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Exploratory missions have found that regolith on interplanetary bodies can be
loosely packed and freely flowing—a state that strongly affects mission plans and
that may also influence the large-scale shapes of these bodies. We investigate
here whether notable circumferential ridges seen on Saturn’s moons may be a
byproduct of free flow of loosely packed regolith. Such ridges and other features
likely record the history of the moons, and we find that if surface grains are freely
flowing, then the combined gravity of Saturn itself and its tenuous ring generate
similar circumferential features. Moreover, analysis of these features reveals the
possibility of previously unreported morphologies, for example, a stationary torus
around a non-rotating satellite. Some of these features persist even for a very low
density and distant disk, which raises the prospect that nonlinear analysis of
interactions from disks to moons and back again may lead to new insights.
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Introduction

International exploratory missions have visited interplanetary bodies and have found
their regolith to be loosely packed and freely flowing (Thomas et al., 2015; Lauretta et al.,
2017). These findings concur with both modeling (Meakin et al., 1986) and terrestrial
experiments (Shinbrot et al., 2004; Shinbrot et al., 2017) intended to investigate how the
processes of fine scale regolith accretion produce larger scale morphogenesis. Nowhere is this
morphogenesis more striking than on Saturn’s moons, which exhibit remarkable equatorial
features, some of which are shown in Figure 1. Pan and Atlas (Figures 1A,B) have such
prominent equatorial ridges that the moons resemble ravioli, with aspect ratios around ½.
Iapetus (Figure 1C) is much larger and is nearly spherical, but has a sharp, 20 km high, ridge
over most of its circumference. By contrast, the asteroid Vesta (Figure 1D) is scoured by
multiple, 2 km deep, troughs extending along much of its equator.

The origins of these features are unknown. Theories for the formation of equatorial
ridges include collisions between matched pairs of bodies (Leleu et al., 2018), viscous
deformation of ring material (Charnoz et al., 2011), and accretion of material from a flat ring
onto a central satellite (Charnoz et al., 2007; Porco et al., 2007). No existing theory predicts
equatorial troughs. We show here that troughs as well as ridges arise naturally if freely
flowing grains follow equipotentials of a massive spheroid in a massive plane, as shown in
Figures 1E–H). This possibility does not appear to have been examined previously.

The binary collision theory produces veridical equatorial ridges (Leleu et al., 2018), but
requires that the two bodies have nearly identical masses, and deform rather than fragment.
Additionally, constraints on the collision impact parameter are stringent, both so that the
bodies aren’t torn apart by centrifugal forces and because any nonzero impact parameter would
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produce rotation perpendicular to the moons’ equators—opposite of
their current orientations. Moreover Pan and Atlas, and possibly
Pandora andDaphnis as well, are quite similar in shape, making for an
impressive coincidence of remarkable events.

The theories of ridge formation from ring material, on the other
hand, involve highly probable mechanisms such as viscous

spreading early in a moon’s evolution (Charnoz et al., 2011) and
deposition of ring material onto a satellite later (Charnoz et al., 2007;
Porco et al., 2007). The deposition model is supported by data from
close fly-bys indicating that Pan, Atlas and other smaller moons are
likely composed of a high density core surrounded by much lower
density accreted material (Buratti et al., 2019). To date, however,
deposition models have not reproduced the curious shapes shown in
Figure 1.

Gravitational equipotentials

Both types of theory are based on the presumption that
equatorial features require a secondary morphogenetic
process—collision, viscous spreading, or accretion—because
equatorial features are not predicted from simple gravitational
and inertial considerations. That is, as shown in cross section in
Figure 2A, equipotentials of a rotating spheroid are themselves
nearly spheroidal (for example, in the blue cross section shown),
and lack equatorial ridges or grooves. On the other hand,
equipotentials for the same rotating spheroid embedded in a thin
stationary planar disk can exhibit both a ridge (red) and a groove
(green) shown in Figure 2B, and enlarged in Figure 2D. This means
that either a ridge or a groove could form depending on the history
of material deposition (discussed shortly).

All equipotentials shown are based on a solution to Laplace’s
equation for a uniform massive ellipsoid that has been known
since 1840 (Chasles, 1840). Details of the solution appear
elsewhere (Moritz, 1990), and we provide an annotated
numerical code for its analysis in Supplementary Materials S1
accompanying this article. The essence of the solution is to break
the gravitational geopotential into three parts: a net mass and a
quadrupole term that define gravity outside of an ellipsoid of
uniform density, and a centrifugal term that accounts for steady

FIGURE 1
(A–D) Saturn’s moons Pan, Atlas and Iapetus, and the asteroid Vesta (credit NASA/JPL-Caltech/SSI) compared with simulations (E–H) of
morphology expected for freely flowing grains on a spheroidal mass influenced by a thin, weakly gravitational plane. Simulation parameters
(defined in text): (E) ω � 5.15,Rexcised � 4Rmoon , Rpolar � 0.85Rmoon , ρplane � ρmoon; (F) same as panel (E) but with ρplane � 1.2ρmoon ,
(G) ω � 8,Rexcised � 3.2Rmoon , ρplane � ρmoon; (H) ω � 25,Rexcised � 2.5Rmoon , ρplane � ρmoon . Geometry of simulations is shown in Figure 2C, where
plane thickness is 2% of spheroid’s major axis and plane outer radius is 10 times the radius of the moon in these panels.

FIGURE 2
Gravitational equipotentials. (A) Equipotentials of central sphere
(black) rotating with speed ω � 15. (B) Equipotentials of the same
sphere embedded in a plane whose density is half that of the central
sphere, using the geometry shown in (C). (D) Enlargement of
region near equator, highlighting both an inward and outward
cusp. Equipotentials in (B) and (D) are for outer diameter of the plane
10Rmoon , plane thickness 0.02Rmoon , and where a radius Rexcised �
2.8Rmoon of mass is removed from the plane as described in text.
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rotation. All terms are 3D, but we take the ellipsoid to have
azimuthal symmetry—hence we show 2D cross sections in
Figures 2A,B and elsewhere. Surfaces of revolution are
included to aid visualization in Figures 1, 5.

In this work we calculate equipotentials of a central spheroid
embedded in a planar mass using the geometry sketched in
Figure 2C, and we determine shapes of resulting surfaces
assuming that deposited mass flows freely with minimal friction.
For generality, our analysis defines the central mass rotating at
constant angular speed ω, with polar radius Rpolar and equatorial
radius Rmoon. For simplicity though, unless otherwise specified
simulations are for a spherical body (Rpolar � Rmoon). We
superimpose on the central sphere a planar mass that pierces the
moon through its equator. It is expected (Charnoz et al., 2007) that
mass near a moon will be accreted or expelled over time, so as shown
in the figure we excise mass from the plane that lies within a radius
Rexcised surrounding the moon.

We define both the plane and the excised mass using the same
1840 ellipsoidal model as for the central spheroid, but we
approximate a planar geometry by using very thin spheroids,
with polar radii 0.01Rmoon (i.e., planar thickness 0.02Rmoon). The
plane has radius Rplane much larger than Rmoon: the value of Rplane

will be specified in example simulations, but is at least 10 Rmoon in
all cases. The density of the plane, ρplane, will also be specified: we
show results for densities ranging from ρplane � 10−4 ρmoon to
ρplane � 1.2 ρplane. In all cases, both the plane and the excised
mass have zero angular speed. We take advantage of the fact
that Laplace’s equation is linear, so that we can obtain the
gravitational potential of both the moon and plane by
superimposing solutions for each. In order to excise mass from
the plane, we simply define the density of the excised region to be
negative: ρexcised � −ρplane. The excised region overlaps the plane,
so total mass is always non-negative, and varies smoothly from

zero at the center of the satellite to ρplane at the edge of the excised
region. Mass is black, and excised region is white in Figures 2, 3.

To summarize, we calculate the gravitational potential, U, as the
sum of three parts:

U � Umoon + Uplane + Uexcised (1)
where Umoon is the potential for a spinning spheroidal moon with
density ρmoon, Uplane is the potential of a plane defined to be a
stationary spheroid with density ρplane and thickness 1% that of the
moon’s equatorial diameter, and Uexcised is the potential of an
excised mass, defined to be a stationary spheroid with negative
density, –ρplane, thickness the same as the plane and radius Rexcised

that we will vary. All three bodies are concentric as shown in
Figure 2C. Each of the three parts is defined by the 1840 solution
in ellipsoidal coordinates; conversions to and from Cartesian
coordinates are included in Supplementary Materials S1.

The gravitational potential of a single spheroid has been
calculated previously (Hofmeister et al., 2018), but compares
unfavorably with shapes of Saturn’s moons. The equipotentials
shown in Figure 2A are typical, and use ω � 15. Units are
nondimensional and chosen for computational convenience, with
a gravitational constant G � 104, and ρmoon � 3

4π, giving the moon
unit mass (dimensional comparison for Saturn’s moons below).

To examine the effect of a surrounding planar mass, we begin
with a first, simplest, example: we consider a central sphere
Rpolar � Rmoon � 1, so that gravitational acceleration at radius r is
just agrav � −GMmoon

r2 . This competes against a centrifugal acceleration
of acent � ω2r, so −agrav � acent at the location indicated by the white
star in Figure 2A.

The same solution superimposed on a flattened spheroidal plane
as we have described is shown in Figure 2B. Parameters for this
example are defined in the figure caption; in short, all parameters for
the central spheroidal moon are as in Figure 2A, and the

FIGURE 3
Mechanism of bifurcation between outward and inward cusp. (A) Progression of cusp shapes as distance, Rexcised, of plane mass from central sphere
(black, with radius Rpolar � 1) is increased. (B) Enlargement of equipotentials (thin curves) and streamlines (thick curves) for Rexcised � 2. The satellite has an
outward cusp (pink, bounded by dark red), and all streamlines move toward the equatorial line in black. Red streamlines indicate that mass is brought
toward the satellite and flow toward a single saddle point is indicated by the large white arrows; blue streamlines indicate that mass is taken away
from the satellite. (C) Equipotentials and streamlines for Rexcised � 4: the white arrows have reversed direction, and all mass within the violet region moves
outward, ultimately reaching either the satellite (now green, with an inward cusp) or the plane (black). In all panels, Rplane � 102Rpolar , and the plane has
thickness 0.02Rpolar as before.
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surrounding plane has density half that of the moon:
ρplane � 1

2 ρmoon. The outer radius of the plane is 10 times that of
the moon: Rplane � 10Rmoon, and the excised radius is chosen to be
Rexcised � 2.8Rmoon for reasons that we will explain. We discuss next
effects of varying each of these parameters; for the time being, we
note that both inward and outward cusps arise naturally as equal
gravitational potentials of a central moon embedded in a plane as
can be seen from the enlargement of Figure 2D.

Two related remarks concerning the equipotentials shown must
be stressed before continuing. First, it is important to make clear the
meaning of equipotentials. An equipotential is by no means the only
possible shape of a satellite: equipotentials are surfaces free of
tangential stress, so they are the shapes that would be adopted if
surficial material (e.g., freely flowing grains) fully relaxes in response
to gravitational and centrifugal forces. Future investigations of
accretion history as well as visco-elastic effects, are clearly
merited: the intent here is to present shapes that would develop
in the freely-flowing limit. Figure 2 shows multiple equipotentials;
the choice of which is adopted depends on the amount of mass
present. The equipotentials identified in green and red in Figure 2
are chosen to define surfaces with the most pronounced inward or
outward cusp respectively. If more material were deposited onto the
green surface and allowed to relax freely, the cusp would diminish its
curvature, whereas if material were added to the red surface and
again allowed to relax freely, it would be stripped away by centrifugal
acceleration.

Second, the solutions entirely neglect gravitational interactions
between the body and freely flowing material being accreted. These
interactions would change the gravitational shape of the body, which
in turn would change the shape of the equipotentials, but this fully
nonlinear problem is non-integrable, and a complete solution is
neither unique nor generally obtainable. We do discuss gravitational
influences of a parent body (here, Saturn) at the conclusion of this
paper, but we emphasize that the satellite shapes that we
display – either with or without Saturn’s gravity—are idealized.

With this in mind, to understand the mechanism underlying
cusp formation, we observe that cusps emerge as the plane
approaches the central spheroid. That is, as Rexcised → Rplane the
effect of the plane vanishes and we recover the cusp-free solution
shown in Figure 2A, while as Rexcised diminishes, the influence of the
plane on the moon’s gravity grows. So we can examine the effect of
the plane by varying Rexcised between Rmoon and Rplane. This is shown
in Figure 3A for the representative case ω � 15 (again, variations in
ω will be considered). Parameter values used in Figure 3 are defined
in the caption; we have found in multiple trials that the progression
shown is quite typical for a wide range of parameter choices.

Figure 3A and the enlargement of Figure 3B show that a nearby
concentric plane, Rexcised ≤ 2, produces only an outward cusp (seen
also in Figures 1E–G). For a more distant plane, Rexcised ≥ 3, the
outward cusp bifurcates to form an inward cusp and a repeller,
highlighted in the enlargement of Figure 3C. Any mass within the
region labeled “Repeller” will gravitate either toward the moon or
toward the surrounding plane, along the streamlines plotted.
Streamlines are defined in the usual way from the potential U �
Umoon + Uplane + Uexcised defined earlier. As discussed next, the
bifurcation of the outward cusp into an inward cusp combined
with a repelling region is more intricate than suggested by Figure 3A:
evidence of this intricacy is seen in Figure 2B, where we see in a

simulation using the same parameters as in Figure 3 that both
inward and outward cusps are present between Rexcised � 2 and
Rexcised � 3.

Putting details of the bifurcation aside for a moment, the coarse-
grained outcome is that if a massive plane is near a satellite, it will
tend to produce an outward cusp, and as the planar mass moves
away from the moon, the outward cusp will give way to an inward
one. As mass recedes still further from the moon, its effect will
diminish until equipotentials are indistinguishable from those with
no plane at all, shown to the right of Figure 3A at Rexcised � 10Rmoon.

The mechanism underlying cusp formation can be further
exposed by examination of the enlargements of Figures 3B–C. If
a massive plane is near the moon, shown in Figure 3B, all nearby
mass is drawn equatorward, as the streamlines indicate. This either
brings nearby mass toward the moon (red arrows) producing an
outward cusp, or brings it away (blue arrows), to augment the
surrounding plane. When the plane recedes past the unstable point
indicated by the star, a bifurcation reverses mass flow near the
starred point. This can be seen by comparing the flow directions
shown by the white arrows in Figures 3B,C. This bifurcation arises
when the planar mass moves from inside the region identified by the
red equipotential in Figures 3A,B (drawing mass inward, toward the
moon) to outside that region (drawing mass outward, toward the
surrounding plane). Between these two extremes, both states can co-
exist, as shown in Figure 2B.

Dynamically speaking, the violet region surrounds what would
be the Lagrange point, L1, if there were a single orbiting mass rather
than mass within a plane. In our case, for small Rexcised, L1 is a
saddle, while for larger Rexcised the saddle splits in two and
L1 becomes an unstable node. This means that an unstable torus
devoid of mass can be expected to surround a moon with an inward
cusp embedded in a planetary ring (cf. Vesta). We will see shortly
that a stable torus is also possible.

In Figure 3 we held ω fixed and varied Rexcised; we next consider
effects of varying both ω and Rexcised. This results in Figure 4A,
where we plot states near the equator for different values of these
parameters. As with Figure 3, this plot is coarse-grained, so it does
not detail finer features such as the narrow bistable region that
persists at least up to ω � 15 (as shown in Figure 2B). Additionally,
we emphasize that the equipotentials shown are obtained through a
sequence of computational steps including transforms of
coordinates both to and from elliptical coordinates and implicit
solutions of a superposition of states for the central ellipsoid and two
nearly planar ellipsoids. These calculations (see attached code in
Supplementary Material) necessarily have limited accuracy, and as a
consequence we report here only unambiguous large-scale features,
and disregard smaller-scale intricacies that may or may not be
reliable. Our criteria for whether a feature is reliable are whether
it changes smoothly with parametric variations, and whether it is
larger than observed computational artefacts. For example, the violet
repeller shown in Figure 3C grows with both ω and Rexcised, and is
seen for other choices of ρplane. On the other hand, slopes of
computational equipotentials near the equator change direction
erratically, and so features that never grow above a few percent
of Rpolar are not reported here.

Bearing these caveats in mind, Figure 4 reveals the presence of
five distinct states of freely flowing regolith subject to gravitational
equipotentials for satellites embedded in a massive plane. For small
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Rexcised, shown in Figure 4B for Rexcised � 2,ω � 2.5, an outward
cusp is present for any satellite rotational speed, ω. Larger ω values
cause material further from the satellite to be centrifuged away: this
both reduces the equatorial radius of the equilibrium point at which
agrav � −acent and shortens outward cusps. So elongated outward
cusps can be expected at small Rexcised and small ω, as shown in
Figure 4B.

As Rexcised grows, an inward cusp emerges, shown in Figure 4C
for Rexcised � 5,ω � 10. As we have mentioned, along with this
change in cusp direction, a region that repels all mass appears
between the satellite and the plane. Between the outward and inward
cusp, a third state is possible that supports both cusps. We have
already commented briefly on this bistable state, which is shown in
Figure 2D for Rexcised � 2.8,ω � 15. A fourth state arises when the
planar mass is far enough away from the central satellite that the
inward cusp disappears: in this case, the classical shape shown in
Figure 2A is recovered.

Finally, a new, fifth, state is predicted by this model, shown in
Figure 4D: for small rotational speeds and for a massive plane
around Rexcised � 8 Rmoon away, an attracting region appears through
a saddle-node bifurcation. This state is shown in Figure 4D.We note
that the repelling and attracting tori should be present for either an

inward or an outward cusp, but are unlikely to be observable for an
outward cusp since the tori would be inside the satellite’s surface.
Nevertheless the repelling torus may represent an area of weakness
within such a satellite that could cause equatorial mass to break away
from its main body. More likely, the attracting state could
spontaneously produce a torus around a satellite, and mass
injected nearby could become entrained in such a satellite’s orbit.

We reiterate that all of these states form for free surface flow
under linear and steady-state conditions. History dependence, self-
gravitation, and viscoelastic behavior of satellite material are
neglected. Processes that generated cusps on Saturn’s moons
doubtless occurred long ago, and so Rexcised and ω values in
Figure 4 may be useful for evaluating conditions when cusps
formed, but are not representative of current conditions.

Nevertheless, we can orient ourselves on Figure 4 using current
data, as indicated by the “Pan today”marking in Figure 4A.We have
mentioned that units in that panel are dimensionless, and are
obtained for a central sphere of unit radius and mass, and a time
scale set by choosing the gravitational constant (we use Gsimulated =
104 for plotting convenience). For the purpose of orientation, we
consider Saturn’s moon Pan as an example. Pan lies within the
Encke gap, with width 325 km: about 20 times Pan’s radius, so

FIGURE 4
Phase diagram of equatorial features of freely flowingmaterial. (A) Five distinct states identified as rotation rate ω and central excisedmass Rexcised are
varied. Current parameters for the moon Pan are shown for illustrative purposes. Evidently Pan’s outward cusps would not form today, and would require
disk material much closer than currently seen. (B–D) Enlargements of equipotentials and streamlines in cusp regions. Horizontal axes align with disk; axis
units agree with those defined earlier, i.e., the central spheroid has radius Rpolar = 1, and the origin is at center of the spheroid. (B) For nearby plane
(small Rexcised), all mass gravitates equatorward, producing an outward cusp. (C) Formore distant plane, the bifurcation shown in Figure 3 reverses the flow
near a repelling torus, producing an inward cusp. (D) For moderate Rexcised and small ω, a novel attracting torus emerges, bracketed between an inward
and an outward cusp; a 3D rendition of the attracting torus appears in Figure 5A. In all panels, Rplane � 102Rpolar , and the plane again has thickness
0.02Rpolar .
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Rexcised is at least 20 currently. Pan has density ρ = 420 kg/m3 and is
tidally locked with frequency ω = 2·10−5 sec–1, which we can relate to
the ordinate in Figure 4 by making use of the dimensionless group,
G � G·ρ

ω2 � 6.7·10–11 ·420
2·10−52 � 70. Applying the same dimensionless group to

our simulations, G � 70 � Gsimulated ·ρsimulated

ω2
simulated

� 104 ·0.24
ω2
simulated

, so the
corresponding simulated frequency is ωsimulated ~ 6, at the
location shown in Figure 4A.

In Figure 5A, we also plot the stable torus’ location for the
conditions shown in Figure 4D: Rexcised � 7,ω � 0, and
ρplane � 1

2ρmoon, Rplane � 100Rpolar (the parameters used in the
other cases shown in Figures 3, 4). The image in Figure 5A
displays the outside of the attracting torus: freely flowing
material will gravitate toward a small region at its center;
moreover we emphasize that tidal perturbations and debris
impacts can remove this material, and the torus will become
unstable as the planar mass recedes. Nevertheless, straightforward

analysis of equipotentials indicates that a stable torus ought to be
present in some satellites within a planetary ring. Interestingly, this
torus appears at small—even zero—angular speed ω, thus material
in the torus can rest stably without orbital velocity!

Two final, practical, issues remain. First, arguably the mass of
Saturn’s disk material could seem to be too small to produce
significant gravitational effects on its moons, and second, effects
of Saturn’s gravity (mentioned earlier) are yet to be discussed. We
consider these two issues next.

Saturn’s disk mass

With respect to the mass of Saturn’s disk material, two facts
suggest that this mass could be sufficient to produce the satellite
shapes that we have displayed. First, the density of Saturn’s rings was

FIGURE 5
Extremes in cusp behavior. (A) 3D rendition of attracting torus from Figure 4D. The torus shown is at the outer extreme of the attractive region, and
mass would gravitate toward a central torus within. (B) Equipotential cusps for very low planar density: ρplane � 10−4ρmoon; axis units as in Figure 4. Left
panel shows equipotentials to right of the attracting body; right panel shows enlargement, including both inward (green) and outward (red) cusps, as well
as equal force point identified by star. Parameters are Rplane � 103Rpolar , Rexcised � 53Rpolar , ω � 0.25, and central mass is a sphere and the plane again
has thickness 0.02Rpolar .

Frontiers in Astronomy and Space Sciences frontiersin.org06

Shinbrot 10.3389/fspas.2023.1146705

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2023.1146705


almost certainly higher during the evolution of its moons than it is
today (Charnoz et al., 2007). Indeed, prior work (Salmon and
Canup, 2017) has estimated the ratio of the mass of rings to
moons to have been as high as 1:3. By the same token, satellites
(e.g., Iapetus) or asteroids (e.g., Vesta) that are currently far from
disk material may have been embedded in such material earlier
during their formation. Second, we can quantify how large the
density of a surrounding plane must be to produce equatorial cusps,
and we will next show that cusps arise even for extremely small
planar densities.

To evaluate effects of planar density, ρplane, we perform an
additional set of simulations holding ρmoon fixed and reducing ρplane
by successive orders ofmagnitude to determine the point at which cusps
vanish. Specifically, at each value of ρplane, ranging from ρplane � ρmoon

to ρplane � 10−5ρmoon, we manually adjust Rexcised and ω to determine
whether cusps are present. This is easily done bymaking use of the facts
first that cusps are stabilized by reducing ω (which reduces centrifugal
stripping of material from the cusp) and second that cusps tend toward
higherRexcised at smallerω (cf Figure 4). So by examining equipotentials
near the starred equilibrium point while incrementally reducing ω and
increasing Rexcised, cusps are readily identified.

From this exercise, we find that cusps persist at least down to
ρplane � 10−4ρmoon. We show both inward and outward cusps in
Figure 5B for this case: these appear with the plane held at a distance,
Rexcised, over 50 times the central mass’ radius, and for very small
rotation rate. Even smaller cusps may be present at lower planar
densities, but they are at most a few percent of Rpolar in size, and as
we have mentioned this is the same size as computational noise and

so are disregarded here. Ultimately we conclude that even planar
disk densities 1/10,000th that of a central spheroid—and at a distance
50 times the radius of the central mass—are sufficient to produce
equatorial cusps in gravitational equipotentials. By comparison, the
moons Pan and Atlas have densities estimated (Porco et al., 2007) to
be 410–450 kg/m3, while recent calculations (Iess et al., 2019)
indicate that the densities of Saturn’s rings range from zero up to
60 kg/m3: a difference of about 1/10.

It remains uncertain how dense the rings once were, but
comparison with the 1/10,000 figure that produces cusps suggests
that sufficient ring density may be present, even currently, to affect
satellite geomorphology. Moreover as we have mentioned, the
observation that a interplanetary body is currently far from a
planar mass does not imply that the body was not influenced by
such a mass earlier in its history. Since it is not possible to determine
complete histories of these bodies in retrospect, we propose that
their current morphologies can be used to provide evidence of that
history a posteriori. That is, on mathematical grounds, we find that
circumferential ridges and grooves on celestial bodies may be
indications that the bodies at one time were embedded in a
planar mass and covered with freely flowing regolith.

Saturn’s gravity

This brings us to the final practical issue: effects of Saturn’s
gravity. Here we note that Saturn’s gravity at the current locations of
Pan and Atlas is 3 orders of magnitude stronger than their surface
gravities. From that perspective, the relevance of analyzing
gravitational equipotentials needs justification.

Pan and Atlas are currently about Rorbital � 1.3 · 108 m from
Saturn, and are maintained in orbit by outward centrifugal
acceleration. Explicitly, at that distance, the net inward
acceleration acting on a moon in a circular orbit is:

amoon � GMSaturn

R2
orbital

− v2

Rorbital
(2)

where G is the universal gravitational constant, MSaturn is Saturn’s
mass, and v is the moon’s orbital speed, all of which are known. At
equilibrium, amoon at a moon’s center of mass is zero, while the
difference in acceleration from the near to the far side of a moon
with radius rmoon is given by:

Δamoon � −2GMSaturn

Rorbital
3

+ v2

Rorbital
2

( )2rmoon (3)

This is the maximum acceleration responsible for tides
(Chandrasekhar, 1989), and is readily evaluated. For the four
examples shown in Figure 1, from right to left, Vesta is not in
Saturn’s orbit, and both aVesta and ΔaVesta are zero. So if Vesta were
in a massive plane far from a central body earlier in its history
(which is not known), the equipotentials presented earlier could be
obtained. Iapetus is very massive and is currently far from Saturn
than Iapetus, so ΔaIapetus is small: under 10−4 times its surface
gravity, and again there is justification for neglecting the mass of a
central body. Pan and Atlas, on the other hand, are both less massive
and closer to Saturn than Iapetus ΔaPan and ΔaAtlas are respectively
about 1/4 and 1/5 of the moon’s surface gravity.

FIGURE 6
Pan and orthographic depictions of distortion of gravitational
equipotentials by tidal force from distant planet. Upper right shows
polar view of Pan with superimposed circle (dashed curve) and ellipse
(solid). The ellipse’s semi-minor axis is obtained from the
maximum radius of potential (Thomas et al., 2015); cross-section
shown in upper left. The ellipse’s semi-major axis is obtained by adding
the potential (Shinbrot et al., 2004) with r

.
moon aligned with the

horizontal, with a convenient magnitude of the maximum tidal
acceleration. Other magnitudes are included in the Supplementary
Materials. Pan credit: NASA/JPG-Caltech/SSI.
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Focusing on these two moons that are most strongly
influenced by Saturn’s gravity, Atlas’ rotation rate is not
known, but Pan is in synchronous rotation with the same side
always facing Saturn, so tidal forcing on its surface is static and its
perturbation to the equipotential due to Saturn is bounded by the
following term:

Utidal � −∫Δamoon d r
.

moon (4)

where r
.

moon points toward Saturn. Adding this to the potential, Eq.
1 provides us with an idealized potential from a perturbation due to
Saturn’s gravity.

In Figure 6, we plot a polar photograph of Pan alongside
orthographic views of the deformation that one would naïvely
obtain from Eq. 4. The superimposed dashed line in the polar
view is a simple circular outline, as would be expected without a
perturbing gravitational potential. The solid line shows an ellipse
with semi-minor axis of the circle and semi-major axis obtained by
adding the perturbation of Eq. 4. The arrow indicates Pan’s
orientation with respect to Saturn, and the orthographic views
give respective cross-sections that one would expect
perpendicular to (i.e., uninfluenced by) Saturn’s field, and parallel
to Saturn’s gravity.

This is again only an idealized analysis and is far simpler than
the complete problem—for example, both the temporal
reshaping due to long periods of tidal damping and important
nonlinear interactions are overlooked. Likewise, continuing the
spirit of the rest of our analysis, we neglect changes to
equipotentials due to redistribution of mass, here from the
orbital direction to the Saturn-moon direction. The merit of
Eq. 1 and Eq. 4 is that they permit us to calculate equipotentials,
which give the lowest order stress-free state of a satellite’s surface
that could be expected to be adopted by a linear analysis of
individual and sedately settling particles.

Conclusion

It is well recognized that Saturn’s moons affect its rings
(Pollack, 1975), for example, producing wakes, gaps and
resonances that dominate ring morphology (Showalter et al.,
1986). Effects that rings have on moons are less well studied
(Charnoz et al., 2007), and gravitational potentials of satellites
are assumed to be insensitive to influences of rings. Contrary to
this assumption, we have found that distinctive features of
Saturn’s moons, including equatorial cusps and even a
predicted stable circumferential torus, arise naturally by
including the influence of rings in the simplest possible
gravitational model of a central satellite surrounded by a
massive equatorial plane. Remarkably, equatorial cusps endure
even for distant and low mass rings. It is important to emphasize
that these results are purely linear: like the effect that moons have
on rings, we neglect nonlinear feedback between rings and

moons. It is likely—especially since ring densities several
orders of magnitude smaller than moon density have
significant gravitational effects—that this feedback is
important, and indeed the model presented here does not yet
consider how accreted mass affects a satellite’s gravitational
potential. A fully nonlinear model continues to be an
important challenge. Likewise, as we have mentioned, results
here apply in the limit of entirely freely flowing grains: effects of
accretion history and of friction, viscosity, and elasticity also
remain for future investigation.
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