
results reported in this section were computed on the test dataset.
Table 2 shows the metrics obtained for each BNN approach.
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FIGURE 3
Calibration diagrams for the best experiments, VBNNs and FlipoutBNNs. The lower the UCE value, the higher the calibration of the model. Dashes lines
stand for the perfect calibration, so the discrepancy to this identity curve reveals miscalibration.

TABLE 3 Parameter 95% intervals taken from the parameter constraint
contours (Figure 4) from one example of the QUIJOTE test dataset using
VBNNs and FlipoutBNNs.

Parameter 95% limits
VBNNs

95% limits
FlipoutBNNs

True
value

Ωm 0.47+0.10−0.10 0.45+0.11−0.11 0.495

σ8 0.697+0.038−0.038 0.699+0.059−0.060 0.699

h 0.81+0.17−0.17 0.78+0.20−0.19 0.800

σ8Ω0.25
m 0.577+0.051−0.052 0.573+0.063−0.064 0.587

Ωmh2 0.31+0.19−0.18 0.573+0.063−0.064 0.317

As mentioned, MSE, ELBO, and r2 provide good estimates for
determining the precision of the model, while UCE measures the
miscalibration. It should be noted that VBNNs outperform all
experiments taking into account not only the average error but
also the precision for each cosmological parameter along with
a good calibration in its uncertainty predictions. Followed by
VBBNs, we have the FlipoutBNNs; although this approach yields
good cosmological parameter estimation, it underestimates their

uncertainties. Therefore, VBNNs avoid the application of an extra
post-training step in the machine learning pipeline related to
calibration. It should be noted that in all experiments, h becomes
hardly predicted for all models. Figure 2 displays the true against
the predicted values for Ωm, ωm (instead of h), σ8, and the
degeneracy direction defined as σ8Ω

0.25
m . Error bars report the

epistemic plus aleatoric uncertainties predicted by BNNs, which
illustrate the advantages of these probabilistic models where the
certainty prediction of the model is captured instead of traditional
DNNs where only point estimates are present. This uncertainty was
taken from the diagonal part of the covariance matrix.

5.1 Calibration metrics

In Figure 3, we analyze the quality of our uncertainty
measurement using calibration diagrams. We show the predicted
uncertainty vs. observed uncertainty from our model on the test
dataset.

Better performing uncertainty estimates should correlate more
accurately with the dashed lines. We can see that estimating
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FIGURE 4
68% and 95% parameter constraint contours from one example of the QUIJOTE test dataset using VBNNs and FlipoutBNNs. The diagonal plots are the
marginalized parameter constraints, and the dashed lines stand for the true values. We derive these posterior distributions using GetDist (Lewis, 2019).

uncertainty from VBNNs reflects the real uncertainty better.
Furthermore, the UCE value for VBNNs is much lower than the
one obtained by FlipoutBNN, which also implies how reliable this
model according to their predictions is. It should be noted that
even if we partitioned the variance into K = 10 bins with equal
width, FlipoutBNNs and sBNNs yield underestimate uncertainties
(many examples concentrate in lower bin values); for this reason,
we see that while VBNNs supply all 10 samples in the calibration
plots, for the others, we have just 3–4 of them. Next, we
employed the σ-scalingmethodology for calibrating the FlipoutBNN
predictions (Laves et al., 2020). At doing so, we optimize only the
loss function described in Eq. 12 where all parameters related
to the BNNs were frozen, i.e., the only trainable parameter
was s. After training, we got s ∼ 0.723, reducing UCE only
up to 10{%}, and the number of samples in the calibration
diagrams enlarged to 4–5. This minor performance enhancement
means that σ-scaling is not suitable to calibrate all BNNs,
and alternative re-calibration techniques must be taken into
account in order to build reliable intervals. At this point, we
have noticed the advantages of working with methods that
lead to networks already well-calibrated after the training step
(Hortúa et al., 2020a).

5.2 Joint analysis for cosmological
parameters

In order to show the parameter intervals and contours from the
N-body simulations, we randomly choose an example from the test
setwith true values shown inTable 3.The two-dimensional posterior
distribution of the cosmological parameters is shown in Figure 4,
and the parameter 95% intervals are reported in Table 3. It should be
noted that VBNNs provide considerably tighter and well constraints
on all parameters with respect to the sBNNs reported by Hortua
(2021). Most importantly, this technique also offers the correlation
among parameters and the measurement of how reliable the model
is in their predictions.

6 Conclusion

N-body simulations offer one of the most powerful ways to
understand the initial conditions of the Universe and improve
our knowledge of fundamental physics. In this paper, we used
the QUIJOTE dataset to show how convolutional DNNs capture
non-Gaussian patterns without requiring a specifying summary
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statistic (such as PS). Additionally, we have shown how we can build
probabilistic DNNs to obtain uncertainties that generate reliable
predictions. One of the main goals of this paper was also to report
the degree of improvement achieved by BNNs when we integrate
with techniques such as MNFs to enhance the variational posterior
complexity. We found that VBNNs not only provide considerably
tighter and well constraints on all cosmological parameters as
we observed in Figure 4 but also yield well-calibrated estimate
uncertainties as shown in Figure 3. Although the approach used in
this paper was based only on the Bayesian multilayer perceptron
(B-MLP), this method is also expanded to 2D convolutions, B-
CNN (Louizos and Welling, 2017). Hence, these results can be
applied to other probes such as galaxy photometric redshift (CfA
Redshift Survey) and large spectroscopic surveys (SDSS, DES,
or LSST). Building those B-MLP and B-CNNs for additional
extensions to Λ-CDM will be beneficial to reveal the presence of
newphysics in cosmological datasets.Nevertheless, some limitations
in this research include simple prior assumptions (mean-field
approximations), lower resolution in the simulations, and the
absence of additional calibration techniques. These restrictions will
be analyzed in detail in a future paper.
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