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We present a simple gedanken experiment in which a compact object traverses
a spacetime with three macroscopic spatial dimensions and n compact
dimensions. The compactification radius is allowed to vary, as a function of
the object’s position in the four-dimensional space, and we show that the
conservation of gravitational self-energy implies the dimensional dependence
of the mass-radius relation. In spacetimes with extra dimensions that are
compactified at the Planck scale, no deviation from the four-dimensional
result is found, but, in spacetimes with extra dimensions that are much
larger than the Planck length, energy conservation implies a deviation from
the normal Compton wavelength formula. The new relation restores the
symmetry between the Compton wavelength and Schwarzschild radius lines
on the mass-radius diagram and precludes the formation of black holes
at TeV scales, even if large extra dimensions exist. We show how this
follows, intuitively, as a direct consequence of the increased gravitational
field strength at distances below the compactification scale. Combining these
results with the heuristic identification between the Compton wavelength
and the minimum value of the position uncertainty, due to the Heisenberg
uncertainty principle, suggests the existence of generalised, higher-dimensional
uncertainty relations. These relations may be expected to hold for self-
gravitating quantum wave packets, in higher-dimensional spacetimes, with
interesting implications for particle physics and cosmology in extra-dimensional
scenarios.
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1 Introduction

For over 40 years, models with compact extra dimensions have
attracted a great deal of attention in the theoretical physics literature.
Much of this interest was motivated by superstring theory, which
is only consistent in ten spacetime dimensions (Green et al., 1988a;
Green et al., 1988b), requiring six space-like dimensions to be curled
up on scales that make them inaccessible to current high-energy
experiments. Theoretically, the compactification scale may be as low
as the Planck length, placing it forever beyond the reach of terrestrial
particle physics, but models with effective compactification scales
as high a millimetre have also been proposed (Antoniadis et al.,
1998; Arkani-Hamed et al., 1998). Prior to the start-up of the Large
Hadron Collider (LHC), in 2010, interest in the phenomenology
of higher dimensional models reached an all-time high. It peaked
again following beam upgrades in 2015, but, since then, has been in
decline.

In the heady days of the late nineteen-nineties and the
first 2 decades of the 21th century, it was hoped, and, indeed,
argued persuasively in the scientific literature, that the TeV scale
experiments soon to be conducted at CERN would enable the direct
detection of compact dimensions with length scales down to ∼10−19

m. It was claimed that these, so-called ‘large’ extra dimensions,
could induce the formation of microscopic black holes (Arkani-
Hamed et al., 1999; Bleicher et al., 2011; Khachatryan et al., 2011;
Kiritsis and Taliotis, 2011; Bellagamba et al., 2012; Mureika et al.,
2012; Park, 2012; Alberghi et al., 2013; Nicolini et al., 2013; Taliotis,
2013; Torres et al., 2013; Winstanley, 2013; Belyaev and Calmet,
2015; Hou et al., 2015; Sokolov and Pshirkov, 2017), also known as
primordial black holes (PBH), in reference to their cosmic cousins
(Carr, 2005; Carr and Kuhnel, 2020; Carr et al., 2021; Green and
Kavanagh, 2021; Escrivà et al., 2022; Friedlander et al., 2022). These
claims even attracted considerable attention in the popular press
(American Physical Society, 2008; NASA, 2008; New York Times,
2008; BBC, 2013; Huffington Post, 2014; Forbes, 2016).

The argument behind this assertion was straightforward and
reasonable. It is well known that the radius of an uncharged and
non-spinning (Schwarzschild) black hole depends, not only on
its mass, but also on the dimensionality it of the spacetime it
inhabits. The higher-dimensional Schwarzschild radius varies as
RS ∝M

1
1+n , where n is the number of space-like extra dimensions,

over and above the three Hubble scale dimensions that make up
the macroscopic Universe (Weinberg, 2008). Thus, assuming that
the usual mass-dependence of the Compton wavelength, RC ∝M−1,
remains unchanged in the presence of the compact space, the
intersection between RS and RC occurs close to the critical values

Rcrit = (
ℏG4+n

c3
)

1
2+n
, Mcrit = (

ℏ1+nc1−n

G4+n
)

1
2+n
. (1)

For n ≥ 0, these expressions serve as the definitions of the
Planck length, and mass, respectively (Horowitz, 2012). Since,
in spacetimes with n compact dimensions, the four-dimensional
Newton’s constant is related to its higher-dimensional counterpart,
and to the compactification radius RE, via (Maartens and Koyama,
2010)

G4+n = G4R
n
E, (2)

it follows that, for sufficiently large RE, the mass-energy needed
to create a black hole may be brought within the TeV range of the
LHC.

More recently, new phenomenological models have been
proposed, in which the possible dimensional dependence of the
Compton wavelength has been explored (Lake and Carr, 2016;
Carrr, 2018; Lake and Carr, 2018; Carr, 2022), via so-called black
hole–uncertainty principle (BHUP) correspondence, which is also
referred to as the Compton–Schwarzschild correspondence in the
literature (Carr et al., 2011; Carr et al., 2015; Carr, 2016; Lake and
Carr, 2015; Singh, 2017; Singh, 2018; da Silva and Silva, 2022).
This modification alters the intersection with the Schwarzschild
radius, and is capable of restoring complete symmetry to the (M,R)
diagram, pushing the threshold for black hole formation back
up to the four-dimensional Planck mass, MPl = √ℏc/G4. However,
despite the various arguments used to justify these models (Lake
and Carr, 2016; Carrr, 2018; Lake and Carr, 2018; Carr, 2022), the
proposed dimensional dependence lacks a clear physicalmotivation.
In this work, we motivate them in a more direct way, by outlining
a clear physical mechanism that is capable of altering the mass-
radius relation of any compact object, including that of fundamental
particles.

The structure of this paper is as follows. In the main body of
the work, Sec. II, we present a simple gedanken experiment in a
hypothetical Universe with three macroscopic spatial dimensions
and n compact extra dimensions. The compactification radius is
allowed to vary as a function of position in the four-dimensional
subspace, which is divided into three regions. In the first region, the
extra dimensions are compactified at the four-dimensional Planck-
scale, RPl = √ℏG/c3, while in the third they are compactified at
a much larger radius, RE > RPl. The second region, in which the
compactification scale grows monotonically, interpolates smoothly
between the other two. We then consider a compact object, which
passes from region 1 to region 3, and impose the conservation of
gravitational self-energy. Roughly speaking, since gravity becomes
stronger on scales RPl < R < RE, as we move through region 2, the
radius of the object must increase, in order to keep its gravitational
self-energy constant. Furthermore, since rest mass is conserved
during this transition, it follows that the mass-radius relation must
be modified.

In this study, we perform explicit calculations by assuming that
the gravitational potential of the object can be approximated by the
weak field (Newtonian) limit. However, despite this, our analysis
correctly reproduces well-known results for strongly-gravitating
objects, such as higher-dimensional black holes and neutron stars,
up to numerical factors of order unity, which is consistent with
the non-relativistic approximation. This gives us confidence in the
method, whichwe then extend to the study of fundamental particles,
for which the non-relativistic approximation is undoubtedly
valid.

We verify that, beginning with an effectively four-dimensional
black hole in region 1, we obtain the correct (order of magnitude)
expression for the higher-dimensional Schwarzschild radius in
region 3. This gives us confidence in our procedure, which we
note is agnostic to the initial mass-radius relation of the object.
We then consider a fundamental particle, by beginning instead
with the standard formula for the Compton wavelength, and obtain
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an effective, higher-dimensional Compton radius, in the third
region. Its implications for the (non-) formation of black holes
at the LHC, as well as for the quantum mechanical uncertainty
relations of self-gravitating wave packets in higher-dimensional
spacetimes, are briefly discussed. We summarise our conclusions,
and consider the prospects for future work on this model, in
Sec. III.

2 The gedanken experiment

Let us assume, for simplicity, that the compact object we
consider is spherically symmetric. In region 1, its internal energy is,
therefore

E =Mc2 − α4
G4M

2

R
, (3)

where α4 is a numerical constant determined by the mass profile
of the sphere, M(r). For example, α4 = 3/5 for a sphere of uniform
density and should be of order unity for all non-pathological profiles
(Weisstein et al., 1973). Here, R denotes the effective macrosopic
radius of the object and Eq. 3 holds for all R ≳ RE = RPl. We note
that distances below this scale cannot be probed directly, by either
black holes or fundamental particles, due to the intersection of
the Compton wavelength and Schwarzschild radius lines near the
Planck point on the (M,R) diagram (Lake and Carr, 2015; Carr,
2016).

Requiring E ≤ 0, which implies a bound state, yields

R ≤ α4
G4M
c2
. (4)

For α4 = 2, we then recover the condition

R ≤ RS (M) =
2G4M

c2
, (5)

where RS is the four-dimensional Schwarzschild radius. Thus, if
Eq. 5 is satisfied, the object is a black hole in the first region.
For α4 = 9/4, an analogous condition implies violation of the
Buchdahl inequality (Buchdahl, 1959) and the sphere may be
viewed as a compact star undergoing collapse. Conversely, for E > 0,
R > (9/4)G4M/c2, the object is stable against its own self-gravity.

Setting R = RC, where

RC (M) =
ℏ

Mc
(6)

is the standard Compton radius (Rae and Napolitano, 2015), Eq. 3
implies that a fundamental particle is stable against gravitational
collapse (E > 0) when

M ≲MPl, RC (M) ≳ RPl, (7)

where

RPl = √
ℏG4

c3
≃ 10−35 m, MPl = √

ℏc
G4
≃ 10−8 kg. (8)

Equation 7 justifies our previous assertion that Eq. 3 holds, for
R ≳ RPl, when the extra dimensions are compactified at the
(four-dimensional) Planck scale. For fundamental particles, this

corresponds to the region M ≲MPl, whereas, for black holes, it
corresponds to

M ≳MPl, RS(M) ≳ RPl. (9)

The intersection of the standard Compton line and the four-
dimensional Schwarzschild line near the Planck point then
precludes the existence of any fundamental object with R(M) ≲ RPl.

In the third region, the internal energy of the object is given by
Eq. 3, for R > RE, where RE > RPl is the compactification radius, but
by

E =Mc2 − α4+n
G4+nM

2

R1+n (10)

for RPl ≤R ≤ RE. Here,R denotes the (4+ n)-dimensional radius in
region 3 and α4+n is a numerical constant determined by the mass
profile of the object in the higher-dimensional space. For simplicity,
we assume that all n extra dimensions are compactified on the same
scale.The relation between G4 and the higher-dimensional Newton’s
constant, G4+n, is given by Eq. 2 (Maartens and Koyama, 2010).

By choosing appropriate values of α4+n, we may recover
the (4+ n)-dimensional analogues of the Buchdahl bound
(Burikham et al., 2015; Burikham et al., 2016) and the
Schwarzschild radius (Horowitz, 2012), from the energy conditions
E < (>)0. In any number of dimensions, the Buchdahl radius is
proportional to the Schwarzschild radius, and, neglecting numerical
factors of order unity, the latter may be written as

RS (M) ≃ (
G4+nM

c2
)

1
1+n
≃ (RS (M)R

n
E)

1
1+n . (11)

where RS(M) again denotes the four-dimensional Schwarzschild
radius, as in Eq. 5.

Let us now consider a non-relativistic, self-gravitating sphere,
with arbitrary mass-radius relation, passing from region 1 to region
3. Furthermore, let us assume that, whatever its mass-radius relation
in the four-dimensional space of the first region, the sphere remains
small enough to be effectively (4+ n)-dimensional in the third.Thus,
in region 1, its radius in the three macroscopic spatial dimensions is
R(M) ≳ RPl and, in region 3, its higher-dimensional radius satisfies
RPl ≲R(M) ≲ RE. If its internal energy remains unchanged, energy
conservation then implies

R (M) ≃ (R (M)Rn
E)

1
1+n . (12)

again ignoring numerical factors of order unity, which is consistent
with the non-relativistic approximation. Note that we again use the
calligraphic font, R, to denote radii in (4+ n) dimensions, and the
normal font R to denote four-dimensional radii.

Substituting R(M) ≃ RS(M) 5) into (12), we recover the correct
expression for the higher-dimensional Schwarzschild radius,RS(M)
(11).Next, we note that, ifRPl <RS(M) < RE, thenRPl < RS(M) < RE.
It follows, immediately, that RS(M) > RS(M). This result can be
understood intuitively as follows. Since, in the third region, the
gravitational force is stronger than in the first on scales R < RE,
the radius of the black hole can neither decrease, nor remain the
constant, without increasing its internal energy. If this energy is
conserved, the black hole must increase in size and the (4+ n)-
dimensional Schwarzschild radius, RS(M), must be larger than the
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four-dimensional radius, RS(M). The relation between the two is
fixed, by energy conservation, according to Eq. 11,

Clearly, we may repeat a similar argument for stable compact
objects obeying the four-dimensional Buchdahl bound in region
1. The same compact spheres then obey the higher-dimensional
Buchdahl bound in region 3. Hence, although the argument
presented above is simple and heuristic, it allows us to recover
the same relations (to within an order of magnitude) as those
obtained by exactly solving the gravitational field equations in
(4+ n)-dimensional spacetime (Horowitz, 2012; Burikham et al.,
2015; Burikham et al., 2016).

However, its greatest advantage is that is agnostic to the mass-
radius relation of the compact object. We may therefore apply it to
fundamental particles, as well as to black holes and conventional
fluid spheres. Thus, substituting R(M) = RC(M) ∝M−1 6) into
Eq. 12, we obtain the higher-dimensional Compton wavelength,

RC (M) ≃ (RC (M)R
n
E)

1
1+n ≃ R*(

MPl

M
)

1
1+n
. (13)

where

R* = (RPlR
n
E)

1
1+n , (14)

so that RPl < R* < RE. It may be verified that the (4+ n)-
dimensional Compton and Schwarzschild lines intersect at the point
(M,R) ≃ (MPl,R*), so that the production of PBHs still requires
energies of the order of the Planck energy (Lake and Carr, 2016;
Carrr, 2018; Lake and Carr, 2018; Carr, 2022).

This result also be understood, intuitively, in the same way as
our heuristic derivation of the higher-dimensional Schwarzschild
radius. Namely, if the rest mass of the particle remains constant as it
traverses the path from region 1 to region 3, its radius cannot remain
constant, or decrease, without increasing its gravitational binding
energy. Therefore, if its total internal energy remains constant, its
radius must expand as it enters the higher-dimensional region, in
which gravity is stronger, on scalesR < RE, than in four-dimensional
space. Clearly, this relation must also hold for particles that were
always confined to region 3.

To aid visualisation, a schematic representation of the gedanken
experiment set up is given in Figure 1. In Figure 2A, the key
length and mass scales of the standard scenario, corresponding to
Eq. 1, are depicted on the (M,R) diagram, while the key scales for
our scenario are depicted in Figure 2B. The important difference
between the two scenarios is that the former does not account
for the self-gravitational energy of the particle, whereas the latter
does, to within the accuracy permitted by the non-relativistic, weak-
field approximation, which we also apply to micro-black holes.
Maintaining this approximation, we may apply the usual, heuristic
identification between the Compton wavelength formula and the
limiting values of the Heisenberg uncertainty principle (HUP),

(ΔX)min ≃RC (M) , (ΔP)max ≃Mc, (15)

giving

ΔX ≳ R*(
MPlc
ΔP
)

1
1+n
. (16)

We recall that, for ΔP ≳Mc, fundamental particles have sufficient
energy to undergo pair-production, in interactions that conserve

FIGURE 1
Schematic illustration of the three-part universe in our gedanken
experiment. To enable the schematic representation of
(3+n)-dimensional space, neglecting the time dimension of the
(4+n)-dimensional spacetime, the three large dimensions are
depicted as a two-dimensional plane and the n compact directions
are depicted as a single extra dimension, extending into the
z-direction of the diagram. Furthermore, since Planck-sized extra
dimensions do not contribute correction terms, either to the
higher-dimensional Schwarzschild radius, or to the Compton
wavelength, we neglect them in this illustration. Hence, the region on
the far left-hand side represents (3+n)-dimensional space, with n
dimensions compactified at the Planck scale, while the region on the
far right-hand side represents a space with three large dimensions and
n extra dimensions, compactified on some scale RE > RPl. The central
region interpolates smoothly between the two, so that the
gravitational radius of the compact body changes, according to the
following scheme: In region 1 (left), the extra dimensions are
compactified at the (four-dimensional) Planck scale and both black
holes and fundamental particles are effectively four-dimensional, even
in the presence of the higher-dimensional space. In region 3 (right),
the compactification radius is much larger than the Planck length and
all objects are effectively (4+n)-dimensional, on scales smaller than
the compactification radius. Conservation of energy implies that,
whatever the mass-radius relation of the object in the first region,
R(M), its radius in the third region, R(M), must be larger: R(M) > R(M).
This is due to the increased strength of the gravitational field in higher
dimensions. For black holes, RS ∝M in region 1 and RS ∝M

1
1+n in

region 3. Applying the same logic to the gravitational radius of
fundamental particles, RC ∝M−1 in region 1, yielding RC ∝M−

1
1+n in

region 3, due to the conservation of gravitational self-energy.

the relevant quantum numbers (Peskin and Schroeder, 1995;
Donoghue et al., 2014), yielding the limits in Eq. 15. These, in turn,
correspond to the dimensionally-dependent uncertainty relation,
Eq. 16.

Equation 16 may be expected to hold for self-gravitating wave
packets, on scales R < RE, in spacetimes with compact extra
dimensions. By contrast, on scales R > RE, or when RE ≃ RPl, the
standard HUP,

ΔX ≳
RPlMPlc

ΔP
, (17)

still holds, where we have rewritten ℏ = RPlMPlc.
Finally, before concluding this section, we note that, although

Eq. 16 represents a form of generalised uncertainty principle,
which is valid for self-gravitating objects in higher-dimensional
spacetimes, this is not the same as the ‘generalised uncertainty
principle’ (GUP), commonly referred to in the quantum gravity
literature (see, for example (Adler et al., 2001; Maziashvili, 2006;
Xiang and Wen, 2009; Lake et al., 2019; Sakalli and Kanzi, 2022;
Lake et al., 2023), and references therein). In fact, the derivation of
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FIGURE 2
Figure 2A (left panel) shows the standard Compton line, RC ∝M−1, and the Schwarzschild radius lines for n = 0, n = 1, n = 2 and n = 3. These lines

intersect near the higher-dimensional Planck point, (M,R) = ((M2
PlM

n
E)

1
2+n , (R2

PlR
n
E)

1
2+n ) ), where RPl and MPl denote the four-dimensional Planck scales,

RE > RPl is the compactification radius, and ME = ℏ/(REc) <MPl is the associated mass scale. The points of intersection are equivalent to the critical scales
shown in Eq. 1, due to Eq. 2; Figure 2B (right panel) shows the modified scenario, in which we account for the increased self-gravity of the quantum
particle in the presence of the extra dimensions, yielding RC ∝M−

1
1+n . The Compton and Scwarzschild lines now intersect at the point (M,R) = (MPl,R*),

where R* is defined in Eq. 14. The restored symmetry of the mass-radius diagram precludes the formation of black holes at TeV scales, even if large
extra dimensions exist. These figures are reproduced from (Lake and Carr, 2018), with permission.

Eq. 16 is based on two fundamental assumptions, namely, a) that the
gravitational self-energy of the quantum wave packet is conserved
in the presence of extra dimensions, and b) that the standard HUP
holds in their absence.

By contrast, the usual GUP is derived, via a gedanken
experiment in four-dimensional spacetime, by considering the
gravitational interaction between a measured particle and a probing
photon. This gives rise to a correction term, to the position
uncertainty Δx, which is proportional to the effective four-
dimensional Schwarzschild radius of the wave packet,RS ≃ G4Δp/c3,
yielding

Δx ≳ ℏ
2Δp
+

2G4

c3
Δp, (18)

where α again denotes a numerical constant of order unity.
Assuming, instead, that the GUP (18) holds in a four-dimensional
Universe, in place of the HUP (17), we may expect a unification of
the Compton and Schwarzschild lines, of the form

RC/S ≃
ℏ

2Mc
+

2G4

c2
Mc, (19)

as predicted by the so-called BHUP correspondence, mentioned in
the Introduction (Carrr, 2018; Lake and Carr, 2018; Carr, 2022; Lake
and Carr, 2016; Carr et al., 2011; Carr et al., 2015; Carr, 2016; Lake
and Carr, 2015; Singh, 2017; Singh, 2018; da Silva and Silva, 2022).
Combing these expressions with the arguments presented above
yields even richer phenomenology: rather than simply restoring
symmetry to the (M,R) diagramhigher dimensions, itmay provide a
way to unify the Compton and Schwarzschild lines, even in higher-
dimensional spacetimes. Such an analysis lies outside the scope of
the present, preliminary study, and is left to a future work.

3 Discussion

We have presented a simple gedanken experiment in a
hypothetical spacetime with three macroscopic spatial dimensions

and n compact extra dimensions. The compactification radius was
allowed to vary as a function of spatial position, in the four-
dimensional submanifold, which is divided into three regions. In the
first region, the extra dimensions are Planck-scale, while in the third
they are compactified at a much larger radius. The second region, in
which the compactification scale grows monotonically, interpolates
smoothly between the other two.We considered a spherical compact
object that traverses a path from region 1 to region 3, and imposed
the conservation of gravitational self-energy.

If the object is a black hole in the first region, withR∝M, energy
conservation alone yields the correct expression for the higher-
dimensional Schwarzschild radius, R∝M

1
1+n , in the third. However,

this procedure is agnostic to the mass-radius relation of the object.
Hence, considering a fundamental particle instead of a black hole, we
instead imposed the standard formula for the Compton wavelength,
R∝M−1, in the first region. Conservation of energy then implies the
existence of a higher-dimensional Comptonwavelength,R∝M−

1
1+n ,

in the third region. Clearly, this relation must also hold for particles
that have always been confined to region 3.

The new relation restores the symmetry between the
Compton and Schwarzschild lines on the mass-radius diagram,
in higher-dimensional spacetimes, and precludes the formation
of black holes at TeV scales, even if large extra dimensions
exist. We have shown how this follows, intuitively, as a direct
consequence of the increased gravitational field strength at
distances below the compactification scale. Combining these results
with the usual, heuristic identification between the Compton
wavelength and the minimum position uncertainty allowed by the
Heisenberg uncertainty principle, ΔX ≳ RC (ΔP ≲Mc), suggests
the existence of generalised, higher-dimensional uncertainty
relations.

Indeed, the possible dependence of the uncertainty relations on
the dimensionality of the spacetime has already been explored in
the literature, in the context of the so-called black hole-uncertainty
principle (BHUP) correspondence (Lake and Carr, 2016; Carrr,
2018; Lake and Carr, 2018; Carr, 2022). If the usual uncertainty
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relation-Compton wavelength correspondence is still required to
hold, in a higher-dimensional context, then the dimensional-
dependence of the Compton wavelength is also (theoretically)
necessary.

The difference between this and previous work is that, here, we
present a clear physical argument for why this change should occur,
and show, explicitly, that the effects of self-gravitation on quantum
wave packets are precisely those required to maintain the, up to
now conjectured, higher-dimensional BHUP correspondence. This
is also known as the Compton-Schwarzschild correspondence, in
some of the previous literature (Carr et al., 2011; Carr et al., 2015;
Carr, 2016; Lake and Carr, 2015; Singh, 2017; Singh, 2018; da Silva
and Silva, 2022).

In the present, preliminary analysis, we assumed throughout
that the gravitational potential of the compact sphere can be well
approximated by theNewtonian regime.Though this is undoubtedly
a limitation of the current work, we were still able to recover, to
within numerical factors of order unity, the well-known expressions
for relativistic objects, such as higher-dimensional black holes and
neutron stars (Burikham et al., 2015; Burikham et al., 2016). This
strongly suggests that the dimensionally-dimensional uncertainty
relations, which we derive for self-gravitating wave packets, are
robust, since the weak field approximation is undoubtedly valid for
fundamental particles.

As extensions of the current analysis, we should consider
relativistic corrections, as well as the incorporation of modified
uncertainty principles, obtained from the quantum gravity
literature, such as the generalised uncertainty principle (GUP)
(Adler et al., 2001; Maziashvili, 2006; Xiang and Wen, 2009;
Lake et al., 2019; Sakalli and Kanzi, 2022; Lake et al., 2023),
extended uncertainty principle (EUP), and extended generalised
uncertainty principle (EGUP) (Bolen and Cavaglia, 2005; Bambi
and Urban, 2008; Park, 2008). Furthermore, in order to consistently
incorporate the latter, we must also consider the conditions for the
formation of gravitational bound states, in higher dimensions, in
the presence of a positive cosmological constant (Burikham et al.,
2015; Burikham et al., 2016).

Previous studies suggest that these modifications may give
rise to a unified description of the Compton and Schwarzschild
radii, linking the properties of black holes and fundamental
particles in higher-dimensional scenarios (Lake and Carr, 2016;
Carrr, 2018; Lake and Carr, 2018; Carr, 2022). The present
work represents a small, preliminary step towards understanding
the physical mechanism behind this potentially important
correspondence, which may have important phenomenological
implications for black holes, cosmology, and high-energy
particle physics, beyond the non-production of PBH at TeV
scales.
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