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The accurate modelling of the point spread function (PSF) is of paramount
importance in astronomical observations, as it allows for the correction of
distortions and blurring caused by the telescope and atmosphere. PSF modelling
is crucial for accurately measuring celestial objects’ properties. The last decades
have brought us a steady increase in the power and complexity of astronomical
telescopes and instruments. Upcoming galaxy surveys like Euclid and Legacy
Survey of Space and Time (LSST) will observe an unprecedented amount
and quality of data. Modelling the PSF for these new facilities and surveys
requires novel modelling techniques that can cope with the ever-tightening error
requirements. The purpose of this review is threefold. Firstly, we introduce the
optical background required for a more physically motivated PSF modelling and
propose an observational model that can be reused for future developments.
Secondly, we provide an overview of the different physical contributors of the
PSF, which includes the optic- and detector-level contributors and atmosphere.
We expect that the overview will help better understand the modelled effects.
Thirdly, we discuss the different methods for PSF modelling from the parametric
and non-parametric families for ground- and space-based telescopes, with
their advantages and limitations. Validation methods for PSF models are then
addressed, with several metrics related to weak-lensing studies discussed in
detail. Finally, we explore current challenges and future directions in PSF
modelling for astronomical telescopes.

KEYWORDS

point spread function, inverse problems, weak gravitational lensing, image processing,
super-resolution

1 Introduction

Any astronomical image is observed through an optical system that introduces
deformations and distortions. Even the most powerful imaging system introduces distortions
to the observed object. How to characterise these distortions is a subject of study known
as PSF modelling. Specific science applications, like weak gravitational lensing (WL) in
cosmology (for a review, see Kilbinger, 2015; Mandelbaum, 2018), require very accurate
and precise measurements of galaxy shapes. A crucial step of any weak-lensing mission is
to estimate the PSF at any position of the observed images. If the PSF is not considered when
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Illustration of a field of view showing the PSF modelling problem. Firstly, the PSF model should be estimated from the stars. The model should then be

used to estimate the PSF at the target positions, e.g., galaxy positions.

measuring galaxy shapes, the measurement will be biased, resulting
in unacceptably biased WL studies. Furthermore, the PSF can be
the predominant source of systematic errors and biases in WL
studies. This fact makes PSF modelling a vital task. Forthcoming
astronomical telescopes, such as the Euclid space telescope
(Laureijs et al., 2011), the Roman Space Telescope (Spergel et al.,
2015; Akeson etal,, 2019), and the Vera C. Rubin Observatory
(LSST Science Collaboration et al., 2009; Ivezi¢ et al., 2019), raise
many challenges for PSF models as the instruments get more
complex and the imposed scientific requirements get tighter. These
factors have triggered and continue to trigger developments in the
PSF modelling literature.

PSF modelling is an interdisciplinary problem that requires
knowledge of optics, inverse problems, and the target science
application—in our case, weak gravitational lensing studies. The
objective is to estimate the PSF at target positions, e.g., galaxy
positions, from degraded star observations and complementary
sources of information. Figure I shows an illustration of the
problem. The PSF modelling problem is challenging as the model
should account for the different variations of the PSF in the field
of view, i.e., spatial, spectral, and temporal. This review is related
to these three scientific fields, discusses in detail the PSE and
aims to help understand the different PSF modelling choices. We
start by introducing optical concepts required to analyse optical
imaging systems that are required to understand the more physically
based PSF models in Section 2. Then, motivated by the optical
introduction, we describe the adopted general observational model
in Section 3. Section 4 introduces the different contributors to
the PSF at the optical and detector levels. Section 5 gives an
overview of state-of-the-art PSF modelling techniques and leads
to Section 6, which includes comments on the desirable properties
of a PSF model. We end the review by describing different
techniques for validating PSF models in Section 7 and concluding
in Section 8. In addition, we include Table 1, which summarizes
the notation and the different coordinates used throughout this
article.
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TABLE 1 Coordinates and notation used throughout this article.

Coordinates
(%, ») Pupil plane or output aperture plane coordinates
(u, v) Image or focal plane coordinates
&n) Object plane coordinates
(i1, 7) Pixel coordinates, the discrete counterpart of the image plane
P 3D spatial coordinate
A Wavelength
t Time
Notation
IH,... Calligraphic uppercase variables are continuous functions
LH,.. Uppercase variables are matrices
bbb Lowercase variables are scalar

img With its centroid

Lo (i, 95 tlu;,v;) € R

img Pixel value at position (i1, 7) for the image I

at position (u;, v;) observed at time ¢

I ) € RP? | Observed image with its centroid at position (u;, v;)

img,(-|uv;

2 Gentle introduction to optics

A rigorous treatment of the optics involved in the formation
of the PSF on complex optical systems could be the sole topic of
a review article. In this section, we introduce simplified optical
concepts to motivate a more physical understanding of the PSE
how to model it, and certain implicit assumptions that are usually
adopted. This review follows the optic formalism of Goodman
(2005). For a profound and rigorous description of optical theory,
we refer the readers to the seminal book of Born and Wolf (1999)
or more concise works (Gaskill, 1978; Gross, 2005; Hecht, 2017);
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for more information on practical wave propagation, we refer the
readers to Schmidt (2010); and if the readers are familiar with the
Fourier optics literature, we recommend continuing to Section 3.

This introduction is based on the scalar formulation of
diffraction. It starts by presenting diffraction equations from a
general perspective with the Huygens—Fresnel principle to the more
simplified formulations of Fresnel and Fraunhofer. The introduction
continues with the diffraction analysis of the effects of a thin
single-lens optical system. The results motivate the analysis of more
general optical systems that are treated with the black box concept
from Goodman (2005). The section proceeds by introducing the
modelling of aberrations in the optical system, and then extending
the monochromatic to the polychromatic analysis briefly studying
the coherent and incoherent cases. The optical introduction ends
by mentioning several assumptions usually adopted in the PSF
modelling literature.

2.1 Scalar diffraction theory

2.1.1 Huygens—Fresnel principle

When studying the PSE we are examining how an optical
system with a specific instrument contributes to and modifies our
observations. To understand how the optical system interacts with
the propagation of light, we have to dig into the nature of light, an
electromagnetic (EM) wave. To make a fundamental analysis, one
would have to use Maxwell’s equations, solve them with the optical
system under study, and obtain the electric and magnetic fields.
Solving a set of coupled partial differential equations is an arduous
task. Several approximations can be made, if some conditions are
met, to alleviate the mathematical burden of solving Maxwell’s
equations without introducing much error into the analysis.

The diffraction theory provides a fundamental framework for
analysing light propagation through an optical system. This is
especially the case when working with EM waves in the optical
range when the optical image is close to the focus region.
The Huygens—Fresnel principle (Huygens, 1690; Fresnel, 1819;
Crew et al,, 1900) states that every point of a wavefront may be
considered a secondary disturbance giving rise to spherical wavelets.
At any later instant, the wavefront may be regarded as the envelope
of all the disturbances. Fresnel’s contribution to the principle is that
the secondary wavelets mutually interfere. This principle provides
a powerful method of analysis of luminous wave propagation. In
Figure 2A, the propagation of an incident plane wavefront through
an obstacle, a single slit, is shown. The secondary wavelets constitute
the plane wavefront before the obstacle. Then, the wavefront shape
is modified due to the obstacle, following the Huygens—Fresnel
principle.

The secondary waves mutually interfere constructively or
destructively, according to their phases. The analysis of the light
propagation in a homogeneous medium is simple as the spherical
wavelets interfere without obstacles, and the total wavefront
propagates spherically in the medium. However, suppose the wave
encounters an obstacle. In that case, the secondary waves in the
vicinity of the boundaries of the obstacle will interfere in ways that
are not obvious from the incident wavefront.

Let us study the Huygens—Fresnel principle and consider a
diffractive aperture in a plane (x,y) illuminated in the positive z
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direction. We analyse the diffracted wave in a parallel plane (u,v) at
a normal distance z from the first plane. The z-axis is orthogonal to
both planes and intersects them at their origins. Figure 3 illustrates
the coordinate system described previously. The diffracted wave,
which can be intuitively understood as the superposition of spherical
waves, is written as

exp [j k r01]
1’2

01

z

U(py) = jRJLU(X,)/;O) dxdy, (1)

where j denotes the imaginary unit, A is the wavelength, k = 271/,
Po = (%005 0), Py = (U, vy5 2), 191 = Ipy — Pollo» X is the aperture in
the (x, y) plane, and U/ is the electric field. The incident wave is U/ (p,)),
and the diffracted wave is 2/ (p, ).

There are two main approximations in the derivation of Eq. 1.
The first approximation is that we are considering a scalar theory
of diffraction, a scalar electric and magnetic field, and not the fields
in their complete vectorial form. The scalar theory provides a full
description of the EM fields in a dielectric medium that is linear,
isotropic, homogeneous, and non-dispersive. However, even if the
medium verifies these properties, when some boundary conditions
are imposed on a wave, e.g., an aperture, some coupling is introduced
between the EM field components and the scalar theory becomes
no longer exact. Nevertheless, the EM fields are modified only at
the edges of the aperture, and the effects extend over only a few
wavelengths into the aperture. Therefore, if the aperture is large
when compared to the wavelength, the error introduced by the scalar
theory is negligible. Refractive optical elements can also induce
polarisation of the EM field. The level of accuracy desired will
determine if the bias introduced can be neglected or has to be taken
into account.

Although the current formulation is powerful in representing
the diffraction phenomena, it is still challenging to work with the
integral from Eq. 1. As a consequence, we will explore further
approximations that will give origin to the Fresnel diffraction and
Fraunhofer diffraction.

2.1.2 Fresnel diffraction

The Fresnel approximation is based on the binomial expansion
of the square root in the expression V1 + b for some b'. The distance
ro; can be expressed as

— 2 Vv, — 2
\/1(_) P22, -
z z

which can be approximated using the first two terms of the binomial

1 ul _xo )2 I(VI _yo )2)
=z|l1+= — . 3
o1 Z( +2< z +2 z ®

The r,, appearing in the exponential of Eq. 1 has much more
influence on the result than the 3, in the divisor. Therefore, we use

expansion, as

Eq. 3 to approximate r,; in the exponential, and for the divisor, we
approximate 73, = z*. Then, we can express the diffracted field as

exp [jkz] .
=i o

j 2% [(uy =x)*+(v; = p)*] | dedy,  (4)

U (uy,vy32) =

xexp[

1 The binomial expansion is given by V1+b=1+ %b— éb? 4
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FIGURE 2
(A) Illustration of the Huygens—Fresnel principle and the modification of a wavefront due to an obstacle. Reproduced from Liaudat (2022). (B)
Illustration of the different diffraction regions behind an aperture.

and if we expand the terms in the exponential, we get

k

U (uy,vy32) = — z( %+V%)]

jAz
<[ fueroren|ix o))

.2
X exp [—) /X_Z (u;x+ vly)] dxdy.

exp [jkz] exp [

(5)

The Fourier transform (FT) expression can be recognised with
some multiplicative factors in Eq.5. The diffracted wave is the
FT of the product of the incident wave and a quadratic phase
exponential. In this case, we have approximated the spherical
secondary waves of the Huygens-Fresnel principle by parabolic
wavefronts. The approximation in the Fresnel diffraction formula is
equivalent to the paraxial approximation Goodman (2005, §4.2.3).
This last approximation consists of a small-angle approximation as
it restricts the rays to be close to the optical axis. This restriction
also allows us to approximate Eq. 2 with Eq. 3. The region where the
approximation is valid is known as the region of Fresnel diffraction.
In this region, the major contributions to the integral come from
points (x,y) for which x = u and y = v, i.e., the higher-order terms
in the expansion that we are not considering are unimportant. The
region of Fresnel diffraction can be seen as the coordinates (u,v,2)
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that verify

2> ﬁ((u—x)2 + (=) V(xy) ex. (©)

A more practical and widely used condition is the Fresnel number
(Hecht, 2017, §10.3.3) which can be written as follows:

72

/\_Z, (7)

Ngp=
where r is the radius of a circular aperture and z is the distance
from the aperture. If N is close to unity, the Fresnel diffraction
is a good approximation. However, if Ny <« 1, then Fraunhofer’s
approximation, which we will introduce in the following section,
is valid. For more information on the validity of the Fresnel
approximation, we refer the readers to Southwell (1981) and Rees
(1987).

2.1.3 Fraunhofer diffraction

We continue to present a further approximation that, if
valid, can significantly simplify the calculations. The Fraunhofer
approximation assumes that the exponential term with a quadratic
dependence of (x,y) is approximately unity over the aperture. The
region where the approximation is valid is the far field or Fraunhofer
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Illustration of the coordinate system for the diffraction equations. Figure adapted from Liaudat (2022).

region. Figure 2B illustrates the different diffraction approximations
as a function of the aperture’s distance. The required condition to be
in this region reads

Y (x,y) € 2. (8)

The Fraunhofer diffraction formula is given by

ik
U (uy,vy32) = exp [jhz] exp [j ﬁ( §+vf)] ”z {U (x,y;0)}

jAz 2z
.27
xexp | 32 (ux-+ym,)| dedy ©
where we can reformulate the previous equation using the FT as
follows:
expljkzl 1.k
U (uy,v132) = 2 exp [] % (2 + V%):I

XFT{ (s 0)U ey} (51 ). (10)
where 15 is an indicator function over the aperture taking values in
{0,1}. Itis also possible to consider image vignetting and multiply the
indicator with a weight function so that the resulting function takes
values in [0, 1]. Cameras are sensitive to the light’s intensity reaching
their detectors. The instantaneous intensity of an EM wave is equal
to its squared absolute value. Therefore, we can write the intensity of
the diffracted wave as

T (uy,vy32) = U (uy,vy32)*

L [Frisepoucpor (L), ay

Nz e
which is significantly simpler than the original Rayleigh-Sommerfeld

expression from Eq. 1.

2.2 Modelling diffraction in a simple optical
system

The study of the diffraction phenomena is necessary but not
sufficient to describe the effects of an optical system. Optical imaging
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systems are generally based on lenses or mirrors, which have the
ability to form images. To simplify the analysis, we studied the
effect of a single positive (converging) thin lens illuminated with
monochromatic illumination and computed the impulse response of
such a system. The coordinate system used for this analysis is shown
in Figure 4.

Let us write the output wave as a function of the input wave using
the superposition integral as follows:

Unng ) = [ H & Uy Ematan, (2)

—00

where H is the field’s value at image coordinates (u,v) due to
a unitary point-source object at position (&7). We describe a
monochromatic input wave reaching the entrance pupil of the lens
coming from a point source located at (£,7) at the object plane,
which islocated at a distance z, from the lens. Following the paraxial
approximation, we can write the waves at the entrance pupil as
follows:

1 .k 2 2 ]
)= = — ((x- -3 |, 1
Uy (x.y) j/\Z‘)eXp[JZZO((x O+ (y-n?) (13)
and the wave at the output pupil is as follows:
.k
Uy (x,y) = U (x,y) P (x,y) exp [—]Z((x2+y2)], (14)

where f is the focal length of the lens and P is the pupil function
of the lens which accounts for the finite dimension of the lens, i.e.,
the obscured and unobscured areas. We have implicitly assumed
that the pupil function is constant for any (u, v) position considered.
This assumption does not hold for wide-field imagers where there
are obscurations involved in the pupil function. We continue by
using the Fresnel diffraction formula from Section 2.1.2 to compute
the diffraction effect from the lens’ exit pupil to the image plane.
Replacing U in Eq. 5 with the output lens wave U/, to compute the
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FIGURE 4

Illustration of the coordinate system of the imaging systems we are studying. The central imaging system can be a single positive lens or the
generalised black box concept of an imaging system. The image plane coordinates are (u,v), the input and output aperture plane coordinates are (x,y),
and the object plane coordinates are (§,n). This figure has been adapted from Goodman (2005).

impulse response, we obtain

(1)

H(u,v;&n) =

exp

(111)
(Y

[J'ZI; (£2+f12)}

Dia )]
()

xexp[—jk((zi Z>x+< v

U
=+ = dxdy.
! Z ))’) ] 7
The previous formula of the impulse response of a positive lens is

j%(u2+v2)

1
ex
Nz z p[

0%i

X ” 000077 (x,y) exp

—_— +_
2, i
(15)

hard to exploit in a practical sense due to the quadratic phase terms.
However, several approximations can be exploited to remove them.

o We start studying the term (I) inside the integrand. We consider
the image plane to coincide with the focal plane, i.e., z; = f, and
the imaged object to be very far away from the entrance pupil.
Consequently, the term (I) is approximately one. The part of the
exponent which is close to zero is

| —

1,1 1, (16)
ZU

i

5

1

which, in the case of equality, is known as the lens law of geometrical
optics.

e The term (II) only depends on the image coordinates (u,v).
The term can be ignored as we are interested in the intensity
distribution of the image, and it is not being integrated in Eq. 12.
The term (IIT) depends on the object coordinates, is integrated
into the convolution operation in Eq. 12, and therefore might
significantly change the imaged object. We can neglect the
influence of this term if its phase changes by a small amount,
i.e., a small fraction of a radian, within the region of the object
that mostly contributes to the image position (u,v). A deeper
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discussion about the validity of the term (III) approximation is
found in Goodman (2005, §5.3.2) and references therein.

We can now apply the previous approximations to the
calculation of the impulse response of an optical system with a
positive lens. Under Fresnel diffraction, we simplify Eq. 15 to obtain

v I

X exp [—ji—;((u—f)x+(v—ﬁ)y)]dxdy, (17)

H(u,v;f,ﬁ) ~

where m = —f/z, is the magnification of the system, which can be
positive or negative depending on whether the image is inverted
or not, and the normalised (or reduced) object-plane coordinates
are E=m& and 7= my. The diffraction pattern is centred on the
image coordinates, u = m & and v = m 1, which are the transformed
coordinates of the impulse response’s position (&, 7).

The impulse response obtained in Eq.17 is Fraunhofer’s
diffraction pattern centred in (u = & v = ) and up to a scaling factor
of 1/Az,. This result is the consequence of the choice of z;, such
that it verifies the lens law, allowing us to drop out quadratic phase
terms in the integral. We have obtained a simple formulation for the
impulse response, but the optical system that we studied is not used
in practice to carry out galaxy imaging surveys. We have to extend
the analysis to more general optical systems.

2.3 Analysis of a general optical imaging
system

Let us now analyse a general optical imaging system composed
of one or many lenses or mirrors of possibly different characteristics.
We treat the optical system as a black box characterised by the
uobj’
Figure 4 illustrates the new

transformations applied to an incident object scalar wave,
into an output image wave, L{img.

interpretation of the optical system, where we have replaced the
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previous single-lens system with a black box. In this general model,
we assume that the effect of the optical system between the entrance
and exit pupils is well described by geometrical optics, which is an
affine transformation. We also assume that all the diffraction effects
can be associated with one of the two pupils, input or output (for
more discussion on both assumptions, see Goodman, 2005, §6.1).
We choose the latter and consider the diffraction of the output wave
between the output pupil and image plane. For the moment, our
analysis continues to assume an ideal monochromatic illumination.
The ideal image, Uy, is defined as the input image when applying
the effect of geometrical optics inside the black box and is given as

1 E 7
muobj < -

m’m
where m is the magnification factor of the optical system, and we

Uy (&7) = ) and E=m fj=my (18)

express the images in reduced coordinates.

Our analysis is based on the impulse response developed in
the previous section. The approximations applied and the use of
reduced object coordinates have made the system spatially invariant.
This fact translates to having H(u, v, i) = H(u—f,v—ﬁ), as the
approximated impulse response from Eq.17 depends only on
the difference of the image coordinates and the reduced object
coordinates. The impulse response is given as

e

X exp [—j%((u—g)x+(v—ﬁ)y)] dxdy, (19)

a

’H(u—g,v—ﬁ) 3

where a is a constant amplitude that does not depend on the optical
system under study. The superposition integral in Eq. 12 relates the
waves at the object and image positions with the impulse response
in a spatially variant system. However, if the system is spatially
invariant, the equation can be reformulated as the convolution
equation, which is given as

+00 - 5 P P
U () = [| 2 (u=Ev=1) 1 (1) dkar 0
The previous equation can be rewritten with the usual convolution
notation as

uimg(uav) = (ug*H)(u,V). (21)

In this general case of a system without aberrations and under
the aforementioned approximations, we see that the output image
is formed by a geometrical-optics transformation followed by a
convolution with an impulse response from the Fresnel diffraction
of the exit aperture.

2.3.1 Introducing optical aberrations

In the previous development, we considered an ideal optical
system without any aberrations, known as diffraction-limited. An
aberrated optical system produces the imperfect convergence of
rays, which can be expressed equivalently in wavefront space by
deviations from the ideal reference sphere. The aberrations produce
leads and lags in the wavefront with respect to the ideal sphere
(see Figure 5). A complementary interpretation, from Goodman
(2005), is that we start with the previous diffraction-limited system
producing converging spherical wavefronts. Then, we add a phase-
shifting plate representing the system’s aberrations. The plate is
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FIGURE 5

[llustration of the wavefront error in a one-dimensional projection of
an ideal setting where the optical system is represented as a single
lens. Figure reproduced from Liaudat et al. (2023).

located at the aperture after the exit pupil and affects the output
wave’s phase. To characterise the aberrations, we use the generalised
pupil function that generalises the pupil function P from Eq. 19 and
gives

2
Pyen (6, y51,v) = P (x, y 1, v) exp )TﬂW(x,y;u,V) , (22)

where A is the central wavelength of the incident wave, P is the
pupil function that includes the telescope’s obscurations, and W
represents the optical path differences (OPDs) between a perfectly
spherical and the aberrated wavefront. We also refer to the OPD as
the wavefront error (WFE). Figure 5 illustrates the concept of WFE.
It is common to represent the WFE using a Zernike polynomial
decomposition (Noll, 1976) as these are orthogonal in the unit disk,
and we generally use circular apertures in telescopes and optical
systems. Figure 6B shows the first Zernike polynomials.

The aberrations, WV, and pupil function, P, depend on the
object’s position in the focal plane as is seen in the (u,v) coordinate
dependence in Eq. 22. Large telescopes with wide focal planes have
spatially varying aberrations. The path travelled by the light rays
changes considerably between distant points in the focal plane,
also changing the aberrations, V. The obscurations and aperture,
represented by the pupil function P, also change with the focal plane
position. For example, Figure 6A illustrates the obscurations from
the Euclid telescope. One can notice a circular aperture with several
obscurations in it, a secondary mirror, and three arms supporting
the mirror. What we observe in Figure 6A is a 2D projection of the
3D structure. This projection changes as a function of the focal plane
position that we are analysing, making the function 77 dependent on
the (u,v) coordinates.

In the impulse response of the optical system without
aberrations from Eq.19, we had a spatially invariant system.
This invariance allowed us to use the convolution rather than
the superposition integral, which is a computationally practical
formulation. If we now consider aberrations, we must inject the
generalised pupil function appearing in Eq.22 into the impulse

frontiersin.org


https://doi.org/10.3389/fspas.2023.1158213
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

Liaudat et al.

10.3389/fspas.2023.1158213

A B 7 #1
#3 #2
1 O)
N 4
#5 #4 -— #6
2 o ® O
W -
_#9 #7 #8 #10
N - - *» ‘N
W/ = , <
m -3 -2 -1 0 1 2 3

FIGURE 6

(A) lllustration of Euclid's pupil function, which can be seen in Venancio et al. (2020), in the (x,y) plane for a given position in the (§1). (B) Example of

the first Zernike polynomial maps.

response formula from Eq. 19. The addition of the (1, v) dependency
in Py, makes the impulse response # spatially variant again.

The study of H, the impulse response and the main topic of
this review, is strongly spatially variant in systems with a large focal
plane. Nevertheless, we can consider H spatially invariant in its
isoplanatic region. This region consists of close-by points in the
focal plane, where the light has travelled similar paths giving small
deviations of H. We are assuming a certain regularity in H due
to the optical system under study that allows the deviations to be
small. In other words, we consider  to be locally spatially invariant
or spatially invariant in patches. Figure 7 illustrates the idea of an
isoplanatic region. This local invariance assumption limits the size
of the imaged objects under study, as they should have a certain
size range with respect to the support of H so that all the objects
being imaged lie within the aforementioned region. We consider the
generalised pupil function evaluated at the centroid of the imaged
object, (u;,v;), and note the locally spatially invariant generalised
pupil function as follows:

B
Injecting Eq. 23, instead of Eq. 22, to the impulse response in Eq. 19

Pgen(x»ﬂ”b"i):P (% ylu;, v;) exp [j W (xylupv;) |- (23)

gives

H(u— Ev- ﬁlui,v,-)

—i +00 »
- AfJ‘J’—oo”’ ('x’ylul’vl)

2
=

X exp[ 7 w' (x,ylui,vi)] exp

2 (w8 )| sy 2

where we have made the system spatially invariant again, allowing
us to exploit the convolution formula in Eq. 20.

We have considered aberrations that only depend on the object’s
position in the focal plane, also known as achromatic aberrations.
However, depending on the optical system under study, there might
be wavelength-dependent aberrations. For example, some refractive
components, or some components implementing complex thin
film coatings, may introduce spurious spectral dependences to the
optical system’s response. If this is the case, we can add a wavelength
dependence to the WFE function W to account for these effects.
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2.3.2 Polychromatic illumination: coherent and
incoherent cases

We studied until now a system with ideal monochromatic light.
It is time to shift to polychromatic light as telescopes have filters
with finite bandwidths and hence allow multiple frequencies of
light. For a more rigorous analysis of polychromatic illumination,
we refer the readers to the theory of partial coherence in Beran
and Parrent (1964), Goodman (1985), and Born and Wolf (1999,
§10). Even if we were to study the system’s behaviour to light with a
particular wavelength, this has practically never been the case, as real
illumination is never perfectly chromatic, even for lasers. Therefore,
we consider a narrowband polychromatic illumination centred at
a given wavelength A. The narrowband assumption states that the
bandwidth occupied is small with respect to the central wavelength.
For polychromatic light, we follow Goodman (2005) and consider

a time-varying phasor of the field, 24, (1, v; ), where its intensity is

mg
given by the time integration of its instantaneous intensity:

1 T/2
Ting (s v) = <|Llimg(u, v; t)|2>r = TJ'_T/2|L{img(u,v; t)|2dt, (25)

where T is the detector integration time that is considered to be
much greater than the optical wave period. We can generalise
the field expression from Eq.20 by considering that light is
polychromatic and that the impulse response #H is wavelength
independent due to the narrowband assumption. The field then is
given as

Uing

)= [| " (u-Ev- )t (it -1) ddar. o)

-0
where 7 represents the delay of the wave propagation from (& ) to
(u,v). Continuing with the polychromatic analysis, we rewrite the
intensity from Eq. 25 as

Zimg (u,v) = ]ngldm ]ngzdﬁzﬂ (” - ghv_ ’71)

XH*(U—gz)V_ﬁz)jg(gpﬁl;gz’ﬁz)’ 27)

where " is the conjugate of H, Jy is known as the mutual intensity
which describes the spatial coherence of U4, at two points and is given
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as

Jg (gl’ﬁl;gz’ﬁz) = <ug (El»ﬁl;f)ué (gz’ﬁz;t» : (28)
We can distinguish two types of illuminations, coherent and
incoherent. Coherent illumination refers to waves whose phases vary
in a perfectly correlated way. This illumination is approximately
the case of a laser. In incoherent illumination, the wave’s phases
vary in an uncorrelated fashion. Most natural light sources can be
considered incoherent sources. The mutual intensity is helpful to
represent both types of illumination. In the case of coherent light,
we obtain

T (Erois &) = Uy (80710 ) g (827,). (29)
where U, (f b ’71) and Uy (fz, ﬁz) are time-independent phasor
amplitudes relative to their time-varying counterpart. As both time-
varying phasors are synchronized, we have taken a reference phasor
and normalised it against the amplitude with respect to a reference
point that can be the origin (0, 0). For example,

U, (0,0;1)

ug(gbﬁﬁt):ug(gl»’ﬂ)g—zl- (30)
<|L{g(0,0;t)| >2
By substituting Eq. 29 in Eq. 27, we obtain
Ty (wv) = |Uiog (v
+00 - - ~ 2
et e
Limg (w:v) = |(ug * H) W), (31)

where we observe that the coherent illumination gives a linear system
in the complex amplitude of the field U,. The previous result is related
to the interference of coherent waves. If we now consider incoherent
illumination, the mutual intensity is given by

jgm (51>’71522”72) = KIg(‘El>’71)5(g1 - 52»771 - ’72)’ (32)
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where « is a real constant, § is the Dirac delta distribution, and
7, is the intensity of the U, field. The constant « is the result of
a simplification from statistical optics giving origin to Eq. 32. The
constant depends on the degree of the extension of coherence when
the evanescent wave phenomenon (Beran and Parrent, 1964) is
taken fully into account. If the coherence extends over a wavelength,
K is equal to 12 /m, where A is the mean wavelength (for a deeper
discussion on incoherent illumination and the k constant, see
Goodman, 1985, §5.5.2). By replacing Eq. 32 in Eq. 27, the output
(image) intensity obtained is

Ty o= i
[ (- G- )T, (),
T ) = (T, * THP) () = (T Hin ) (w7), (33)

where H,,, = |H/|* is the intensity impulse response, also known as
the PSE In this case, an optical system illuminated with incoherent
light is linear in intensity. Eq. 33 shows a commonly exploited fact;
the output intensity is the convolution of the intensity PSF with ideal
image intensity Z,.

2.4 Usual assumptions adopted in PSF
modelling

PSF modelling articles generally implicitly assume specific
hypotheses. We provide some of them in the following list:

e The scalar diffraction theory is valid.

e The lens law is verified, the paraxial approximation is valid,
and the approximations discussed in Section 2.2 hold. These
approximations allow us to discard quadratic phase terms
from Fresnel’s diffraction and exploit the simpler Fraunhofer
diffraction formula.
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e The incoming light from natural sources is assumed to be ideally
incoherent. Then, the optical system is linear in intensity, as seen
in Eq. 33.

e The PSF is considered to be spatially invariant in its isoplanatic
region. In other words, the PSF is assumed not to change on
the objects’ typical length scales. This assumption allows us
to use the convolution equation, i.e., Eq. 33, rather than the
superposition integral, i.e., Eq. 12.

Although the previous assumptions are standard, certain precision
levels require dropping simplifications. For example, the Euclid
mission requirements on the PSF model accuracy as given in
Laureijs et al. (2011) and Racca et al. (2016) is of 2 x 10~ for the root
mean square (RMS) error on each ellipticity component (&3}.)5F ) and
1x107 for the relative RMS error on the size (SRIZ,SF/R%SF). The
PSF model might have to include light polarisation to fulfil these
extremely tight PSF requirements. Other assumptions might also be
dropped for the precise imaging of widespread objects. This case
might require discarding the spatially invariant assumption of the
PSF or reducing the size of the isoplanatic region.

To conclude, the usual formulation of the PSE i.e,, the intensity
of the impulse response, convolving an image seen in many articles,
comes from the previous assumptions using the results from Eqs 23,
24, and 33. We rewrite this formula as follows:

Ting (1) = (Hine * ) (w,9), (34)
where we remind the readers that (u,v) is the image plane, we have
dropped the « term from Eq. 33, and H,,, is the intensity impulse
response or PSF that is given as

Hie (s vlu,v;) =

a/Z +oo
)Tﬁ ”_mp (o ylu;,v;)
X exp [jZTﬂW* (x,y|ui,vi)]

2
dxdy| . (35)

X exp —'2—7[(ux+v )

where we are studying the PSF for a specific wavelength and focal
plane position.

3 General observational model

We consider the PSF as the intensity impulse response, #,,
of the imaging system under study to a point source. The
concept of PSF (Born and Wolf, 1999) is used throughout many
imaging applications, such as astronomical imaging (Schmitz,
2019; Liaudatetal, 2023), medical imaging (Dougherty and
Kawaf, 2001; Joyce et al., 2018), or microscopy (Soulez et al., 2012;
Debarnot et al.,, 2021a; Debarnot et al., 2021b). The central idea
behind a PSF is that it represents transformations done to the
imaged object by the imaging system. The PSF is, in a certain way,
a characterisation of the imaging system. Considering incoherent
illumination and what the hypotheses from the previous section
hold, we can affirm that the optical system behaves linearly as in
Eq. 34. Consequently, the PSF is considered the impulse response
of the optical system and affects the ground truth image through
a convolution operation. Focusing on astronomical imaging, the
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definition of the imaging system can vary between the different
use cases and telescopes. For example, in a ground-based telescope,
we will consider that the atmosphere belongs to the imaging
system we are modelling. However, naturally, the atmosphere will
not be considered in a space-based telescope. This article focuses
on optical systems, which work with electromagnetic radiation
with a wavelength close to the visible spectrum. For example,
Euclid VIS instrument’s theoretical wavelength range is from 550 to
900 nm.

The PSF describes the effects of the imaging system in the
imaging process of the object of interest. The PSF is a convolutional
kernel, as we have seen in Section 2.3. However, this convolutional
kernel varies spatially, spectrally, and temporally. We give a non-
exhaustive list that motivates each of these variations.

e Spatial variations: The optical system presents a certain optical
axis, which is an imaginary line where the system has some
degree of rotational symmetry. In simpler words, it can be
considered as the direction of the light ray that produces a
PSF in the centre of the focal plane for an unaberrated optical
system. The angle of incidence is defined as the angle between
an incoming light ray and the optical axis. The main objective
of the optical systems that we study is to make the incoming
light rays converge in the focal plane, where there will be some
measurement instruments, e.g., a camera. Depending on the
angle of incidence, the image will form in different positions in
the focal plane. The path of the incoming light will be different
for each angle of incidence, and therefore the system’s response
will be different too. In other words, the PSF will change
depending on the angle of incidence or spatial position in the
focal plane where the image is forming. Optical systems with
wide focal planes, generally associated with wide field-of-views
(FOV3s), present significant PSF spatial variations.

due to the

phenomena and its well-known wavelength dependence

e Spectral variations: Principally, diffraction
covered in Section 2, refractive’ components of the optical
system under study are also a source of spectral variations
(Baron et al., 2022). Other sources of spectral variations are
detector electronic components (Meyers and Burchat, 2015a)
and atmospheric chromatic effects (Meyers and Burchat,
2015b).

o Temporal variations: The state of the telescope changes with
respect to time, therefore the imaged object’s transformation
also changes. In space-based telescopes, high-temperature
gradients cause mechanical dilations and contractions that
affect the optical system. In ground-based telescopes, the
atmosphere composition changes with time. Consequently, it
temporally affects the response of the optical system, i.e., the
PSE.

The PSF convolutional kernel varies with space, time, and
wavelength. Once we have set up a specific wavelength and time to

2 Refraction refers to the change of direction in the propagation of a wave
passing from one medium to another. Most of the wave energy is transmitted
to the new medium. Reflection refers to the abrupt change of direction of
the wave propagation due to a boundary between mediums. In this last
case, most of the oncoming wave energy remains in the same medium.
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analyse our system, we will have a different convolutional kernel for
each position in the field of view. Let us refer to the PSF field ;,, as
all the PSF representing an optical system. Then, H,,,(u, v; A; tlu;, v;)
is a specific PSF where (u;,v;) represents its centroid, i.e., the first-
order moments. The same notation is maintained in Figure 4, where
the (u,v) variables represent the image plane. We can define the PSF
field as a varying convolutional kernel H,,: R>x R, x R, x R* —
R. This definition would accurately describe how the PSF affects
the images considering the assumptions from Section 2 are valid.
We recall that we adopted the approximation that considers the
PSF locally invariant in its isoplanatic region (Born and Wolf, 1999,
§9.5.1); for an illustration, see Figure 7. This approximation means
that in the vicinity of an observed object, we will consider that
the PSF only varies with time and wavelength, thus facilitating the
computation of the convolution. The close vicinity, or the isoplanatic
region, will be defined as the postage stamp to image the object
of interest. The typical galaxies observed for weak lensing have a
comparable size with respect to the PSF size (for distribution of the
relative galaxy to PSF size in the HSC survey, see Mandelbaum et al.,
2018,
kept low as it is only done for small patches of the focal

Figure 7). Consequently, the approximation error is
plane.

Let us define our object of interest with the subscript ground
truth (GT), Zgr(u, viAs tlu;, vy), that is, the I, object from Section 2,
as a continuous light distribution Zg: R x R, x R, x R* - R. In
this review, we are not considering transient objects, i.e., the time-
dependence scale of the object is comparable with the exposure time
used to image it. Therefore, we can ignore the temporal dependency
of the GT object, Zgp(u,v;A5t) # f(t). Let us write our general
observational model that relates our GT object of interest, our PSE,
and our observed image as follows:

+00
Timg (w5t v;) = ]:p {Jo TN (Zr * Hind) (s hstlu;,v;) d)‘}

o N (@, 7 tlu;,v;), (36)

where F, is a degradation operator discretising the image to
RP? that includes the image sampling from the instrument. The
variables (#,7) denote the discrete (pixelised) version of the (u,v)
variables. Then, I

img (% tu;,v;) € R corresponds to the instrument’s
measurement at a single pixel (%,7), and [yq (,v) € RP? to the
entire image. The variables (u;,v;) correspond to the centre location
of the target object i. The instrument’s transmission is represented
by T:R, — R, a function with finite support, and Ny, ,, € R”?
corresponds to the noise affecting our observation and possibly
a modelling error, where o is some composition operator. We
have carried out the spectral integration (Hopkins, 1957; Eriksen
and Hoekstra, 2018) on the instrument’s passband defined in .
Although Eq. 36 provides a general observational model, it can
T, and Zgp are
practically inaccessible. We make several assumptions to simplify the

problem.

be unpractical. The continuous functions H,,,

(a) The continuous functions H;,,, and Z are well approximated
by piece-wise constant functions over a regular grid in R
We assume H,,, = H and Zqy = Iy, where H, I € RPP with
P > p. The resolution of these two variables has to be greater or
equal to the observation resolution.
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(b) The noise is additive, i.e., o = +, although the formulation could
be adapted to consider other types of noise, e.g., Poisson.

(c) The degradation operator is approximated by its discrete
counterpart, F,=F,, where F,:R”"—RP?, which has
been discretized in a regular grid. We assume that the
degradation operator is linear and that includes pixellation,
possibly downsampling, intra-pixel shifts, and linear detector
effects.

(d) We keep the approximation that the PSF is locally constant
within the postage stamp of P x P values of the target image.
(e)

The integral can be well approximated by a discretised version
using 1, bins.

Taking into account the aforementioned assumptions, we can define
our practical observational model as follows:

I

img

103
(@, 9;tlu;,v;) = E, {z T(M) (Igr * H) (@, % A tlu,, v;) Alk}
k=1

+ N (@, v tlu,v,), (37)
where L0 i vy € RPP, T is a discretized version of 7, and bk =
[bE,b%] is the kth wavelength bin centred in A, with a width of A), =
by - by.

17 %

3.1 Particular case: star observation

The case of star observations is of particular interest, as some
stars in the FOV can be considered as a spatial impulse, i.e.,
Lar (s vs Muy v;) = 0w vi5A) = f(,, ) (A). Therefore, if we plug the
impulse in Eq. 37, we obtain a degraded observation of the PSF
field. These observations will be crucial to constrain the PSF
models. Unluckily, we do not always have access to the star’s
spectral variation, f, ,(1). However, we dispose of complementary
photometric observations that can be useful to characterise the
spectral variations. These observations provide us with the star’s
spectral energy distribution (SED), which can be defined as the
calibrated flux density as a function of wavelength, usually at
low spectral resolution. The photometric observations are done in
several spectral bands. Figure 8 shows the bands from the MegaCam
instrument at the Canada—France-Hawaii Telescope (CFHT)?. For
more information about SEDs and stellar photometry, we refer the
readers to Hogg (2022). The SED is a normalised low-resolution
sampling of the star’s spectral variations. We can write the SED
definition we will use as

SEDy () = 1) d\, (38)

1 J’l
Sty
2o, oy

where we continued to use the b* bin definition from Eq. 37, and
Zy, () 1s @ constant used so that the SED is normalised to unity. We
have that ZZi SED(A4) = 1, we continue by considering that the GT
image in Eq. 37 is a star, and we use the spectral bins from the SED
definition to discretise the spectral integration. Finally, we write the
practical star observation model as

3 The filter curves can be downloaded from the Spanish Virtual Observatory
(SVO) webpage, http://svo2.cab.inta-csic.es/svo/theory/fps/index.php.
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FIGURE 8
Third generation set of filters of the MegaCam instrument at the Canada—France—Hawaii Telescope that is currently being used for the Canada-France
Imaging Survey. The transmission filter response includes the full telescope and 1.25 air masses of atmospheric attenuation. The full telescope includes
mirrors, optics, and CCDs.

m
Lyor (@73 tlu,v;) = F, {Z T (M) SEDyx (Ax) H (i, 75 Ags tlus v;) Alk}
k=1

+N (i, %y v,), (39)

where we consider the star observation I (.)€ RPY as a
degraded version of the PSF field Hy, ,, € R’

4 PSF field contributors and related
degradations

So far, we have described how the PSF interacts with the images
we observe and how we can model an observation. However, we
have not given much information about the different PSF field
contributors and the different degradations represented by F, in
Eq. 37 that can occur when modelling observations. We provide a
non-exhaustive list of contributors to the PSF field, sources of known
degradations, and the atmosphere’s effect on our PSF modelling
problem.

4.1 Image coaddition

A fundamental contributor to the PSF is the choice of image
coaddition scheme. A coadded image is a composite image created
by combining multiple individual exposures of the same region of
the sky in some way. This process can help increase the signal-to-
noise ratio of the observation. Motivated by the analysis of the LSST
data, Mandelbaum et al. (2022) have explored different coaddition
schemes and studied how they affect the PSF of the resulting coadded
image. In particular, Mandelbaum et al. (2022) have defined the
schemes under which the coadded image accepts a well-defined
PSE i.e., the observation can be described by the convolution of an
extended object and a uniquely defined coadded PSE Bosch et al.
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(2017) have described the strategy for image and PSF coaddition in
the HSC survey.

4.2 Dithering and super-resolution

Dithering consists of taking a series of camera exposures shifted
by a fractional or a few pixel amount. There are several advantages of
using a dithering strategy, which include the removal of cosmic rays
and malfunctioning pixels, improving photometric accuracy, filling
the gap between the detectors, and improving the sampling of the
observed scene. Dithering allows estimating a sampling density of
the images that is denser than the original pixel grid; in other words,
to super-resolve the image. Regarding PSFs, it allows recovering
Nyquist sampled PSF from undersampled observations. Bernstein
(2002) studied the effect of dithering and the choice of pixel sizes
in imaging strategies. Naturally, as we will see later, the dithering
strategy is helpful for space-based telescopes thanks to their stability.
In ground-based telescopes, the atmosphere constantly changes
the PSE, making the dithering strategy less effective. However, a
dithering strategy can be helpful if the telescope is equipped with
adaptive optics technology, which will be described in Section 4.6.
An example is the Spectro-Polarimetic High-contrast imager for
Exoplanet REsearch (SPHERE) instrument (Beuzitetal,, 2019)
built for the European Southern Observatory’s (ESO's) Very Large
Telescope (VLT) in Chile.

Lauer (1999b) discussed the limiting accuracy effect of
undersampled PSFs in stellar photometry and proposed ways to
correct it with dithered data (Lauer, 1999a). Fruchter and Hook
(2002) presented the widely used Drizzle algorithm that consists of
shifting and adding the dithered images onto a finer grid. Rowe et al.
(2011) proposed a linear coaddition method coined IMCOM
to obtain a super-resolved image from several undersampled
images. Hirata et al. (2023) later studied the use of IMCOM on
simulations (Troxel et al., 2023) from the Roman Space Telescope,
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while a companion paper by Yamamoto et al. (2023) explored its
implications for weak-lensing analyses. Ngole et al. (2015) proposed
a super-resolution method coined SPRITE targeting the Euclid
mission based on a sparse regularisation technique. More recent
PSF models handle the undersampling of observations directly in
their algorithms for estimating a well-sampled PSF field, as we will
see later.

4.3 Optic-level contributors

These contributors affect the PSF by modifying the wave
propagation in the optical system. In other words, they affect the
wavefront’s amplitude and phase.

e Diffraction phenomena and aperture size: As we have seen in
Section 2, the diffraction phenomena occurring in the optical
system play an essential role in the formation of the PSE. The
size of the optical system's aperture and the wavelength of light
being studied are of particular interest. Eq. 35 shows us that
under some approximations, the PSF is the Fourier transform
of the aperture. Therefore, the size of the aperture and the PSF
are closely related. For example, if we consider an ideal circular
aperture, its diffraction pattern is the well-known Airy disk. The
relationship between the width of the PSF and diameter of the
aperture is given by

Opwiiv = 1.025%,
where Opyy is the full width at half maximum (FWHM) expressed
in radians, A is the wavelength of the light being studied, and d is
the diameter of the aperture. The width of the PSF is a fundamental

property of an optical system as it defines the resolution of the

(40)

system. In other words, the PSF size defines the optical system’s
ability to distinguish small details in the image.

e Optical aberrations: These aberrations are due to imperfections
in the optical elements, e.g., a not ideally spherical mirror or not
perfectly aligning optical components. The optical aberrations
play a significant role in the morphology of the PSF and can
be modelled using the WFE introduced in the generalised pupil
function from Eq. 22. Some aberrations have a distinctive name,
e.g., coma, astigmatism, and defocus, and they represent a
specific Zernike polynomial (Noll, 1976).

o Surface errors or polishing effects: One would ideally like
perfectly smooth surfaces in mirrors and lenses. However,
imperfections arise in the optical surfaces due to imperfect
surface polishing. Krist et al. (2011) showed the measurement
of surface errors (SFE) in the Hubble Space Telescope (HST).
Gross etal. (2006, §3.5.2) gave a more in-depth analysis of
surface errors focusing on the tolerancing of SFE. Figure 9A
shows the surface errors measured for the Hubble Space
Telescope (HST). Krist and Burrows (1995) studied HST’s SFE
before and after its iconic repair in 1993 with parametric and
non-parametric (Gerchberg and Saxton, 1972) phase-retrieval
algorithms.

e Obscurations: Complex optical systems have telescope designs
where some elements can obscure some parts of the pupil.
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Obscurations are an essential contributor to PSF morphology
and result from projecting a 3D structure onto the 2D focal
plane. The resulting projection depends on the considered
position of the focal plane. Accurate modelling of telescopes
with wide-field imagers, e.g., Euclid, requires the computation
of the obscuration’s position dependence arising from the
3D projection. The Euclid’s obscurations are presented in
Figure 6A. Fienup et al. (1993) and Fienup (1994) studied HST’s
obscuration from phase-retrieval algorithms and noticed a
misalignment that caused a pupil shift.

Stray and scattered light: Optical elements and instruments
give rise to light reaching the detectors. Krist (1993) studied
this problem for the HST. Storkeyetal. (2004) developed
methods to clean observations with scattered light from the
SuperCOSMOS Sky Surveys (Hambly etal,, 2001). Sandin
(2014) studied the effect of scattered light on the outer parts of
the PSE

Material outgassing and ice contamination: Material outgassing
leads to molecular contamination that alters different properties
of the imaging system. Water is the most common contaminant
in cryogenic spacecraft, which then turns into thin ice films. A
notable example is the Gaia mission which suffered from ice
contamination (see Gaia Collaboration et al., 2016, §4.2.1) and
required several decontamination procedures to slowly remove
the ice from the optical system. Euclid Collaboration et al.
(2023a) studied the ice formation and contamination for Euclid.
The article also reviews the lessons learnt from other spacecraft
on the topic of material outgassing. A companion paper by
Euclid Collaboration et al. (2023a) is expected to be published
soon that addresses the quantification of iced optics impact on
Euclid’s data.

Chromatic optical components: These components have a
particular wavelength dependence, excluding the natural
chromaticity due to diffraction. They are usually spectral filters
and depend on the optical system design. A particular example
is a dichroic filter which serves as an ideal band-pass filter. The
Euclid optical system includes a dichroic filter which allows
using both instruments, VIS and NISP, simultaneously as their
passbands are disjoint. A dichroic filter is made of a stack of
thin coatings of specific materials and thicknesses. Even if these
components have a high-quality manufacturing process, they
can induce significant chromatic variations in reflection that
affect the PSF morphology. Baron et al. (2022) proposed a test
bench to characterise Euclid’s dichroic filter and a numerical
model of its chromatic dependence.

Light polarisation: In Section 2, we studied the scalar diffraction
theory, thus neglecting light polarisation. Firstly, the optical
system can induce polarisation even when the incoming
light is not polarised. Breckinridge et al. (2015) studied the
effect of polarisation aberrations on the PSF of astronomical
telescopes. The study of polarisation was carried out using
Jones matrices (Jones, 1941). These matrices describe a ray’s
polarisation change when going through an optical system.
For more information on polarisation aberrations, see McGuire
and Chipman (1990, 1991) and Yunetal. (2011). Secondly,
there are some regions in space where the incoming light has
been polarised by different sources, e.g., galactic foreground
dust. Lin et al. (2020) studied the impact of light polarisation
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on weak-lensing systematics for the Roman Space Telescope
(Spergel et al., 2015). The study found that the systematics
introduced by light polarisation is comparable to the Roman
Space Telescope’s requirements.

o Thermal variations: The thermal variations in a telescope
introduce mechanical variations in its structure that affect
the performance of the optical system. The origin of
thermal variations is the strong temperature gradients due
to the Sun’s illumination. It is sometimes referred to as the
telescope’s breathing (Bély et al., 1993) for the periodical pattern
consequence of its orbit. Thermal variations can introduce
a small defocusing of the system that will change the PSF
morphology. This phenomenon was first identified in the
HST (Hasan et al., 1993). Nino et al. (2007) studied HST focus
variations with temperature, and Lallo et al. (2006) studied HST
temporal optical behaviour, where temperature variations play
a principal role. Later works (Suchkov and Casertano, 1997;
Makidon et al., 2006; Sahuetal, 2007) studied the impact
of thermal variations, and consequently PSF variations, on
different science applications. A Structural-Thermal-Optical
Performance (STOP) test helps predict the thermal variations’
impact on the optical system. This effect is naturally more
significant in space-based telescopes as the temperature
gradients in space are considerably more prominent than the
ones found on the ground. Space-based telescopes located at
the stable L, Lagrange point, e.g., Euclid and James Webb Space
Telescope (JWST), are less prone to thermal variations than
telescopes orbiting the Earth, e.g., HST.

As an example, Figures 9B,C show the measured optical
contribution for the James Webb Space Telescope (JWST) PSE
Rigby et al. (2022) have presented a detailed analysis of JWST’s state,
since its commissioning, which includes its PSE

4.4 Detector-level degradations

Detector-level degradations are related to the detectors being
used and, therefore, to the intensity of the PSE They affect the
observed images through the degradation operator F, from Eq. 37,
and as we will use star images, or eventually other observations, to
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constrain PSF models, it is necessary to consider their effects. Some
of these degradations are non-convolutional and will not be well
modelled by a convolutional kernel. Nevertheless, we expect that
image preprocessing steps will mainly correct these effects. However,
the correction will not be perfect, and some modelling errors can
propagate to the observations.

o Undersampling and pixellation: The EM wave that arrives at
the detectors is a continuous function. The discrete pixels
in the detectors integrate the functions and measure the
intensity of the wave in their respective areas. We name this
process pixellation, also known as sampling. Some authors,
e.g., Anderson and King (2000), Bernstein (2002), and
Kannawadi et al. (2016), have defined an effective PSF as the
convolution of the optical PSE, i.e., the flux distribution at the
focal plane from a point source, with the pixel response of
the instrument, e.g., a 2D top-hat function. High et al. (2007)
performed an early study on the effects of pixellation in WL
and the choice of pixel scale for a WL space-based mission.
Kristetal. (2011, §3) gave some insights on the pixellation
effects for the HST. Two aspects of pixellation play a crucial
role in PSF modelling. Firstly, the sampling is done with the
same grid, but it is indispensable to consider that the continuous
function is not necessarily centred on the grid. This difference
means that intra-pixel shifts between the different pixellations
will be found. Figure 10 shows how two pixel representations of
the same light profile change due to two different pixellations.
When optimising a PSF model to reproduce some observed
stars, the centroids of both images must be the same. Suppose
the image centroids are the same, and the underlying model
represents the observations satisfactorily. In such a case, the
residual image between the two pixelated images will be close
to zero. If the centroids are not the same, the residual can be
far from zero even though the model is a good representation
of the observation, as illustrated in the residual image in
Figure 10. The second aspect is related to the Nyquist-Shannon
sampling theorem. The theorem states the required number
of samples that we have to use to determine perfectly a
signal of a given bandwidth. In the telescopes we study, the
bandwidth and number of samples are related to the aperture’s
diameter and pixel size. Depending on the telescope’s design,
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the sampling may not verify the Nyquist-Shannon theorem. If
the images are undersampled, i.e., the theorem is not verified,
a super-resolution step is required in the PSF modelling,
which is the case in Euclid. Using an observation strategy
with dithering, as described in Section 4.2, can significantly
mitigate the undesired effects of undersampling and pixellation.
Kannawadi et al. (2021) studied ways of mitigating the effects of
undersampling in WL shear estimations using metacalibration
(Huff and Mandelbaum, 2017; Sheldon and Huff, 2017;
Sheldon et al., 2020), which is a method for measuring WL
shear from well-sampled galaxy images. Finner et al. (2023)
studied near-IR weak-lensing (NIRWL) measurements in the
CANDELS fields from HST images. The authors find that
the most significant contributing systematic effect to WL
measurements is caused by undersampling.

Optical throughput and CCD quantum efficiency (QE): The
optical throughput of the system is the combined effect of
the different elements that compose the optical system, such
as mirrors and optical elements like coatings (Venancio et al.,
2016). The filter being used in the telescope forms a part of
the optical throughput, as can be seen in Figure 8 for the
MegaCam set of filters. Figure 8 also includes the CCD QE,
which describes the sensibility of the CCD to detect photos of
different wavelengths. Commonly, CCDs do not have a uniform
response to the different wavelengths. Therefore, we must
multiply the CCD QE with the telescope’s optical throughput
to compute the total transmission.

CCD misalignments: Ideally, we expect that all the CCDs in the
detector lie in a single plane that happens to be the focal plane
of the optical system. However, this is not the case in practice,
as there might be small misalignments between the CCDs that
introduce small defocuses that change from CCD to CCD. For
a study of this effect for the Vera C. Rubin Observatory, see Jee
and Tyson (2011, Figure 8).

Guiding errors: Even if space telescopes are expected to be very
stable during observations thanks to the Attitude and Orbit
Control System (AOCS), there will exist a small residual motion
that is called pointing jitter. The effect on the observation is the
introduction of a small blur that can be modelled by a specific
convolutional kernel that depends on the pointing time series.
Fenech Conti (2017, §4.8.3) proposed to model the effect for
Euclid with a Gaussian kernel.

Charge transfer inefficiency: CCD detectors are in charge of
converting incoming photons to electrons and collecting them
in a potential well in the pixel during an exposure. The charge
on each pixel is read when the exposure is complete. The
collected electrons are transferred through a chain of pixels to
the edge of the CCD, amplified, and then read. High-energy
radiation above the Earth’s atmosphere gradually damages the
CCD detector (Prod’homme et al., 2014b; Prod’homme et al.,
2014a). The silicon damage in the detectors creates traps for
the electrons that are delayed during the reading procedure.
This effect is known as charge transfer inefficiency (CTI),
producing a trailing of bright objects and blurring the image.
This effect is noticeably significant for space telescopes, given
the harsh environment. CTI effects are expected to be corrected
in the VIS image preprocessing. Rhodes et al. (2010) carried
out a study on the impact of CTI on WL studies. Massey et al.
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(2009) developed a model to correct CTI for the HST and later
improved it in Massey et al. (2014).

Brighter-fatter effect: The assumption that each pixel photon
count is independent of its neighbours does not hold in
practice. There is a photoelectron redistribution in the pixels
as a function of the number of photoelectrons in each pixel.
The brighter-fatter effect (BFE) is due to the accumulation
of charge in the pixels’ potential wells and the build-up of a
transverse electric field. The effect is stronger for bright sources.
Antilogus et al. (2014) studied the effect and observed that the
images from the CCDs do not scale linearly with flux, so bright
star sizes appeared larger than fainter stars. Guyonnet et al.
(2015) and Coulton et al. (2018) proposed methods to model
and correct this effect. The preprocessing of VIS images is
supposed to correct for the BFE, but there might be some
residuals.

Wavelength-dependent sub-pixel response: There exists a charge
diffusion between neighbouring pixels in the CCD. Niemi et al.
(2015) studied this effect for Euclid’s VIS CCD and modelled
the response of the CCD. They proposed to model the effect as
a Gaussian convolutional kernel where the standard deviations
of the 2D kernel are wavelength dependent: o,(A) and oy(/\).
They measured the proposed model with a reference VIS
CCD. Krist (2003) studied the charge diffusion in the HST
and proposed spatially varying blur kernels to model the
effect.

Noise: There are several noise sources in the measurements.
Thermal noise (Nyquist, 1928) refers to the signal measured
in the detector due to the random thermal motion of
electrons which is usually modelled as Gaussian. Readout
noise (Basden etal., 2004) refers to the uncertainty in the
photoelectron count due to imperfect electronics in the CCD.
Dark-current shot noise (Baer, 2006) refers to the random
generation of electrons in the CCD, and even though it is related
to the temperature, it is not Gaussian. There are also unresolved
and undetected background sources that contribute to the
observation noise. These are the statistics of the predominant
noise that depends on the imaging setting of the instrument and
its properties.

Tree rings and edge distortions: There exist electric fields in
the detector that are transverse to the surface of the CCD.
The origin of these fields includes doping gradients or physical
stresses on the silicon lattice. This electric field displaces charge,
modifying the effective pixel area. Consequently, it changes
the expected astrometric and photometric measurements. This
electric field also generates concentric rings, tree rings, and
bright stripes near the boundaries of the CCD, edge distortions.
Given the close relationship between this effect and the detector,
its importance depends strongly on the instrument being
used. This effect is unnoticeable in the MegaCam used in the
Canada-France Imaging Survey (CFIS) as it depends on the
CCD design. However, it is a major concern in the Dark Energy
Camera that is used in the Dark Energy Survey (DES), as
was shown by Plazas et al. (2014). Jarvis et al. (2020, Figure 9)
illustrated the consequence of tree rings in PSF modelling.
Other effects: These include detector nonlinearity (Stubbs,
2014; Plazasetal., 2016), interpixel
(Lindstrand, 2019), interpixel capacitance (McCullough,

sensor correlation
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2008; Kannawadietal., 2016; Donlon etal., 2018), charge-
induced pixel shifts (Gruen et al., 2015), persistence (Smith et al.,
2008a; Smith et al., 2008b), reciprocity failure (flux-dependent
nonlinearity) (Bohlin et al., 2005; Biesiadzinski et al.,, 2011),
and detector analogue-to-digital nonlinearity.

4.5 Atmosphere

The atmosphere plays a central role in ground-based telescopes’
PSFs. For an in-depth study of the subject, see Roddier (1981).
How the atmosphere affects our images will strongly depend on the
exposure time used to image an object. The PSF induced by the
atmosphere for a very short exposure will look like a speckle, while
a long exposure will produce a PSF that resembles a 2D Gaussian,
or more precisely, a Moffat profile (Moffat, 1969). Figure 12 shows
examples of atmospheric PSFs with different exposure times.
The atmosphere’s effect on the PSF for a long exposure can be
approximated by the effect of a spatially varying low-pass filter,
thereby broadening the PSF and limiting the telescope’s resolution.
Astronomers usually use the term seeing to refer to the atmospheric
conditions of the telescope, and it is measured as the FWHM of the
PSE. The loss of resolution due to the atmosphere is one of the main
motivations for building space telescopes like Euclid and Roman,
where the PSF is close to the diffraction limit and very stable.

The atmosphere is a heterogeneous medium whose composition
changes with the three spatial dimensions and time. The
inhomogeneity of the atmosphere affects the propagation of light
waves that arrive at the telescope. Instead of supposing that the
incoming light waves are plane, as emitted by the faraway source
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under study, these waves already have some phase lags or leads with
respect to an ideal plane wave. The atmosphere introduces a WFE
contribution to the optical system. These effects can be resumed as
an effective phase-shifting plate, @ (x,y,t). However, calculating
this effective plate is cumbersome as it involves having a model of
the atmosphere and integrating the altitude, z, so that we have the
spatial distribution, (x,y), of the effective WFEs. The model of the
atmosphere is represented by the continuous Cﬁ(z) (Roddier, 1981)
profile, which represents the variations of the refractive index due to
atmospheric turbulence as a function of height. However, the C(z)
is challenging to model and measure, and even if it is possible, it is
computationally expensive to exploit.

We can discretise the integral over the altitude into M thin
phase screens of variable strengths at different altitudes to simulate
the effect of the atmosphere. Each phase screen will have specific
properties and move at different speeds in different directions. These
assumptions are known as the frozen flow hypothesis. Each phase
screen will be characterised by its power spectrum that can be
modelled by a von Karmdn model of turbulence (Kirman, 1930).
The power spectrum of the atmosphere’s WEE contribution is given
by

1

-11/6
5)

2
0

¥ (v) = 0.023 rgs“(vz + (41)
where v is the spatial frequency, r, is the Fried parameter, and L is
the outer scale. Both parameters, r, and L, are generally expressed
in metres. The Fried parameter relates to the turbulence amplitude,
and the outer scale relates to the correlation length. For an example
of atmospherical phase screens, see Figure 11. For lengths longer
than L, the power of the turbulence asymptotically flattens. If we
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Illustration of six von Kd&rman phase screen layers at different altitudes simulated for LSST. The simulations were produced with the GalSim package
(Rowe et al., 2015) using the parameters from Jee and Tyson (2011).

take the limit of L, to infinite, we converge to the Kolmogorov  rounder and smoother. Figure 12 shows examples of atmospheric
model of turbulence (Kolmogorov, 1991). For more information on ~ PSFs using different exposure times that were simulated using six-
electromagnetic wave propagation in turbulence, see Sasiela (1994).  phase screens using the parameters from Jee and Tyson (2011) that

Once the phase screens, @,,(x,y|u;v;), have been simulated  correspond to an LSST-like scenario. It is interesting to see how
following Eq. 41, the temporal variation of the screen has to be taken  the short-exposure PSF looks like a speckle, and then the profile
into account. The phase screens contribute to the WFEs of the PSE, becomes more and more smooth as the exposure time increases.
which is why it depends on the pupil plane variables (x,y). The  As a reference, the exposure time used for the r-band observations
temporal variation is usually modelled with the wind’s properties at ~ in CFIS is 200 s*. de Vries et al. (2007) studied the PSF ellipticity
the phase screen’s reference altitude. We describe the wind with two ~ change due to atmospheric turbulences as a function of the exposure
components, v, and v,, where we have assumed that v, =0. We then  time. They observed that the ellipticity of the PSF decreases its
obtain the effective phase screen by a weighted average of the phase ~ amplitude as the exposure time increases.

screens at the different altitudes as Another effect that should be considered is atmospheric
M differential chromatic refraction. This effect represents the refraction

@ (.5t v;) = Z cm®,, (6 ystlu,v;), (42) due to the change of medium from vacuum to the Earth’s

m=1 atmosphere. The effect varies as a function of the zenith angle and

where {c,,} are relative weights corresponding to the different phase ~ Wavelength. Meyers and Burchat (2015b) performed a study on the

screen. The difficulty of modelling the atmosphere is that the time ~ impact of the atmospheric chromatic effect on weak lensing for
scales are comparable with the exposure time. Therefore, the PSF  surveys like LSST and DES.

that we estimate for a given time snapshot will change with respect to Heymans etal. (2012) performed a study on the impact of
another PSF at another snapshot within the same camera exposure.

This change means that we have to integrate the instantaneous PSF  data from CFHT. They characterised the ellipticity contribution
of the atmosphere to the PSF for different exposure times. To

o achieve this, they computed the two-point correlation function of

g (7> 7114, v;) = J o Ling (8 %5t v;) dit, (43)  the residual PSF ellipticity between the observations and a PSFEx-
like PSF model (described in detail in Section 5). Salmon et al.

(2009) studied the image quality and the observing environment
at the CFHT (Xinetal, 2018) and carried out a study of the
PSF and the variation of its width with time and wavelength for

atmospheric distortions on weak-lensing measurement with real

over time to model the PSF physically, which corresponds to

I

1

where [, (i, 7, flu;, v;) is the instantaneous image of the object
affected by the PSF H(u, v;A;tu;, v;), t, is a random initial time, and
Typ is the exposure time.

Finally, we have to choose the time step size to discretise the
integral from Eq. 43. Each instantaneous PSF will look like a speckle.

Once we add them up in the integral, the PSF starts to become 4 https://www.cfht.hawaii.edu/Science/CFIS/
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for an LSST-like scenario

the Sloan Digital Sky Survey (SDSS) (Gunn et al., 1998; York et al.,
2000). Jee and Tyson (2011) carried out a simulation study to
evaluate the impact of atmospheric turbulence on weak-lensing
measurement in LSST. Jee and Tyson (2011) used the atmospherical
parameters from (Ellerbroek, 2002) that were measured in the LSST
site in Cerro Pachén, Chile. There is an ongoing project at LSST
DESC? to leverage atmospheric and weather information at or near
the observation site to produce realistically correlated wind and
turbulence parameters for atmospheric PSF simulations.

Another way to simulate the atmosphere and the PSF is to use
a photon Monte Carlo approach. This line of work was carried
out in Peterson et al. (2015, 2019, 2020) with a simulator available
coined® that is capable of simulating several telescopes including
the Vera C. Rubin observatory and JWST. The method consists of
sampling photons from astronomical sources and simulating their
interactions with their models of the atmosphere, the optics and
the detectors. PhoSim is characterised by being a remarkably fast
simulator regarding the level of simulation complexity handled. This
simulator has proved helpful in several studies (Walter, 2015; Xin
et al.,, 2015; Beamer et al., 2015; Carlsten et al., 2018; Xin et al.,
2018; Burke et al., 2019; Sanchez et al., 2020; Nie et al., 2021b;
Euclid Collaboration, 2023b; Euclid Collaboration, 2023¢c; Merz
et al., 2023). PhoSim is a powerful simulation tool that can help to
study the PSF of systems by following a forward model approach
where simulations are compared with observations (Chang et al.,
2012; Chang and Peterson, 2017). The PhoSim parameters can then
be fitted or modified to match the simulation output with the
observed images. Another known simulation software’, Rowe et al.
(2015), incorporates options to simulate atmospheric PSFs from

5 github.com/LSSTDESC/psf-weather-station
6 bitbucket.org/phosim/phosim_release/wiki/Home

7 github.com/GalSim-developers/GalSim
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phase-screen exploiting the photon Monte Carlo approach from
Peterson et al. (2015).

To conclude, we have seen that it is possible to develop a physical
model of the atmosphere based on the optical understanding
that we have from Section2 and the studies of atmospheric
turbulence of Karman and Kolmogorov. However, this approach
has two inconveniences. Firstly, the approach requires physical
measurements of the atmosphere at the telescope’s site, which is
not always available. Secondly, it is computationally expensive, as
there is an altitude and a temporal integration to handle varying
atmospherical properties and reach the exposure time, respectively.
In practice, it is required to use long exposure times to obtain deeper
observations, i.e., observing fainter objects that are important for
weak-lensing studies. This fact simplifies the PSF modelling task
as the long temporal integration smooths the PSF profile and PSF
spatial variations over the FOV. Therefore, a data-driven approach
to modelling the PSF can offer a feasible and effective solution in
this scenario.

4.6 Adaptive optics

An alternative approach to work with ground-based
observations affected by the atmosphere is to use adaptive optics
(AO) systems (Beckers, 1993). This technology significantly
improves the observation resolution in ground-based telescopes
that is severely limited due to the atmosphere, as we have seen
in Section 4.5. An AO system tries to counteract the effect of
the atmosphere on the incoming wavefront by changing the
shape of a deformable mirror. The key components of the AO
system are wavefront sensors (WES), wavefront reconstruction
techniques, and deformable mirrors, which operate together inside
a control loop. The WES provides information about the incoming
wavefront and usually incorporates a phase-sensitive device. The

wavefront reconstruction has to compute a correction vector for
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the deformable mirrors by estimating the incoming wavefront
from the WEFS information. The control loop works in real-time
sensing and modifies the deformable mirrors so that the wavefront
received by the underlying instrument is free from optical path
differences introduced by the atmosphere. Davies and Kasper (2012)
have provided a detailed review of the AO systems for astronomy.
The LSST that carries out weak-lensing studies contains an AO
system (Angeli et al., 2014; Neill et al., 2014; Thomas et al., 2016).
Exoplanet imaging studies have greatly benefited from AO systems
and impose strict requirements for these systems. Some examples
are the SPHERE instrument in the VLT (Beuzi et al., 2019) and the
Gemini Planet Imager (Graham et al., 2007; Macintosh et al., 2014;
Macintosh et al., 2018) in the Gemini South Telescope.

5 Current PSF models

Let us now discuss some of the most known PSF models,
which can be divided into two main families, parametric and non-
parametric, also known as data-driven.

5.1 Parametric PSF models

This family of PSF models is characterised by trying to build a
physical optical system model that aims to be as close as possible to
the telescope. Once the physical model is defined, a few parameters
are estimated using star observations. Such an estimation, also
called calibration, is required as some events, like launch vibrations,
ice contaminations, and thermal variations, introduce significant
variations in the model. These events prevent a complete on-ground
characterisation from being a successful model. Parametric models
are capable of handling chromatic variations of the PSF as well
as complex detector effects. Nevertheless, parametric models have
only been developed for space missions and are custom-made for
a specific telescope. The parametric model is compelling if the
proposed PSF model matches the underlying PSF field. However, if
there are mismatches between both models, significant errors can
arise due to the rigidity of the parametric models. The difficulty of
building a physical model for the atmosphere, already discussed in
Section 4.5, makes them impractical for ground-based telescopes.

The parametric model Tiny Tim® (Krist, 1993; Krist, 1995;
Krist et al., 2011) has been used to model the PSF of the different
instruments on board the HST. The Advanced Camera for Surveys
(ACS) in the HST was used to image the Cosmic Evolution
Survey (COSMOS), which covers a 2 — deg? field that was used to
create a widely used space-based weak-lensing catalogue. The first
WL shape catalogue used the Tiny Tim model (Leauthaud et al.,
2007). Rhodes et al. (2007) studied the stability of the HST’s PSE,
noticing a temporal change of focus in the images. In addition
to the parametric Tiny Tim model, Anderson and King (2000)
developed the concept of effective PSF, which is the continuous
PSF arriving at the detectors, i.e., Equation 35, convolved with
the pixel-response function of the detector. They proposed an
algorithm to model the effective PSF iteratively from observed

8 github.com/spacetelescope/tinytim
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stars and continued the work on the effective PSE, adding some
improvements and detailed a model for the HST instruments ACS
and Wide Field Camera (WFC). Hoffmann and Anderson (2017)
then carried out a comparison between Tiny Tim and the effective
PSF approach for ACS/WEFC. The study showed that the effective PSF
approach consistently outperforms the Tiny Tim PSFs, exposing the
limitations of parametric modelling. Anderson (2016) describes the
adoption of the effective PSF approach applied to Wide Field Camera
3 (WEC3/IR) observations, which are undersampled. The software
Photutils’ (Bradley et al, 2022) provides an implementation of
the effective PSF approach from Anderson and King (2000) with
enhancements from Anderson (2016). Schrabback, T. et al. (2010)
used a data-driven PSF model based on PCA when studying the
COSMOS field.

The early severe aberrations of HST’s optical system were an
important driver of phase-retrieval algorithms. Several efforts to
characterise HST were published in an Applied Optics special issue
(Breckinridge and Wood, 1993). Solving the phase-retrieval problem
provides a reliable approach to characterise the optical system
accurately. Fienup (1993) studied new phase-retrieval algorithms
and Fienup etal. (1993) presented several results characterising
HST’s PSE.

Regarding recently launched space telescopes, Euclid’s VIS
parametric model constitutes the primary approach for Euclid’s
PSF modelling. The model will soon be published and used to
work with observations from Euclid. JWST has a Python-based
simulating toolKkit, WebbPSF!® (Perrin et al., 2012, 2014). Recent
works have developed and compared data-driven PSF models for
JWST’s NIRCam (Nardiello et al., 2022; Zhuang and Shen, 2023).

5.2 Data-driven (or non-parametric) PSF
models

The data-driven PSF models, also known as non-parametric,
only rely on the observed stars to build the model in pixel space.
They are blind to most of the physics of the inverse problem.
These models assume regularity in the spatial variation of the PSF
field across the FOV and usually differ in how they exploit this
regularity. Data-driven models can easily adapt to the current state
of the optical system. However, they have difficulties modelling
complex PSF shapes occurring in diffraction-limited settings. One
limitation shared by all the data-driven models is their sensitivity
to the available number of stars to constrain their estimation. A
low star number implies that there might be not enough stars
to sample the spatial variation of the PSE. When the number of
stars in an FOV falls below some threshold, the model built is
usually considered unusable for WL purposes. This family of models
has been widely used for modelling ground-based telescope PSFs.
Nevertheless, they are not yet capable of successfully modelling
the chromatic variations in addition to the spatial variations and
super-resolution.

We proceed by describing several PSF models in chronological
order. The first models, described in more detail, were used

9 github.com/astropy/photutils
10 github.com/spacetelescope/webbpsf
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to process real data from different surveys, except for Resolved
2016). The latter models are
worth mentioning but have yet to be used to produce a WL shape

Component Analysis (Ngole et al.,
catalogue with all the validation and testing it implies.

5.2.1 Shape interpolation

The first approach for PSF modelling consisted of estimating
some parameters of the PSF at the positions of interest. It was
done for early studies in WL and is closely related to the widely
employed galaxy shape measurement method KSB (Kaiser et al.,
1995). This precursor method only required the PSF’s ellipticity
and size at the positions of the galaxies. Therefore, a full-pixel
image of the PSF was unnecessary. Then, the KSB method can
correct the galaxy shape measurement for the effects of the PSE. The
method to interpolate the shape parameters to other positions is
usually a polynomial interpolation. For example, this was the case
for the early WL study of Canada-France-Hawaii Telescope Legacy
Survey (CFHTLS) (Fu, L. et al., 2008). Gentile et al. (2013) reviewed
the different interpolation methods and studied their performance
for WL studies. Viola etal. (2011) performed a study showcasing
1995) method.
These biases are a consequence of problematic KSB assumptions:
1) KSB gives a shear estimate per individual image and then takes

different biases present in the KSB (Kaiser et al.,

an average, while WL shear should be estimated from averaged
galaxy images; 2) KSB works under the assumption that galaxy
ellipticities are small, but in the context of weak lensing, what is
considered ‘small’ pertains to the alteration in ellipticity caused by
the shear; and 3) KSB gives an approximate PSF correction that
only holds in the limit of circular sources and does not invert the
convolution with the PSE Recent WL studies no longer use this
approach. The WL studies have evolved to more sophisticated galaxy
shape measurement techniques that require a full pixel image of the
PSF at the position of galaxies.

5.2.2 Principal component analysis

The principal component analysis is a widely known method
for multivariate data analysis and dimensionality reduction. Let us
start with a set of star observations in R”" that we concatenate in a
matrix I = [I},...,I,]. We have flattened the 2D images into an array
to simplify expressions. One would like to represent the observations
with r components {X;}7_ in R, where r > n, assuming that p > .
The PCA method gives r orthonormal components in R which
define directions in the RY’ space where the variance of the data set
I is maximized.

If n components are used to represent the observations, then
the learned components in the PCA procedure represent a basis
of the subspace spanned by the observations or the columns of
I. The method can be interpreted as a linear transformation to a
new representation with orthogonal components. As it is usual to
observe regularity in the spatial variations of the PSE, most of the
data set variability can be described with a few components. Then,
one can only use the first r principal components and achieve a
dimensionality reduction of the observations. The dimensionality
reduction technique allows denoising the model as the observational
noise cannot be represented with » components and only the PSF
trends are well described.

The PCA method was used to model the PSF for the

SDSS (Lupton et al., 2001), although it was referenced as the
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Karhunen-Loeve transform. Jarvis and Jain (2004) then proposed
its use in a WL context. Jee et al. (2007) used the PCA to model the
spatial and temporal variations of the HST PSF. Jee and Tyson (2011)
also used the PCA to model the PSF in LSST simulations. HST’s
COSMOS catalogue (Schrabback, T. et al., 2010) used the PCA to
model the PSE The PCA showcased the utility and robustness
of data-driven methods and the importance of using a pixel
representation of the PSF and is the precursor of several of the
following models.

5.2.3 PSFEx

PSFEx'! (Bertin, 2011) has been widely used in astronomy for
weak-lensing surveys, e.g., DES year 1 (Zuntzetal., 2018), HSC
(Mandelbaum et al., 2017), and CFIS (Guinot et al., 2022). It was
designed to work together with the SExtractor (Bertin and Arnouts,
1996) software which builds catalogues from astronomical images
and measures several properties of the observed stars. The PSFEx
models the variability of the PSF in the FOV as a function of these
measured properties. It builds independent models for each CCD
in the focal plane and works with polychromatic observations. It
cannot model the chromatic variations of the PSF field. The model is
based on a matrix factorisation scheme, where one matrix represents
the PSF features and the other matrix represents the feature weights.
Each observed PSF is represented as a linear combination of PSF
features. The feature weights are defined as a polynomial law of
the selected measured properties. This choice allows having an
easy interpolation framework for target positions. In practice, the
properties that are generally used are both components of the PSF’s
FOV position. The PSF features are shared by all the observed PSFs
and are learnt in an optimisation problem. The PSF reconstruction

at a FOV position (u;,v;) can be written as

T CRITRAED S

Z upvl M(uv +8,(@,7) ¢, (44)

pq20
ptqsd

HPS5(,7u,,v,)

where JPSFEX
star,(+|u;,v;)

star I('Iu,,V,)’ S, represents the learned PSF features or
eigenPSFs, S, € ]RP P represents the first guess of the PSE the
polynomial law is defined to be of degree d, and F**"™ represents

€ RP*P is the PSFEx reconstruction of the observed
IRPXP

the degradations required to match the model with the observations.
The model’s PSF reconstruction is represented by HPSEX, The
first guess can be computed as a function of the median of all
the observations. The dimensions p and P are the same if no
downsampling operation is included in F*SFF%,

The PSF features are learnt in an optimisation problem that aims
to minimise the reconstruction error between the PSFEx model and

observations, which are given by

T 7PSFEx 2
. "iobs I(‘|“i"’i) Istar (lupv;) 2
min 3 Z 1774 Spall:
N i=1 i
P4

Vp,g=0,p+g<d
(45)

11 github.com/astromatic/psfex
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where 3 represents the estimated per-pixel variances, I represents
the noisy observations, and | - || the Frobenius norm of a matrix.
The second term in Eq. 45 corresponds to a Tikhonov regularisation,
where T, represents some regularisation weights to favour
smoother PSF models. The PSF recovery at target positions is
straightforward. One has to introduce new positions in Eq. 44 after
learning the PSF features S, ;. The recovery at a new FOV position
(uj,v;) is simply given by

FPSFEX (o o _ q o _
H (u,v|uj, vj) = Z uf v; Spq (@, 7) + Sy (@1, 7) (46)
P40
p+q<d
where H"FE* is the model’s PSF reconstruction, and S, and S, are

learnt during the training procedure.

5.2.4 Resolved component analysis

The resolved component analysis (RCA)'? (Ngolé et al., 2016)
is a state-of-the-art data-driven method designed for the space-
based Euclid mission (Schmitz et al., 2020). The model builds an
independent model for each CCD, can handle super-resolution, and,
like the PSFEX, is based on a matrix factorisation scheme. However,
there are three fundamental changes with respect to the PSFEx. The
first difference is that, in RCA, the feature weights are defined as
a further matrix factorisation and are also learnt from the data.
The feature weights are constrained to be part of a dictionary®
built with different spatial variations based on the harmonics of
a fully connected undirected weighted graph. The graph is built
using the star positions as the nodes and a function of the inverse
distance between the stars to define the edge weights. The rationale
of the graph-harmonics dictionary is to capture localised spatial
variations of the PSF that occur in space-based missions exploiting
the irregular structure of the star positions. The RCA reconstruction
of an observed star is then

IRCA

wor (@, Pluyv;) = FRCA {I:IRCA (@, vlu;, vi)} , where

N,

comp

A (@, 7w, v,) = Y S, (@,7) Aln,i]
r=1

N,

comp

= S (a,7) (aV7") 1], (47)
>, (aV")
r=1

where IR¢A
star,(-|u;,v;)

of the RCA, which includes downsampling, intra-pixel shifts, among

€ RPP, FR°A corresponds to the degradation model

others, S, € RPPxDp corresponds to the data-driven feature, i.e.,

eigenPSE, r from a total of N, features, D is the upsampling

om|]
factor in case a super-resolution ssep is required, and A [r,i] is the
rth feature weight of the ith star. The feature weight matrix A is
decomposed into a sparse matrix « and a dictionary matrix V' of
graph-based spatial variations; for more information, see Ngole et al.
(2016).

To regularise the inverse problem, the RCA enforces a low-rank

solution by fixing N_,..,, @ positivity constraint on the modelled

omp
PSE, a denoising strategy based on a sparsity constraint in the starlet

(Starck et al., 2015) domain, which is a wavelet representation basis,

12 github.com/CosmoStat/rca

13 In the signal processing community, a dictionary is a collection of templates,

or basic elements, used to decompose a signal.
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and a constraint to learn the useful spatial variations from the
graph-harmonics-based dictionary. The optimisation problem that
the RCA method targets is

1
E
Ncomp

+ Z lw,© ®S,||; + 1, (Hﬁ\iévi)) +1g (oc)]» s.t.

r=1

Mobs

)

i=1

min
Spo0tye

T(.|,4Pv[) - FRCA {H?l(fv,)} H;

N,

comp
ARCA =

S, (aV") [r,i], (48)
i

=
where w, is the weight, @ represents a transformation allowing
the eigenPSFs to have a sparse representation, e.g., a wavelet
transformation, ® denotes the Hadamard product, 1, is the indicator
function of the positive orthant, and 1, is the indicator function over
a set Q, which is defined as a set of sparse vectors and is used to
enforce sparsity on a.

The second difference with respect to PSFEx corresponds to the
regularisations used in the objective function from Eq. 48, which
ends up being non-convex due to matrix factorisation and non-
smooth due to the |||, constraint. The optimisation is solved
through a block coordinate descent, as it is a multi-convex problem,
and proximal optimisation algorithms that tackle the non-smooth
subproblems (Beck and Teboulle, 2009; Condat, 2013).

The third difference is handling the PSF recovery at a new
position (u,v;). The recovery is carried out by a radial basis function
(RBF) interpolation of the learned columns of the A matrix, issuing
a vector, ﬁj € RNeoms; for more details, see Schmitz et al. (2020). This
way, the spatial constraints encoded in the A matrix are preserved
when estimating the PSF at galaxy positions. The interpolated feature
weights a; can be introduced in the Eq. 47 formulation to generate
the PSF at the new j position.

The RCA model has yet to be used to generate a WL shape
catalogue from real observations. Liaudatetal. (2021a) showed
that the RCA is not robust enough to handle real ground-based
observations from CFIS as some CCDs exhibited significant errors
in the PSF shape.

5.2.5 Multi-CCD PSF model

The multi-CCD (MCCD)!* (Liaudat et al., 2021a) model is a
state-of-the-art data-driven method originally designed for the
ground-based CFIS from the CFHT. The MCCD can model the
full focal plane at once by incorporating the CCD mosaic geometry
into the PSF model. The MCCD model rationale is explained by the
limitations of other PSF models that build independent PSF models
for every CCD, e.g., RCA and PSFEx: 1) fundamentally limited in
the possible model complexity due to the lack of constraining power
of a reduced number of star observations, and 2) the difficulty of
modelling PSF spatial variations spanning the entire focal plane,
i.e., several CCDs, from independently modelled CCDs. The MCCD
overcomes these issues by building a PSF model containing two
types of variations: global and CCD-specific. Both variations are
modelled by a matrix factorisation approach, building over the
success of PSFEx and RCA. The global features are shared between
all CCDs, and the local CCD-specific features aim to provide

14  github.com/CosmoStat/mccd
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corrections for the global features. The feature weights are defined
as a combination of the polynomial variations from PSFEx and
the graph-based variations from RCA. The model’s optimisation
is more challenging than the previous models and is based on a
novel optimisation procedure based on iterative schemes involving
proximal algorithms (Parikh and Boyd, 2014).

The MCCD model has proven robust enough to handle real
observations from CFIS (Liaudat et al., 2021a), giving state-of-the-
art results. It has been incorporated into the recent ShapePipe shape
measurement pipeline (Farrens, S. et al., 2022) originally designed
to process the CFIS survey and generate a WL shape catalogue. The
first version of the shape catalogue (Guinot et al., 2022), spanning
1,700 deg?, from ShapePipe used PSFEx. However, the next version,
spanning ~3500 deg?, uses the MCCD PSF model and will be
released soon.

5.2.6 lensfit

The lensfit (Miller et al., 2007; Kitching et al., 2008; Miller et al.,
2013) refers to a Bayesian galaxy shape measurement method for
WL surveys. It also includes a data-driven PSF model that will
also be referenced as lensfit and is sparsely described throughout
the different publications involving the shape measurement
lensfit (Miller et al., 2013; Kuijken et al., 2015; Giblin et al., 2021).
This method has been used with real data to produce the WL
shape catalogues of CFHTLenS (Erben etal., 2013; Miller et al.,
2013), KiDS+VIKING-450 (Wright etal, 2019), KiDS-450
(Hildebrandt et al., 2016; Fenech Conti et al., 2017), KiDS-1000
(Giblin et al., 2021), and VOICE (Fu etal., 2018). However, the
code is not publicly available.

This PSF model differs from the previous ones. The PSFEx
and RCA learn some features or eigenPSFs that all the PSFs share.
The lensfit model is fitted on a pixel-by-pixel basis. Each pixel is
represented as a polynomial model of degree d of the FOV positions.
The lensfit model can use all the observations in one exposure,
i.e., it uses several CCDs at once. The model uses the low-order
polynomials, up to degree n_ < d, to be fitted independently for each
CCD, and the rest of the monomials are fitted using the observations
from all the CCDs. This multi-CCD modelling is a significant change
with respect to previous methods that built independent models for
each CCD. The total number of coefficients per pixel is given by
(49)

Neoei = = ((d+1)(d+2) + (Neep — 1) (1. +1) (. +2)),

N | —

where Ncp is the total number of CCDs in the camera, d represents
the degree of the polynomial varying in the full FOV, and n, is the
polynomial that is CCD-dependent. We can write the description of
the pixel (i, 7) of the PSF model for a FOV position (uj, vj) in CCD
k as follows:

rylensfit (- - _ q k q
R (i) = 3 vl at oo 2 4V bpgan
1,20 pa>n,

p+qsn, prqsd

(50)

where a is the coefficient specific of CCD k, pixel (i1, 7), and

k
(p»q)(i1,9)
polynomial (p,q) to be fitted to the observations. The coefficient
by, g),(,7 is shared by all the CCDs.

One thing to notice in this approach is that as the modelling

of the PSF is done pixel-by-pixel, then every observation should
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share the same pixel grid of the PSE There is no guarantee
that an observation will have its centroid aligned with the
chosen pixel grid. Therefore, the PSF model has to be aligned
with the observations. Other methods, like PSFEx and RCA,
interpolate the model to the observation’s centroids. However, lensfit
interpolates all the observations to the model’s pixel grid with a sinc
function interpolation which implies interpolating noisy images.
This procedure is described in Kuijken et al. (2015).

For the KiDS DR2 (Kuijken et al., 2015), the hyperparameters
used by lensfit are n.=1, d =3, and Ngcp = 32 (from the CFHT’s
OmegaCAM instrument), where the images used belong to a 32 x 32
pixel grid. When fitting the model’s parameters, each star is given
a weight that is a function of its SNR with the following empirical
formula

$

1
W= 5——s, (51)
" +50°

where s; is the measured SNR of the star i.

5.2.7 PSFs in full field-of-view

The PSFs in the full field-of-view (PIFF)'® (Jarvis et al., 2020)
is a recently developed PSF model that was used for the DES
year 3 WL shape catalogue (Gatti et al., 2021) replacing the PSFEx
that was used for the DES year 1 release. The PIFF model targets
the LSST survey. Some improvements of the PIFF with respect to
the PSFEx are the ability to use the full focal plane to build the
model and modelling the PSF in sky coordinates rather than pixel
coordinates. The PIFF offers a modular and user-friendly design
that will enable further improvements. The change of modelling
coordinates was motivated by the strong tree-ring detector effect
observed in the DES instrument, Dark Energy Camera, which
introduces astrometric distortions that are easier to correct in sky
coordinates. Pixel coordinates refer to the coordinates defined on
the pixel grid of the instrument. By contrast, sky coordinates refer to
the angles in the celestial sphere, known as right ascension (RA) and
declination (DEC). The geometric transformations that allow going
back and forth between the pixel and sky coordinates are known as
the World Coordinate System (WCS).

Being a modular PSF modelling code, the PIFF allows choosing
between different options for the PSF model and the interpolation
method. For example, the model can be an analytical profile like a
Gaussian, Moffat, or Kolmogorov profile, or a more general non-
parametric profile called PixelGrid. The interpolation method can be
a simple polynomial interpolation, a K-nearest neighbours method,
a Gaussian process (also known as Kriging), or a basis-function
polynomial interpolation. Let us clarify the difference between the
first and last mentioned interpolations. The simple polynomial
interpolation first fits the PSF model’s parameters p for each
observed star. Then, it fits the coeflicients of a polynomial of the
2D star positions that will later be used to interpolate. In the
basis-function polynomial interpolation, the position polynomial’s
interpolation coeflicients are fitted simultaneously with the model’s
parameters using all the available stars (from a single CCD or the
entire exposure). If this last option is used with the PixelGrid model,
it comes closer to the approaches of PSFEx and RCA without the

15 github.com/rmjarvis/Piff
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specific characteristics of each model. We have only mentioned
position polynomials, but, as in the PSFEx, the interpolation
polynomial can be built on any parameter of the PSE, e.g., a colour
parameter.

The current PIFF PSF model includes an outlier check after
the algorithm has converged. The outlier check is based on
the chi-squared, y?, pixel residual error between the model and
observations. The model implements an iterative refining approach
which means that after the model has converged, one (or more)
outlier star(s) is (are) removed from the observations. A new
iteration then starts with the model being recomputed. Although
this approach effectively removes outlier stars not representative of
the PSF (because they are binary stars or have some contamination),
it can be very computationally demanding. The computing time
increases linearly with the number of iterations used, which might
be problematic depending on the total area to analyse or the available
computing resources. For more details, we refer the readers to
Jarvis et al. (2020).

The DES year 3 shape catalogue (Gatti et al., 2021) uses the PIFF
model. The model is a PixelGrid with the basis-function polynomial
interpolation using a third-order polynomial. Even if the PIFF has
the potential to build a model across several CCD chips, in practice,
each model is built independently for each CCD.

5.2.8 WaveDiff and differentiable optics
approaches

The WaveDiff'® (Liaudat et al., 2023, 2021b) PSF model was
recently developed targeting space telescopes, in particular the
Euclid mission (Laureijs etal., 2011). The WaveDiff proposes a
paradigm shift for data-driven PSF modelling. Instead of building
a data-driven model of the PSF in the pixel space as the
previous models, the WaveDiff builds its model in the wavefront
error (WFE) space. This change relies on a differentiable optical
forward model that allows propagating the wavefront from the
pupil plane to the focal plane and then computing the pixel
PSE The model is based on two components: a parametric
WFE and a data-driven WFE. The parametric WFE can be
based on optical simulations, characterisations of the optical
system, or complementary measurements such as phase diversity
observations. The parametric part should aim to model very
complex dependencies that cannot be inferred from the degraded
star observations. Liaudat et al. (2023) propose a parametric model
built using fixed features, namely, the Zernike polynomials (Noll,
1976). For several reasons, the obtained parametric WFE model
often cannot accurately represent the observed PSE e.g., the
telescope changes over time, there are errors in the built parametric
model, and relevant effects are not considered or neglected.
Consequently, the data-driven WFE should be capable of correcting
the aforementioned mismatches. This data-driven part is based on
a matrix factorisation with spatial variations inspired by PSFEx and
RCA. 1t is crucial to model smooth variations that have a reliable
generalisation of the PSF to different positions in the FOV. An
overview of the model is presented in Figure 13.

Estimating the model’s parameters in the WFE space is a
challenging, ill-posed inverse problem known as phase retrieval

16 github.com/CosmoStat/wf-psf
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(Fienup, 1993; Fienup etal., 1993; Shechtman etal., 2015), i.e.,
estimating a complex signal from intensity-only observations. The
optimisation problem is non-convex and non-smooth, the star
observations are not very informative, and there is no guarantee
that the WFE models structure can represent the underlying
ground truth WFE. Liaudatetal. (2023) show that under the
aforementioned conditions, targeting the estimation of the ground
truth WFE is not the best option. The PSF model’s objective is to
have a good pixel representation of the PSE. It is, therefore, possible
to estimate a WFE manifold far away from the underlying WFE but
very close in the pixel space. The data-driven features, the basis of
the WFE manifold, are estimated with a stochastic gradient descent
method widely used for estimating neural network parameters.

The WaveDiff model can handle spatial variations, super-resolve
the PSE and model chromatic variations thanks to the WEFE
formulation and the optical forward model, which also considers
more general degradations as in Eq. 39. To the best of our knowledge
and at the time of writing, this is the only data-driven PSF model
that can cope with the spectral variations of the PSE. The WaveDift
shows a breakthrough in performance for data-driven PSF models
in a simplified Euclid-like setting (Liaudat et al., 2023). It is flexible
enough to be adapted to different space telescopes. The framework
proposed shows an exciting research direction for future data-driven
PSF modelling. The WaveDiff model has yet to be tested with real
space-telescope observations and has to incorporate detector-level
effects, which are more naturally modelled in pixel space. For more
details, we refer the readers to Liaudat et al. (2023) and Liaudat
(2022).

More general approaches based on differentiable optics have
been recently emerging, e.g., oLux'’ (Desdoigtsetal, 2023).
Approaches based on automatic differentiation can be useful not
only for modeling the PSF but also for designing apodizing phase
plate coronagraphs (Wong et al., 2021) and detector calibrations
(Desdoigts et al., 2023).

5.2.9 Other PSF models

o Shapelets: Refregier (2003) proposed a framework to analyse
images based on a series of localised basis functions of
different shapes named shapelets and images could then be
decomposed using these basis functions. Refregier and Bacon
(2003) continued the work to propose the shapelet framework
to be used for building shear estimates and modelling the PSE
The PSF modelling consists of decomposing the star images
in the shapelet basis and then performing an interpolation
of the coeflicients to positions of interest. Essentially, it is
an extension of the approach seen in shape interpolation.
Expressing the image in shapelet coefficients allows denoising
the star images and providing an easier framework for the
galaxy-PSF deconvolution. However, capturing all the PSF
structures in a finite expansion over analytical functions is not
always possible, leading to the loss of information. Massey and
Refregier (2005) extended the framework from Cartesian to
polar shapelets.

o Moffatlets and Gaussianlets: Li et al. (2016) proposed two other
series of basis functions to decompose the PSF named Moffatlets

17 github.com/LouisDesdoigts/dLux
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FIGURE 13

Overview of the WaveDiff approach to model the PSF with a differentiable optical forward model. Figure adapted from Liaudat et al. (2023)

and Gaussianlets. They compared the PSF reconstruction using
the aforementioned basis with a PCA-based method on LSST-
like images. Using analytical basis functions leads to more
denoised models, as expected. Nie et al. (2021a) continued the
approach and forced the principal components being learnt in
the PCA-like algorithm to be built using the Moffatlets basis.
This choice avoids the principal components of learning noise as
the Moffatlets basis avoids it. Both analyses lack a performance
benchmark with a reference PSF model like PSFEx. In addition,
the models’ performance is computed at the same position
as the observed stars, so the models’ generalisation to other
positions, a fundamental task of the PSF model, still needs to
be studied.

Fourier-based methods: Zhang (2007) proposed a Fourier-
based method for directly measuring the cosmic shear,
taking into account the PSE, which was further developed
in several publications (Zhang, 2011; Zhangetal, 2015;
Lu et al, 2017; Zhang et al., 2019). The method is based on the
quadrupole moments of the galaxy images (described in detail
in Section 7.2) but is measured in Fourier space. The handling
of the PSF is also done in Fourier space. Luetal. (2017)
explore different interpolation approaches for the PSF in the
aforementioned Fourier framework. The 2D power spectrum
of the observed PSFs is interpolated to target positions. The
interpolation is done pixel-by-pixel, and the best-performing
method is a well-parametrised polynomial interpolation. An
advantage of the Fourier interpolation is that the 2D power
spectrum is automatically centred in Fourier space, simplifying
the handling of images with intra-pixel shifts or, what is
the same, different centroids. Another Fourier-based shear
measurement method is Bayesian Fourier Domain (BFD)
(Bernstein and Armstrong, 2014; Bernstein et al., 2016) built on
the Bayesian formalism. However, it does not include a specific
PSF model.
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o Optimal transport (OT)-based methods: There exist two

approaches involving OT (Peyré and Cuturi, 2019) to tackle
the PSF modelling problem. Ngole and Starck (2017) proposed
to use Wasserstein barycenters as a nonlinear geometry-aware
interpolation procedure of a low-dimensional embedding
representation of the PSFs. Although elegant, the performance
of the approach does not seem to justify its computational
burden. In the comparison method, an RBF interpolation of
the principal components obtained through the PCA achieves
a similar performance. The performance of the PCA method
is better in terms of ellipticity but slightly worse in terms of
pixel error and PSF FWHM. Schmitz (2019) worked on a data-
driven PSF model based on the RCA that could model the
chromatic variations of the PSF through the use of Wasserstein
barycenters that were previously developed by Schmitz et al.
(2018). The OT-based PSF model named ARCA was compared
to the RCA. The comparison showed a lower pixel and size
error for ARCA, although the ellipticity error was similar or
better for RCA. This method assumes that the PSF’s chromatic
variation is smooth over all the passband. This assumption
holds if the only chromatic effect of the PSF is due to the
diffraction phenomena, which exhibits a smooth variation
with the 1/1 dependence in the WFE that has already been
presented in Eq. 35. However, if this is not the case and another
non-smooth chromatic variation is present, currently occurring
in Euclid (Venancio et al., 2016; Baron et al., 2022), there is no
straightforward way to adapt the ARCA model to account for
it.

Wavefront approach: Soulez et al. (2016) proposed to model the
propagation of light through the mirrors of the optical system.
The PSF modelling problem is recast into the phase-retrieval
problem. The article is a proof-of-concept as there are only
qualitative results, and many PSF modelling difficulties remain
unaddressed.
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o Exploit out-of-focus images: Some instruments, like the Dark
Energy Camera (DECam) (Flaugher et al., 2015), are equipped
with wavefront sensors that are helpful for focus, alignment,
and the adaptive optics system (AOS) (Roddier and Roddier,
1993; Roodman, 2010; Roodman, 2012). The LSST camera
(LSST Science Collaboration etal., 2009) is also equipped
with wavefront sensors (Manuel etal., 2010; Claver et al,,
2012; Xin et al., 2015; Xin et al., 2016). Roodman et al. (2014)
proposed to use the data from the wavefront sensors to
constrain the optical contribution of the PSE The work was
continued by Davis et al. (2016) who proposed a wavefront-
based PSF model for the DECam instrument using out-of-
focus observations. The PSF model was based on Zernike
polynomials fitted to out-of-focus stars, also called doughnuts,
that contain considerably more wavefront information than in-
focus stars. Then, a new fit is done for each exposure based on
the measured quadrupole moments of the in-focus star images.
It is not easy to understand at which point the quadrupole
moments constrain the proposed PSF model and at which
point it is the base physical wavefront measured from the out-
of-focus images that are the only parts driving the performance
of the model. Snyderetal. (2016) proposed using the AOS
measurements to characterise atmospheric turbulence in terms
of Zernike decomposition.

e Deep learning approaches: A model coined PSE-NET was
proposed by Jia et al. (2020a) and is based on two convolutional
neural networks (CNNs) trained jointly. One network
transforms high-resolution images into low-resolution images,
while the other does the opposite. The CNNG are trained in a
supervised way expecting that the first network will learn a PSF
manifold. However, it is unclear how the approach handles the
spatial variation of the PSE and it has not been tested for WL
purposes. Jia et al. (2020b) proposed another approach for PSF
modelling based on denoising auto-encoders, but the spatial
variation of the PSF remains untackled. Another approach
is followed by Herbel et al. (2018), where the PSF profile is
modelled by a parametric function consisting of a base profile
of two Moffat profiles and several parametrised distortions
to increase the expressivity. A CNN is trained in a supervised
manner to predict the parameters of the parametric profile from
a noisy star observation. The neural network provides a good
estimation of the parameters, but the spatial variation of the PSF
is, again, not addressed. Having a PSF model that can model the
observations is important. However, in PSF modelling for WL
analysis, a crucial part is to capture the spatial variations of the
PSF and that the model outputs the PSF at different positions
in the FOV.

6 Desirable properties of PSF models

In the previous section, we reviewed some of the most relevant
PSF models developed so far. After studying many models, we can
conclude on desirable PSF model properties. The PSF model should

(a) Have an accurate modelling of the PSF light profile. This
modelling is essential for any target task, as the light profile is
the convolutional kernel for a given position. The smoothness
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(d)
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and structure in the PSF profile are a consequence of the PSF
being the Fourier transform, in Fraunhofer’s approximation,
of a particular finite-length aperture that limits the frequency
content of the PSE. This frequency limitation prevents us from
having a Dirac distribution as a PSE, as it would require an
infinite frequency content to build it. One difficulty is in
accurately modelling the PSF’s wings or outer region, which
is often below the noise level. In ground-based telescopes, the
effect of the atmosphere can be interpreted as a low-pass filter
for the PSE, smoothing the PSF light profile.

Produce noiseless estimations of the PSE The presence of noise
in the PSF estimations is an issue for purely data-driven
models, which sometimes tend to overfit noisy observations.
Some regularisations have to be introduced in the PSF model
parameter optimisation to avoid producing noisy PSFs. A
seemingly straightforward solution to this problem is to rely
on PSF models based on fixed basis functions like shapelets
or Moffatlets. These models will always output denoise PSFs as
their basis functions cannot reproduce the noise. However, they
introduce modelling errors if they cannot accurately model the
observed PSF light profiles.

Capture the PSF field’s variations. It is often the case that a
good quality PSF is required at the position of a certain object
where no direct information about the PSF is available. The PSF
model first has to capture most of the relevant information from
the observations at other positions and wavelengths. Then,
the model exploits this information and predicts the PSF at
the required position and wavelength. The PSF model relies
upon its generalisation power as it has to exploit the PSF field
information from other positions.

Be capable of exploiting the structure of the PSF field variations.
This desired property is related to the previous point (c). An
exciting approach to obtain good generalisation power is to
learn the structure of the PSF field variations. This structure
is a consequence of the physical properties of the telescope’s
optical system. The following subsection provides a physical
understanding of the PSF field structure, which imposes a
certain smoothness to the variations. The spatial variations are
also structured due to the atmosphere if we study the PSF field
of a ground-based telescope. A data-driven PSF model should
use a low-complexity representation of the PSF field, which can
learn its structure and spatial variations.

Handle discontinuities of the PSF field. The CCD misalignments
are a source of discontinuity of the PSF’s spatial variations.
The PSF field is piece-wise continuous, and the borders
delimiting the discontinuity are well known as the geometry
of the focal plane is accurately known. A straightforward way
to handle the discontinuities is to model the PSF for each
CCD independently, e.g., PSFEx. Although this is simple to
implement, it limits the number of stars available to constrain
the PSF model. Another more difficult but potentially more
powerful approach is to build a PSF model for the entire
focal plane, accounting for the focal plane discontinuities, e.g.,
MCCD. Another source of discontinuity is segmented mirrors,
e.g., JWST’s hexagonal mirrors seen in Figure 9B.

Be robust to outliers and contaminations of the star sample.
Contaminations can come from the selection of stars, and the
fact that the objects classified as stars are good representations
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of the PSF and are not small galaxies or binary stars (Kuntzer
and Courbin, 2017). Outliers can come from imperfect image
preprocessing where detector effects, like CTI, have not been
adequately removed. In addition, the model should be robust
to different observation conditions such as spatial distributions
of the observed stars, SNRs, and the number of observed
stars.

Work appropriately with the target task. The PSF model can be
exploited differently according to the target task’s objective, e.g.,

(g)

estimating a deconvolved object or estimating some summary
statistic of the deconvolved image. The model should be
developed with the task in mind, as each task might be more
or less susceptible to different kinds of errors.
(h) Be fast. Upcoming surveys will be processing a vast amount
of observations. Consequently, they put significant pressure on
the computing time of PSF models as they have to cope with the
data intake. The requirements in terms of computing time can
drive many design choices in a PSF model, preventing the use

of costly physical simulations.

Once the PSF model has been developed with all the
aforementioned properties in mind, it is essential to validate the
model’s performance. The validation should ensure that the expected
performance of the model is achieved and helps to identify sources of
problems and provide directions for the improvement of the model.
In the next section, we give an overview of validation methods for
PSF models.

7 Validation of PSF models

The validation of PSF models is a challenging problem. To
derive a validation method, it would be necessary to quantify
the impact of PSF modelling errors on the final objective of
our analysis. We consider, as an example, a weak-lensing-based
cosmological analysis, where the objective is to derive constraints
on the parameter of the cosmological model under analysis. This
exercise is challenging, given the analysis’ complexity and the large
data volume. Nevertheless, with some simplifying assumptions, the
PSF modelling requirements were set for the Euclid mission as
shown in Section 7.3. In this analysis, some assumptions on the PSF
shape used do not always hold for the high complexity of the PSF in a
space-based mission like Euclid. Even though it is essential to derive
requirements for the PSF model, these do not give much information
on the nature of errors and possible problems that the PSF model
has. Therefore, it is necessary to derive different diagnoses or null
tests. Jarvis et al. (2016) proposed a set of null tests for the DES WL
shear catalogues Science Verification, which includes the PSF model
validation.

The most basic rule for any validation of the PSF models is
to separate the observations in the FOV into two data sets for
estimation and testing, i.e., validation, which could be 80{%} and
20{%}, respectively. The first one should be used to estimate the PSF
model. The second one should help validate its performance and not
be used in the PSF model estimation. This rule tests the PSF model’s
generalisation power to unseen positions in the FOV. Next, we will
describe the most used PSF diagnosis that will help us validate the
performance of the PSF models.
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7.1 Pixel-based metrics

The most straightforward diagnostic that we can think of is to
compute the pixel residual of our PSF model. Once trained, the
model is used to recover the PSF at test positions. We can then
compute the RMSE of the pixel reconstruction residuals. The PSF
model can ideally predict the observed test stars without error, and
the reconstruction residual would only contain the observational
noise. If we work with simulations, we can produce noiseless
stars for our testing set, and the RMSE will directly indicate the
pixel reconstruction error. Even though pixel-based metrics can
give insight into the PSF model performance, they are not easily
interpretable regarding scientific impact. Errors in the PSF core or
the PSF wings can impact the observed galaxy’s estimated shape
differently. With the existing methodology, it is difficult to translate a
pixel-based metric into a scientifically meaningful quantity in terms
of error propagation.

When working with real data, the PSF model’s validation
with pixel-based metrics becomes more complicated. The different
noise levels in the data can hide the pixel reconstruction error,
making it difficult to compare different PSF models or even assess
the performance of a single one. Liaudat et al. (2021a) proposed
pixel-based reconstruction metrics for real observations. Let us
denote with I,

star (@ V11 v;), Lo qer (i V], v;) € REP atest star and the
predicted PSFs, respectively, at the FOV position (u;,v;), where p* is
the total number of pixels in the image. To simplify the notation,
we write I(i, 9|u;,v;) = I;. In star images, most of the PSF flux is
concentrated in the centre of the square image, and the noise level
can be considered constant in the image. Therefore, we can mask the
image to only consider the central pixels within a given radius of R
pixels and compute the pixel RMSE of the masked images. We note
I =10 My the masked image, where M, € {0,1}"? is a binary mask
and © is the Hadamard or element-wise product. Let us define the o
value as

lP
Ly

i, =1

1/2
o) =otion)=(% Y a@or) . e
where p* is the number of unmasked pixels, and the sum is done on
the unmasked pixel values. The first pixel metric is Q, and is defined

as
1/2
QP] = (EI‘I‘Z - Orzloise) > (53)
where
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where the general noise standard deviation, o,

Hoise> 1S computed from

the pixels on the outer region of the test stars, i.e., I', which we define
asI' = I, © My, where My, is such that My + My = 1,
our estimated model, I, 4., from an observed star, I,,, should lead

to a residual map containing only noise if the model is perfect. The

Subtracting

probability of having our model correlated with the noise is minimal.
Therefore, the method with the smallest Qp] can be considered the
best from the Q, point of view.

The next two metrics, Q, and Q, , help quantify the model

. [ ~ 2 ~ 2
noise. Let us define o”, odeli = [0Uari = Inodel,)” = 0Ugar,) " 1,» where
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the operator [-], sets to zero negative values. Then, both metrics are
defined as follows:

02 v 1/4
( model,i QPZ) :
(55)

The Q,, metric represents the modelling error expectation for
a given star, and the QP3 metric indicates the fluctuation of the
modelling error. A perfect PSF model would give values close to zero
for the three metrics. We have assumed that there is no background
contamination in the observed test stars or that it has been removed.

7.1.1 Chromatic PSF models

Some applications or analyses require a chromatic PSF model,
and it is essential to validate the chromaticity of the PSF model.
This monochromatic validation means validating the PSF at every
single wavelength or validating the monochromatic PSF before it
is integrated into the instrument’s passband. A PSF model with a
good performance in reproducing the polychromatic stars does not
necessarily have a good monochromatic performance. Supposing
that is the case and even if the spectra of the different objects are
known in advance, the PSF errors will be more significant when
used with objects with considerably different spectra, e.g., galaxies.
Chromatic PSF models will generally be required if the observing
instrument has a wide passband, e.g., the Euclid’s VIS instrument
passband goes from 550 nm to 900 nm. The pixel RMSE can be
computed for monochromatic PSFs in the passband as done in
Liaudat et al. (2023). However, it is cumbersome to validate with real
data as we usually do not have access to the monochromatic PSFs
of the instrument under study. Consequently, the monochromatic
validation might only be possible with simulations.

7.2 Moment-based metrics

Weak gravitational lensing analyses are interested in measuring
the shape of galaxies as the measured ellipticity is an estimator of the
shear. Cosmologists have developed formulations to relate the PSF
errors, expressed in terms of shape and size metrics (Massey et al.,
2012), to the cosmological parameters of interest (Cropper et al.,
2013). Therefore, it seems natural to have diagnosis metrics based on
the ellipticity and size of the PSE. These metrics are determined using
the moments of the polychromatic observation I[u,v]. Following
Hirata and Seljak (2003), we redefine the image moments that we
will use in practice, which include a weight function as follows:

Jy I(@,9) w(it,v) dindv

<u>= , (56)

JT(a,v) w(it, ) diadp

Ji(a,f») (4= <p>) (= <v>) w(@ ) dadp

M,, =

, (57)
jf(a, P w (i, v) diadv

where y, v € {i1,7}, <u> denotes the mean of i, and w(@, ¥) is a weight
function that helps in noisy settings. The weight function is also
useful to compute the moments from diffraction-limited PSFs, e.g.,
an Airy profile, as they prevent the integral from diverging due to
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the wings of the PSE. Eq. 56 defines the first-order moments, while
Eq. 57 defines the second-order moments. The ellipticities, or shape
metrics, are defined as

(Mg = My;) +12Mg;

e=e, +ie, = , (58)
Mg + M,
where i is the imaginary unit, and the size metric is defined as
R?=T=M,, +M,, (59)

One widely used method to estimate these metrics is the
adaptive moment algorithm from GalSim’s HSM (Hirata and Seljak,
2003; Mandelbaum et al., 2005). The adaptive moment algorithm
measurement provides o as size, which relates to the aforementioned
size metric as R®>=20¢. The measurements are carried out
on well-resolved polychromatic images. If the observations are
undersampled, as is the case for Euclid, a super-resolution step
is required for the model. Gillis et al. (2020) proposed alternative
metrics, based on the image moments, that target the validation of
space-based PSFs with emphasis on the HST PSE

The measurements of the shape parameters based on the image
moments are susceptible to image noise. If we are working with real
data, we do not have access to ground truth images and are obliged
to work with noisy observations. Therefore, we have to average over
many objects in order to conclude from the different diagnostics. We
continue by presenting different moment-based metrics.

7.2.1 Shape RMSE

We start with a set of test stars and their corresponding PSF
estimations. Then, the most direct moment-based metric is to
compute the RMSE of the ellipticities and size residuals between
the observations and model prediction. However, this metric
could be more insightful as it does not provide any information
about the composition of the residuals and the estimation biases
involved.

7.2.2 meanShapes

A useful diagnostic is to compute the spatial distribution of the
ellipticities and size residuals, which we coin meanShapes. For an
example, see Figure 14. This diagnostic allows us to inspect if there
are spatial correlations in the shape and size residuals, indicating
that the PSF model is not capturing certain spatial variations
from the PSF field. In order to have a finely sampled distribution,
we have to average over many exposures, as the available stars
from a single exposure are not enough to observe patterns. The
shape measurements are also noisy, therefore averaging over many
exposures allows us to smooth out the residuals and observe
systematic modelling errors. In practice, we divide the focal plane
into several spatial bins, consider several exposures, and then the
value of each bin is built by averaging the residuals of all the stars
within that bin. A ground-based survey allows us to average the
ellipticity contribution of the atmosphere (Heymans et al., 2012),
as it can be considered a random field with a zero mean. Then,
the observed ellipticity distribution over the focal plane is due to
the telescope’s optical system that is consistent in every exposure.
It is also possible to plot the same spatial distribution but observe
the positions of the stars. Such a plot will help observe if there are
regions of stellar under-density that could eventually affect the PSF
model.
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FIGURE 14

(2022).

meanShapes plots showing the first component of the ellipticity of the PSF model (A) and of its residuals with the observed stars (B). The figure shows
the 40-CCD mosaic from the MegaCam instrument’s focal plane at the Canada—-France—Hawaii Telescope. Figure reproduced from Guinot et al.
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We have assumed that the ellipticities and sizes are good
descriptors, or summary statistics, of the PSF shape. If this is not
the case, the diagnostic could be extended with more accurate
descriptors.

7.2.3 p-statistics

Rowe (2010) proposed to compute the auto- and cross-
correlations of the ellipticities and their residuals as a diagnostic.
The diagnostic was then expanded by Jarvisetal. (2016) to a
combination of ellipticities, sizes, and residuals. The p-statistics
are helpful in identifying PSF modelling biases and detecting the
scales at which it most affects the weak-lensing analysis. Following
Jarvis et al. (2016), we define the p-statistics as follows:

p,(6) = <5€;3F (0") depse (0" + 0)>> (60)
P (0) = (epg (0) depse (6" +6)), (61)
. OR? SR?
p,(0) = <<ePSF2—PSF> Ch) (ePSF - > (CA +e)>, (62)
RPSF RPSF
* ’ SRIZ)SF !
Py (0) = 661)51: (0 ) €psp R2 (0 + 0) > (63)
PSF
* ' (SRIZ’SF l
ps(6) =  eps (0") | epse—— (6" +6) ), (64)
RPSF

where * denotes complex conjugation, @ and ' denote sky positions,
6 denotes the modulus of 0, and § denotes the residual error that
can be computed as Jepgp = epgp — €,y N case of PSF ellipticity.
Suppose that the ellipticities are random fields that are isotropic
and statistically homogenous. In such a case, we can compute
the correlation p(6,0') as p(|0—0'|) = p(6), using the modulus
0. This choice means that we are assuming translational and
rotational symmetry, a consequence of the cosmological principle.
We define several ¢ bins in a logarithmic scale, corresponding
to In6-Aln6/2 <In6; <In6+Aln6/2, where 0;=10,- 0| is the
distance between two objects at §; and ;. Consequently, the
correlation function at 6 can be computed using the following
unbiased estimator of p:

ijwiwje‘f *e]B
pO) = ————, (65)
iV
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where we are computing, as an example, the correlation of two
ellipticities e* and €®, and the weights depend on the SNR of the
ellipticity measurements. We carry out the weighted sum over the
pairs of objects within each bin.

The p-statistics are interesting as they can be propagated to
the shear two-point correlation function (2PCF) (Kilbinger, 2015),
which allows for studying the properties of the weak-lensing
convergence field. Following Jarvis et al. (2020), we include the PSF
errors into the shear 2PCF, making the p-statistics appear, and then
express the systematic error in the shear 2PCE

7.2.4 Other shape metrics

Another shape metric that gives insights into the performance of
the PSF model in a weak-lensing analysis is the PSF leakage o from
Jarvis et al. (2016). It is related to the linear modelling of the shear
bias and where it has been decomposed into a multiplicative bias and
an additive bias further decomposed into PSF-dependent (leakage)
and PSF-independent terms. The PSF leakage helps quantify how
the PSF affects the shear estimation through shape measurement. It
measures the leakage of the PSF shape to the galaxy shapes.

7.3 Weak lensing: PSF error propagation
and PSF requirements definition

The pioneers in the PSF error propagation for WL were Paulin-
Henriksson et al. (2008), followed by Massey etal. (2012). The
proposed framework is based on the second-order moments of the
images, i.e., complex ellipticity e and size R*. It expresses how the
PSE or some other effect, affects the observed ellipticity and size.
Let us consider the effect of the PSF on the unweighted moments
from Eqs 58, 59 where unweighted represents computing Eqs 56, 57
without the w weight function. Then, we obtain

R2
_ PSF B 2 _p2 2
€obs = €gal + 7R (ePSF egal) and R = Rgal + Rpgpr
PSF gal

(66)

where the subscript refers to the quantity measured to the

obs
observed galaxy, the subscript ,, refers to the intrinsic quantity of
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the galaxy, and pg refers to the quantity measured to the PSE. There
are intrinsic assumptions in Eq. 66, that the observational model is
1,

obs = 1ga1 * Hpgp> and that all the moments are well-defined. Then,

Eq. 66 can be rewritten to express the quantity of interest in weak
lensing, the intrinsic galaxy ellipticity, as follows:

2 2
€obs Ry, — epsr Rpgp

2 2
Robs - RPSF

e (67)

gal =
The error propagation consists of expanding the previous equation
in a first-order Taylor series with respect to the quantities of interest.
In this case, it will be the shape and size of the PSF, and the
propagation is given by

aegal

———8(Rpgp) +
9 (Rps)

where § refers to errors in the model with respect to the ground truth.

aegal

(68)
depsy

egal = egal + 86PSF>

It is straightforward to compute the partial derivatives in Eq. 68 from
Eq. 67. We then obtain the following expression:

~ 6 (RIZDSF) RIZDSF 6(R%)SF)
8gal = €gal (1 + I - RT&PSF + = epsp |- (69)
gal gal gal

The previous ellipticity estimator can be used to obtain a shear
estimator assuming that the intrinsic galaxy distribution has a zero
mean. The estimator can then be used in the linear shear bias
parametrization from Jarvis etal. (2016). At this point, we can
express the additive and multiplicative biases as a function of the
elements from Eq. 69. This analysis shows us that the multiplicative
bias is related to the size of the PSF with its estimation error and the
size of the galaxy. The result is as expected if we pay attention to the
first term of Eq. 69.

This framework allows us to consider different types of errors.
Massey et al. (2012) use it to include errors due to non-convolutional
detector effects, imperfect shape measurement, and the fact that the
shape measurement method used weighted, i.e., Eq. 57, instead of
unweighted moments. The procedure consists of adding the desired
effect to the galaxy ellipticity expression, Eq. 67, and then adding
their corresponding partial derivatives to the Taylor expansion
seen in Eq. 68. Cropper etal. (2013) use this formalism to derive
requirements for a WL mission in space. The aforementioned
framework was used to derive the current PSF model requirements
for the Euclid space mission (Laureijs et al., 2011).

The previous formalism is based on unweighted moments.
However, in practice, the moments are always computed from
noisy images using a compact weight function to ensure that
the measurement yields significant results. Melchior et al. (2011)
and Melchior and Viola (2012) showed that using a weight
function mixes the image’s moments. Consequently, the second-
order moments are affected by higher-order moments even in the
absence of noise, thus exposing the Paulin-Henriksson et al. (2008)
framework’s fundamental limitations. Schmitz et al. (2020) then
noted and verified empirically in an Euclid-like scenario that the
propagation is based on second-order moments of the PSE, which
do not accurately describe the shape of a space-based PSE. A perfect
second-order moment estimation of the PSF would have a zero
shear bias contribution in the formalism described. However, the
PSF’s higher moments error (HME) will impact the shear biases
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and are not considered in the framework proposed by Paulin-
Henriksson et al. (2008). The higher the contribution of the HME to
the PSE the more significant the deviations are. A space mission like
Euclid will have a PSF close to the diffraction limit, i.e., its shape will
be complex and not well described by a Gaussian (or by its second-
order moments). As a space PSF is not well described by second-
order moments, the previous requirements should be used with
caution. The LSST collaboration, concerned with the previous issue,
studied the contribution to systematic biases of the HME of the PSF
model on the shear measurement (Zhang et al., 2021; Zhang et al.,
2022). Zhang et al. (2021) showed that the HME of the PSF model
might be a significant source of systematics in upcoming WL
analyses. Zhang et al. (2022) studied the impact of moments from
the third to sixth order on the cosmological parameter inference,
concluding that the HME of PSF models like PSFEx and PIFF should
be reduced for future surveys like LSST if the WL analysis is to
remain unchanged.

The use and adoption of automatic differentiable (Baydin et al.,
2017) models could make a significant contribution to error
propagation. The derivatives of the target estimators with respect
to the model’s parameters, or intermediate products with physical
meaning, would be available. This fact allows us to consider more
complex scenarios than the one seen in Eq. 66, as we would not
require explicitly writing the equations nor their derivatives. A
differentiable forward model should be enough to describe how the
PSF interacts with the target task.

8 Conclusion

This review gives an overview of point spread function (PSF)
modelling for astronomical telescopes, emphasising cosmological
analyses based on weak gravitational lensing. This application sets
the tightest constraints on the PSF models and has driven much
of the last progress in PSF models. The development of new
instruments and telescopes seeking higher precision and accuracy
requires more powerful PSF models to keep up with the reduction
of other sources of errors. We differentiate two scenarios that
fundamentally change how the PSF is modelled: the ground- and
space-based telescopes. The main difference is the atmosphere,
how it affects the observations, and how challenging it is to
build an atmospherical physical model that can be exploited in a
reasonable amount of time. The difficulty of handling the temporal
integration of a representative atmospherical model fosters the use of
purely data-driven PSF models built in the pixel space for ground-
based telescopes. The stability of space-based telescopes allows for
exploiting models more physically based on the wavefront.

The optics fundamentals to properly define the PSF and
understand its effect on the underlying imaged object are not often
introduced in PSF modelling articles. One of our goals was to solve
this issue by providing a concise yet comprehensive introduction
to optical principles. The provided optical background should
cover most of the available PSF models and motivate the general
observational model that we have proposed. This observational
model can be further simplified and adapted to different use cases,
which include ground or space telescopes. We described several
assumptions that might not always hold. After describing how
the PSF affects our observations, we presented an extended list
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of the leading optical- and detector-level contributors to the PSF
field. These contributors are the sources of PSFs spatial, spectral,
and temporal variations in addition to its morphology. A detailed
description of the atmospheric contribution based on phase screens
was presented. We then gave a brief description of the most relevant
PSF models.

The PSFEx model has been successful in modelling the PSF for
several surveys with its robust and fast implementation. However,
the next-generation telescopes set higher PSF requirements,
demanding novel models to achieve such performances. Recent
models target upcoming telescopes, e.g., the Vera C. Rubin
observatory and the Euclid telescope and Roman Space Telescope.
These models are continuously being developed, and they push
forward the capabilities of PSF modelling. A common bottleneck
for these is the computing time required to estimate the model from
observations. It is unclear if the solution can be achieved through
better software implementations that exploit parallel computing
architectures or better-performing programming languages. A
refactoring of the methods allowing for simplifications that
accelerate calculations might be required, or even both approaches.
One big challenge of PSF modelling is to build fast yet powerful
models.

Another challenge is to include complex effects and
contributions that cannot be directly constrained from the
observations into the PSF model. These contributions can be
modelled with simulations and obtained from complementary
this
complementary information will not precisely match the state of

observations or instrument characterisations. However,
the telescope during the imaging procedure due to several reasons,
e.g., changes in the telescope, measurement errors, and imperfect
modelling. The better way to correct this information and adapt it
to real observations has to be further studied.

The validation of PSF models from real observations is a
challenging subject that requires further development, as access to
the ground truth PSF field is unavailable. Although some validation
methods exist, they are generally not very informative or are based
on second-order moments that are not well-suited to describe
diffraction-limited PSFs. We have presented the error propagation
of a galaxy-shape measurement, where several limitations were
exposed. Current error propagation methods have simplifying
assumptions, e.g., the PSF is well described by its quadrupole
moments that do not hold anymore with recent and upcoming
telescopes. Further development of these methods is required
to define realistic PSF model requirements and study how PSF
modelling errors affect the target task.
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