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Exact solution to the problem of
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and its diagnostic applications
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Magnetoacoustic oscillations are nowadays routinely observed in various regions
of the solar corona. This allows them to be used as means of diagnosing plasma
parameters and processes occurring in it. Plasma diagnostics, in turn, requires
a sufficiently reliable MHD model to describe the wave evolution. In our paper,
we focus on obtaining the exact analytical solution to the problem of the linear
evolution of standing slow magnetoacoustic (MA) waves in coronal loops. Our
consideration of the properties of slow waves is conducted using the infinite
magnetic field assumption. The main contribution to the wave dynamics in this
assumption comes from such processes as thermal conduction, unspecified
coronal heating, and optically thin radiation cooling. In our consideration, the
wave periods are assumed to be short enough so that the thermalmisbalance has
a weak effect on them. Thus, the main non-adiabatic process affecting the wave
dynamics remains thermal conduction. The exact solution of the evolutionary
equation is obtained using the Fourier method. This means that it is possible
to trace the evolution of any harmonic of the initial perturbation, regardless
of whether it belongs to entropy or slow mode. We show that the fraction of
energy between entropy and slow mode is defined by the thermal conduction
and coronal loop parameters. It is shown for which parameters of coronal loops
it is reasonable to associate the full solution with a slow wave, and when it is
necessary to take into account the entropy wave. Furthermore, we obtain the
relationships for the phase shifts of various plasma parameters applicable to any
values of harmonic number and thermal condition coefficient. In particular, it
is shown that the phase shifts between density and temperature perturbations
for the second harmonic of the slow wave vary between π/2 to 0, but are larger
than for the fundamental harmonic. The obtained exact analytical solution could
be further applied to the interpretation of observations and results of numerical
modelling of slow MA waves in the corona.

KEYWORDS

solar corona, magnetoacoustic wave, slow wave, entropy wave, MHD, sun, exact
solution, thermal conduction

1 Introduction

Nowadays, the processes in the solar atmosphere are actively studied with spaceborne
and ground-based instruments. The accuracy of instruments has made it possible to detect
signals from individual structural elements of the solar atmosphere like coronal loops,
spicules, etc. The observed periodic or quasi-periodic signals can be readily associated with
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the magnetoacoustic (MA) waves evolving in these structures (see
Nakariakov and Kolotkov (2020) for a recent review). Developed
MHD theories and amount of observed events allow us to use
MA waves as a diagnostic tool for the coronal plasma, giving
birth to such a research field as coronal seismology. Speaking of
some applications, the observations of fast MA waves are used
for estimations of the density stratification (Andries et al., 2005),
corona loop parameters (Chen et al., 2015), etc. For the most recent
reviews, we refer the reader to the works of Nakariakov et al.
(2021); Li et al. (2020); Banerjee et al. (2021). In turn, the slow
MA waves are used to seismologically infer coronal temperature
(Marsh andWalsh, 2009), transport coefficients (Wang et al., 2015),
adiabatic index (Krishna Prasad et al., 2018),magnetic field strength
and local Alfvens speed (Jess et al., 2016; Cho et al., 2017), or
even to introduce some constraints on enigmatic coronal heating
function (Kolotkov et al., 2020). Prospects for the application of
slow waves for coronal plasma diagnostics are discussed in detail
in a recent review by Wang et al. (2021). The diagnostics of plasma
parameters requires a sufficiently reliable MHDmodel and accurate
observational data analysis. In this paper, we will be focused on the
former, i.e., developing an advanced exact analytical model of slow
waves in the corona.

The use of MA waves as a seismological tool involves taking
into account the primary processes, which determine the dispersion
properties of waves. For magnetoacoustic waves (fast and slow), it is
important to correctly take into account the influence of magnetic
structuring on wave properties. For such needs, one can apply the
classical approach from pioneering works by Zaitsev and Stepanov
(1975; 1982); Edwin and Roberts (1983), representing the coronal
loop as a straight plasma cylinder. Despite the generality of the
given description, this approach is quite complicated even under the
assumption of ideal adiabatic plasma. In this regard, to describeMA
waves, one often uses the thin flux tube approximation (Zhugzhda,
1996). This approach allows us to easily analytically show the wave-
guiding dispersion of slow waves, which, in particular, is manifested
as the variation of the slow-wave phase speed from the usual sound
speed for short periods to the so-called tube speed in the long
period limit. The latter speed is frequently used for the estimation
of loop magnetic field (Wang et al., 2007; Jess et al., 2016) and other
loop parameters. However, if the plasma β is sufficiently low, the
mentioned dispersion effect on slow waves becomes rather weak.
In this case, the modelling can be further simplified for the slow
waves propagating along the magnetic field lines. This approach
is known as an infinite magnetic field approximation (see, e.g.,
Zavershinskii et al. (2019); Kolotkov et al. (2019); Reale et al. (2018)
for details).

Thus, one may show that in a highly magnetized plasma,
the main dispersion sources for slow waves become thermal
conduction and non-adiabatic processes. It has been shown in
Zavershinskii et al. (2019); Kolotkov et al. (2019), using the infinite
magnetic field approximation, that the long-period limit of the
slow-wave phase velocity is highly affected by the coronal heating
and cooling rates. Moreover, this statement is valid for any plasma
β less than unity. It has been confirmed within the thin flux
tube approximation (Belov et al., 2021) and using slab geometry
(Agapova et al., 2022). Additionally, plasma heating/cooling can
lead to the amplification/attenuation of slow waves depending
on the form of non-adiabatic functions. The mentioned damping

can support the dissipation by thermal conduction and can be
used to introduce constraints for the coronal heating function
(Kolotkov et al., 2020; 2023). In turn, the amplification by non-
adiabatic processes may lead to suppressed damping or even the
growth of slow waves. Combination of dispersion effects and
amplification can lead to the formation of quasi-periodic patterns
(see Zavershinskii et al. (2019) for details). If the amplification is
not balanced by the thermal conduction damping, then it will be
limited by non-linear processes allowing autowave-shock structures
to exist (Chin et al., 2010; Zavershinskii et al., 2020; Molevich and
Riashchikov, 2021). In addition, non-adiabatic processes introduce
the phase-shift between perturbation of different parameters (e.g.,
temperature and density), which also depends on the form of
heat-loss functions (Zavershinskii et al., 2021). The problem of
heating/cooling influence on the phase shift of propagating slow
waves has been investigated by Prasad et al. (2021); Molevich et al.
(2022) and by Prasad et al. (2022) for standing modes. It should
be noted, that heating/cooling affects not only slow waves but
also entropy waves (Somov et al., 2007). The latter waves can be
amplified separately, with or without slow waves. The increase of
entropy waves is often considered as a possible trigger of coronal
rainAntolin (2020); Antolin and Froment (2022).More details about
the mixed properties of entropy and slow waves can be found in
Zavershinskii et al. (2021). The set of discussed effects is known as
a thermal misbalance effect, directly linked to the physics of thermal
instabilities traditionally considered in heliospheric and interstellar
plasma communities Field (1965).The recent review on the thermal
misbalance in application to the coronal plasma can be found in
Kolotkov et al. (2021). Special attention deserves a modern look at
the frequency-dependent damping of slow waves through the prism
of the thermal misbalance Kolotkov and Nakariakov (2022). It is
shown that the thermodynamic activity modifies the relationship
between the damping time and oscillation period, and it becomes
a non-power-law function.

The thermal conduction also leads to the dispersion of
the slow-wave phase velocity. In this case, the phase speed
tends to the isothermal sound speed in the short period limit.
The damping associated with thermal conduction also has a
dependence on the wave period, namely, the higher harmonics
decay faster. Furthermore, it also introduces the phase shift
between the perturbations of plasma parameters. In fact, damping
time and phase shifts can be expressed using the thermal
conductivity coefficient. Usually, this coefficient is taken equal
to the value proposed by Spitzer (Spitzer, 1965). However, a
series of studies by Ofman and Wang (2002); Wang et al. (2015);
Krishna Prasad et al. (2019); Ofman and Wang (2022) dedicated to
the seismological determination of plasma transport coefficients
propose the suppression of this coefficient. These seismological
estimations are based on the assumption that the observed
oscillation can be associated with the dynamics of the slow
wave and application of the relationship between the thermal
conduction coefficient and wave parameters. In order to analyze
the thermal conduction influence on the properties of slow
waves and obtain required relationships, one can apply some
simplifying approximations. In particular, the assumptions of
weak (Owen et al., 2009; Van Doorsselaere et al., 2011; Wang et al.,
2015; Krishna Prasad et al., 2018; Prasad et al., 2022) or strong
(Krishna Prasad et al., 2014; Duckenfield et al., 2021) impact of
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thermal conduction are frequently used for this purpose. However,
the results presented in Kolotkov (2022) show that by assuming
that the thermal conductivity satisfies the value proposed by Spitzer,
the dynamics of the fundamental slow-wave harmonic can be
described with neither strong nor weak thermal conductivity limits
(see Figure 2 in Kolotkov (2022) for details). In this case, the
general description without limitation on the thermal conduction
coefficient is required.The latter can be obtained using, for example,
the numerical solution of model equations. The current research
aims to contribute to the problem of coronal seismology by non-
adiabatic slow and entropy waves in coronal loops. In particular, we
aim to derive explicit analytical conditions under which observed
compression perturbations should be associated with the dynamics
of slow waves, entropy waves, or their linear superposition. For this
reason, we will obtain not a particular (for slow or entropy mode
separately), but a full exact solution (for a combination of slow and
entropy modes) to the evolutionary equation. Furthermore, using
the obtained solution, we will introduce some relationships between
the thermal conduction coefficient and wave parameters, which can
be applied to coronal seismology needs. Both these issues will be
conductedwithout setting any restriction on the thermal conduction
coefficient.

Our manuscript is organized in the following way. In Section 2,
we introduce the analyzed MHD model, discuss the made
assumptions, and indicate the main control parameter. Further, in
Section 3, we briefly demonstrate the methodology used to derive
the exact solution and show the difference between the cases of
only thermal misbalance and only thermal conduction effect on
wave dynamics. The description of the obtained exact solution
for perturbations of various plasma parameters can be found in
Section 4. We apply our theoretical results using the solar corona
parameters in Section 5. Finally, we summarize our results and
introduce the main conclusions in Section 6.

2 Model and basic equations

Further, we will analyze the linear evolution of slow MA and
entropy waves. We assume that waves propagate along magnetic
field lines and apply the infinite magnetic field approximation. The
compression viscosity is neglected. Thus, the evolutionary equation
has the form shown below (Zavershinskii et al., 2019):

∂3a1
∂t3
− c2S

∂3a1
∂t∂z2
= κ
ρ0CV
(

∂4a1
∂z2∂t2
− c2Si

∂4a1
∂z4
)− 1

τV
(
∂2a1
∂t2
− c2SQ

∂2a1
∂z2
).

(1)

Here, a means any variable (density ρ, temperature T, pressure
P, or velocity u) describing the state of plasma. Hereafter, index
“0” means the stationary value of the parameter, and index “1”
indicates that the quantity is of the first order of smallness (i.e.,
ρ1/ρ0 ∼ T1/T0 ∼ P1/P0 ∼ u1/cS ∼ ϵ≪ 1). The first term on the right-
hand side (RHS) describes the influence of the field-aligned thermal
conduction with the coefficient κ. In turn, the second term on
the RHS describes the effect of thermal misbalance on the wave
dynamics. The characteristic timescales of the misbalance can be
written as follows:

τV =
CV

(∂Q/∂T)ρ
, τP =

CP

(∂Q/∂T)ρ − (ρ0/T0) (∂Q/∂ρ)T
, (2)

where,CV andCP are specific heat capacities at constant volume and
pressure, respectively. The timescales τV, τP (τ2, τ1 in terms used in
Zavershinskii et al. (2019)) are written using the derivatives of heat
[H] and loss [L] function:

Q (ρ,T) = L (ρ,T) −H (ρ,T) . (3)

In Eq. 1, we also use characteristic speed:

cS = √
γkBT0

m
, cSi = √

kBT0

m
, cSQ = √

γQkBT0

m
, (4)

where kB is the Boltzmann constant,m is themean particlemass.The
standard adiabatic (with the adiabatic index γ = 5/3) and isothermal
sound speeds are cS and cSi, respectively. The speed cSQ is the
sound speed of wave propagation in the regime of strong thermal
misbalance, prescribed by effective polytropic index γQ = γτV/τP
(Heyvaerts, 1974; Molevich et al., 1988).

In the general case, when the characteristic timescales of the
thermal misbalance and thermal conduction are of the same order,
one has to solve Eq. 1 to give an exact description of the dynamics of
some arbitrary linear perturbation. In Zavershinskii et al. (2021), we
considered the case of strong thermal misbalance and weak thermal
conduction, i.e., neglected the first term on the RHS of Eq. 1 by
assuming that τV and τP are much shorter than the characteristic
time of thermal conduction. However, previous estimations of τV
and τP showed that they vary in the fairly broad range, from a
few minutes to a few hundred minutes, for typical combinations
of coronal plasma parameters (see, e.g., Kolotkov et al., 2020;
Figure 2). Hence, in the current study, the opposite problem is
addressed.Namely, we consider the case of weak thermalmisbalance
and strong impact of thermal conduction. In other words, we
will assume that the second term on the RHS of Eq. 1 can be
neglected.

Thus, governing evolutionary equation for slowMA and entropy
waves in the plasma with strong impact of thermal conduction
(strong in relation to thermal misbalance) can be written in the
following dimensionless form:

∂3ãj
∂ ̃t 3
− γ

∂3ãj
∂ ̃t∂ ̃z2
= d̃(

∂4ãj
∂ ̃t 2∂ ̃z2
−
∂4ãj
∂ ̃z4
). (5)

Here, we have introduced the dimensionless perturbation of
plasma parameter ãj. The index j defines the parameter under
study, i.e., it is used for symbols ρ,P,T, and u. In other words,
we use the following values [ãρ = ρ1/ρ0] for density perturbation,
[ãP = P1/P0] for pressure perturbation, [ãT = T1/T0] for temperature
perturbation, and [ãu = u1/cSi] for velocity perturbation.We also use
dimensionless coordinate [ ̃z = z/L], and time [ ̃t = t/tL, tL = cSi/L].
Here, L is the characteristic spatial scale.

Special attention should be paid to the dimensionless parameter
d̃:

d̃ = 1
τ̃cond
=

tL
τcond
, τcond =

L2CVρ0
κ
, (6)

which is the reciprocal dimensionless characteristic timescale τ̃cond
attributed to the thermal conduction. It can be seen that d̃ is themain
control parameter that determines the spatiotemporal evolution of
the perturbation. For clarity, we should mention that the timescale

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2023.1167781
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Zavershinskii et al. 10.3389/fspas.2023.1167781

τcond has a similar form as in De Moortel and Hood (2003). In turn,
the introduced d̃ is greater than value d in De Moortel and Hood
(2003) by γ3/2 times.

Further, we will obtain the exact solution of Eq. 5. In what
follows, we will work in dimensionless units, so the tilde sign above
the quantities will be omitted. The only exception will be made
for d̃, in order to distinguish it with respect to the differentiation
operation.

3 Behaviour of the individual Fourier
harmonics

In order to obtain the exact analytical solution for Eq. 5, we
will follow the approach we used before in (Zavershinskii et al.,
2021). According to this approach, we will search for the solution
for Eq. 5, using the Fourier method. In other words, we will use the
substitution a (z, t) = φ (z)ψ (t). It allows us to split Eq. 5 into two
equations. The first one is the equation describing the dependence
of the full solution on the coordinate, φ (z):

d2φ
dz2
+ k2φ = 0, (7)

This equation has to be solved using appropriate boundary
conditions. In the current research, we will use reflecting conditions
which, in general, allows for the formation of standing slow waves.
It means that one should apply Dirichlet boundary conditions
(φ (0) = φ (l) = 0) for velocity equation and Neumann boundary
conditions (dφ (0)/dz = dφ (l)/dz = 0) for density, pressure and
temperature equations. In both cases, we obtain the set of
eigenvalues k defined by the harmonic number n as:

k = πn
l
, n = 1,2,3, (8)

Here, l is the length of the medium normalised to the characteristic
length scale L. For definiteness, let us assume that L is the loop
length.

In turn, the equation describing the dependence of the full
solution on time ψ (t) can be written in the form shown below:

d3ψ
dt3
+ k2 (n) d̃

d2ψ
dt2
+ k2 (n)γ

dψ
dt
+ k4 (n) d̃ψ = 0. (9)

The solution to Eq. 9 can be found using the corresponding cubic
equation.This cubic equation can be obtained bywriting d/d t→ iω:

ω3 − ik2 (n) d̃ω2 − k2 (n)γω+ ik4 (n) d̃ = 0, (10)

The cubic equationwith complex coefficients (Eq. 10) coincideswith
the general dispersion relation for slow and entropy modes in the
plasma affected by thermal conduction only (see e.g., De Moortel
and Hood, 2003). Similar to the case of the thermal misbalance
influence only (Zavershinskii et al., 2021), one can consider the roots
of Eq. 10 as complex frequencies ω1,2,3 of entropy and slow MA
harmonics, which corresponds to real wavenumbers k.

To describe the roots, let us introduce the discriminant Δ of
Eq. 10:

Δ = −108(R3 +U2) , (11)

where R and U are real coefficients defined by wavenumbers and
characteristic dimensionless parameters of plasma:

R = k2
3γ− k2d̃2

9
, U = k4d̃

2k2d̃2 − 9 (γ− 3)
54

.

Thus, the roots of the dispersion relation (Eq. 10) according to
Cardano’s formula take the form shown below:

ω1 = i(−
k2d̃
3
+A+B),

ω2 =
A−B
2
√3− i(k

2d̃
3
+ A+B

2
),

ω3 = −
A−B
2
√3− i(k

2d̃
3
+ A+B

2
),

(12)

where

A =
3√−U+√−Δ/108, B = −R/A.

Analyzing Eq. 11 one can show that for any k and d̃ the
discriminant is negatively defined Δ < 0. This means that regardless
of plasma parameters, the dispersion relation (Eq. 10) always has
one purely imaginary root and two complex conjugate roots.

The purely imaginary root can be associated with the decrement
of the entropy mode harmonics:

ωEI = −
k2d̃
3
+A+B. (13)

In turn, the complex conjugate roots ω2,3 = ±ωAR − iωAI can be
associated with two oppositely propagating decaying slow waves.
The imaginary part ωAI (i.e., decrement of slow waves) and real part
ωAR are as follows:

ωAI =
k2d̃
3
+ A+B

2
, ωAR =

A−B
2
√3. (14)

This is significantly different from the case of misbalance only
considered by (Zavershinskii et al., 2021), in which the properties
of slow and entropy waves can be mixed. In other words, when
some harmonics of slow waves can become non-propagating and
evolve in a similar way to entropy mode harmonics. In the
plasma with the strong impact of thermal conduction, there is
no such possibility. The entropy modes are always decaying and
non-propagating and two slow waves are always propagating and
decaying.

4 Exact solution

As we have mentioned before, the solution for Eq. 5 can be
written as the sum of harmonics of entropy and slow modes. Let us
describe the solution for the case of Neumann reflecting boundary
conditions (i.e., for density, pressure, or temperature perturbations).
For definiteness, we will consider density perturbation. Then, the
solution for the nth harmonic can be written as follows:

aρn (z, t) =C1ρne
ωEIt ⁡cos (kz)

+C0ρneωAIt [cos(ωARt+ kz−ϕρn) + cos(ωARt− kz−ϕρn)] ,
(15)
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where

C0ρn =
√C2

2ρn +C
2
3ρn

2
, ϕρn = arctan(

C3ρn

C2ρn
). (16)

The first and second terms in Eq. 15 correspond to non-
propagating entropy-mode harmonic and two slow-mode
harmonics propagating in opposite directions. To define the
magnitudes of entropy-mode C1ρn and slow-mode C0ρn harmonics,
one has to solve the following set of linear equations,

(

1 1 0

ωEI −ωAI ωAR

ω2
EI (ω

2
AI −ω

2
AR) −2ωARωAI

)(

C1ρn

C2ρn

C3ρn

)=(

I1n
I2n
I3n

). (17)

The integrals in the right-hand side I1n, I2n, and I3n are prescribed by
the initial perturbation ρin (z,0) and the derivatives (∂ρ(z, t)/∂t)|t=0,
and (∂2ρ(z, t)/∂t2)|t=0 as

I1n =
2
l
∫
l

0
ρin (z,0)cos (kz)dz,

I2n =
2
l
∫
l

0

∂ρ (z, t)
∂t
|
t=0
⁡cos (kz)dz,

I3n =
2
l
∫
l

0

∂2ρ (z, t)
∂t2
|
t=0
⁡cos (kz)dz.

(18)

The non-oscillating and non-propagating background is defined by
the expression shown below:

aρ0 (z, t) = I10 =
1
l
∫
l

0
ρin (z,0)dz. (19)

To construct the exact solution of Eq. 5, one should apply the
superposition principle. This means, that the full compressive
perturbation can be described by the sum of non-oscillating
and non-propagating background (Kolotkov et al., 2023) and all
harmonics from n = 1 to infinity, using Eq. 15:

aρ (z, t) = aρ0 (z, t) +
∞

∑
n=1

aρn (z, t) . (20)

The solution for velocity perturbation, which requires Dirichlet
boundary condition, can be constructed in a similar way. There
are two main differences in solutions. First, the cosine function
in Eqs 15, 18 must be replaced by sine. Second, the background
is zero as we assume that the plasma under consideration is non-
propagating.

5 Applications of the exact solution

The obtained exact solution Eq. (20) has a number of
applications for analyzing the properties and evolution of
compression perturbations in plasma. As we have mentioned
previously, it allows us not only to follow the dynamics of
the full solution but also to monitor the evolution of the
eigenmodes that determine it. Moreover, we also can analyze
how any harmonics of slow and entropy modes evolve.
Further, in this section, we will apply the obtained exact
solution to illustrate some evolution ways of the localised
initial perturbation and discuss some results revealed by means
of it.

TABLE 1 Estimations of the characteristic timescale ̃τcond (Eq. 6) calculated
for typical coronal loop parameters taken from Reale (2014).

Type Length Temperature Density ̃τcond
[109cm] [MK] [109cm−3]

Bright Points 0.1–1 2 5 ∼0.3− 3

Active Region 1–10 3 1–10 ∼0.3− 27.6

Giant Arches 10–100 1–2 0.1–11 ∼2.6− 26.4

Flaring loops 1–10 > 10 > 50 ≳ 1.2

5.1 Spatio-temporal evolution of entropy
and slow MA modes

First, in order to analyze the spatio-temporal evolution, we have
to define the initial perturbation. In this work, we will follow the
way we applied in (Zavershinskii et al., 2021), to enable the reader
to compare results. In other words, we will consider some Gaussian
pulse, which perturbs plasma density, pressure, and temperature:

aρ,in (z,0) = Aρ ⁡exp[−(z− z0)
2/w] ,

aP,in (z,0) = AP ⁡exp[−(z− z0)
2/w] ,

aT,in (z,0) = aP,in (z,0) − aP,in (z,0) ,

au,in (z,0) = 0.

(21)

Here, Aρ and AP are dimensionless magnitudes of the density and
pressure variations; w and z0 are the effective width and position of
the perturbing pulse, respectively.

Secondly, the ranges of control parameters should be specified.
The main control parameter in this work is the characteristic
timescale attributed to the thermal conduction τcond or its reciprocal
d̃. To estimate the range of τcond, we use typical coronal loop
parameters from Table 1 of Reale (2014). Our estimations of
the characteristic timescale τcond calculated for various coronal
loop parameters are shown in Table 1. One may notice that the
timescale τcond also vary in the fairly broad range. The dimensional
characteristic time (Eq. 6), can be an order of magnitude or several
orders of magnitude greater or less than the characteristic travel
time of isothermal sound, even for loops belonging to the same
type. The latter applies to loops in active region and bright points.
Under coronal temperatures, the increase in characteristic thermal
conduction time is primarily determined by an increase in loop
length and density.

As we have mentioned above, in this manuscript, we would
like to draw attention to the fact, that in the solar corona,
the initiated compression perturbation should not always be
associated with the slow wave only. In the general case, the
initiated perturbation is polytropic. In other words, the ratio of
pressure and density magnitudes AP/Aρ is not necessarily equal
to γ = 5/3 like in the slow mode perturbation and depends on
the initiating mechanism. It is quite intuitive that the distribution
of energy between the entropy mode and slow modes should be
defined by the form and type of initial condition. To illustrate
this fact, we use the initial perturbation (Eq. 21) and consider
three different values 1.5,1 and 0.5 of ratio AP/Aρ. It can
be seen in Figure 1A that an increase in the difference with
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FIGURE 1
(A) Evolution of the initial Gaussian perturbation with width w = l/40 situated at z0= l/2. The characteristic time is set to τcond =25. The top, middle and
bottom rows correspond to the ratio of magnitudes AP/Aρ equals 1.5,1 and 0.5, respectively. Left, middle, and right columns indicate the solutions at
t =0, t =0.15, and t =0.3 of the computational time, respectively. The black solid line corresponds to the full solution (sum of solutions for one entropy
and two slow MA modes). The red and blue dashed lines indicate the sum of two slow MA modes and one entropy mode, respectively. The green
dashed line corresponds to the non-oscillating and non-propagating background. (B) Evolution of the initial Gaussian perturbation with width w = l/40
situated at z0= l/2. The characteristic time is set to τcond =1. Calculations are made for the ratio of magnitudes AP/Aρ equal to 1.

respect to γ = 5/3 (i.e., decrease in the perturbation adiabaticity)
increases the contribution of the entropy mode to the full solution
(blue lines). One may also notice the asymmetry of slow mode
perturbation growing in time, this is a result of slow wave dispersion
caused by thermal conduction. Longer harmonics propagate
faster towards the long wavelength limit cS (adiabatic sound
speed) than shorter harmonics tending to cSi (isothermal sound
speed) (Eq. 4).

However, our analysis also revealed a very interesting result,
namely, that the distribution of energy between modes depends on

the value of thermal conduction and the coronal loop parameters
(i.e., on τcond). We show the temporal evolution of Gaussian pulse in
the plasmawith low τcond in Figure 1. For illustration, we choose the
isothermal initial condition (AP/Aρ = 1). The calculations revealed
that in the plasma with low τcond, the initiating mechanism becomes
insignificant and the full solution is defined primarily by the slow
mode.

In order to verify the obtained exact solutionEq. 20, we compare
it with the numerical solution of Eq. 5. The animation, which shows
the construction of an exact solution by summation of harmonics
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can be found in the Supplementary material. In practice, accounting
for the first ∼50 harmonics in Eq. 20 allows for the reproduction of
the considered full solution with sufficient accuracy.

5.2 Partition of energy between entropy
and slow MA modes

In this Section, we will discuss the issues, when taking into
consideration the influence of the entropy mode (even at the stage
of perturbation initialization) becomes highly important. In order
to answer this question, we aim to calculate the partition of the
total (i.e., integrated over all harmonics) initial energy between the
modes. For this purpose, we apply the formulation used before in
(Zavershinskii et al., 2021) and estimate the ratio of the total initial
energies gained by the entropy and slow MA modes, respectively,
from the initial Gaussian pulse as

R =
∞

∑
n=1

C2
1n/
∞

∑
n=1

4C2
0n =

Es
As
. (22)

In our calculations, we consider how the ratio R depends on
the characteristic timescale τcond and the type of initial perturbation,
defined by ratio AP/Aρ. The results of our estimations are shown
in Figure 2. One may notice the two main features, which have
been proposed using the analysis of the spatio-temporal evolution
of complete perturbation.

The first one concerns the relation between the initiation
mechanism of the original signal and the energy distribution. It is
seen from Figure 2, that the slow mode tends to be the dominant
part of the full solution, when the initial perturbation tends to be
adiabatic (AP/Aρ→ γ = 5/3). The closest to this condition shown
in Figure 2 is the orange curve, corresponding to AP/Aρ = 1.5. It is
seen, that for any τcond, the impact of entropy mode is negligible in
this case, for illustration we refer to previously shown results in the
top row in Figure 1A. The greater the difference of magnitude ratio
AP/Aρ fromvalue 1.66, the greater impact of entropymode in the full
solution. It can be seen using Figure 2 by comparing the behavior
of orange (AP/Aρ = 1.5) and green and red curves (AP/Aρ = 1 and

FIGURE 2
Dependence of the ratio R (Eq. 22) on dimensionless characteristic
timescale τcond (Eq. 6) calculated for different values magnitude ratio
AP/Aρ.

AP/Aρ = 2, respectively). For an illustration of this effect, we refer to
Figure 1A, namely, the middle and bottom rows.

The second feature concerns the relation between the energy
distribution and the characteristic timescale τcond. It is clearly seen
that the entropy mode becomes more important for the greater
value of τcond and that the dependence ofR on τcond is highly non-
linear. One can notice that for some initialization mechanisms, the
entropy mode can become not only comparable to the slow mode
but the dominant part of the full solution (see, for example, purple
and blue curves in Figure 2). For an illustration of the mentioned
feature, we recommend to compare the results in Figures 1A,B.
A similar sensitivity of the apparent entropy mode excitation to
both the perturbation type and characteristic value of thermal
conduction has been demonstrated numerically by Kolotkov
(2022).

Further, using the obtained results and estimations of
characteristic time τcond (see Table 1), we propose, when taking into
consideration the influence of the entropymode becomes important.
In particular, an analysis of the compression perturbations in the
bright points can be carried out under the assumption that the
perturbation is a slow wave with sufficiently high accuracy. The
same conclusion can be applied to the perturbation in rarefied
and short coronal loops in the active region, for giant arches and
flaring loops. In turn, in the longer and denser coronal loops, the
influence of the entropy mode becomes more and more significant
or even becomes the main feature of the perturbation evolution.
And one of these specific cases, will be discussed in the following
subsection.

5.3 Phase shifts

In this subsection, we introduce the expressions for phase shifts
between perturbations of various plasma parameters.

In order to derive the relationships for the phase shifts in the
slowmode,we derive the full exact solution for all considered plasma
parameters, namely, for density, temperature, pressuse and velocity
perturbation. Using obtained solutions, we introduce the phase
shift between temperature and density by calculating the following
difference:

ϕρT = ϕρn −ϕTn = arctan(
(ω2

AI +ω
2
AR) sin⁡2ϕρu

(ω2
AI +ω

2
AR)cos⁡2ϕρu + k

2). (23)

wheren is the harmonic number.Here, we use the following notation

ϕρu = ϕρn −ϕun = arctan(
−ωAR

ωAI
), (24)

which is the phase shift between density and velocity perturbation
in the slow wave. In order to estimate the phase shifts, the real ωAR
and imaginary ωAI parts of the slow wave frequencies have to be
calculated. For this purpose, one can use previously introduced
analytical expressions (Eq. 14) following from dispersion
relation (Eq. 10) or the numerical solution of the dispersion
relation (Eq. 10).

It should be noted that obtained relationships (Eq. 23) and
(Eq. 24) are valid not only for the fundamental harmonic but can
be applied for the estimation of the phase shift of any arbitrary
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FIGURE 3
The phase shifts ϕρT (Eq. 23) between density and temperature
perturbations as a function of dimensionless characteristic timescale
τcond (Eq. 6). The red, blue, and green colors are for the first
(fundamental), second, and third harmonic, respectively. The dashed
line indicates the dependence described by the expression for the
phase shift of fundamental harmonic obtained using assumptions of
the weak impact of thermal conduction (see, e.g., Owen et al., 2009).

harmonic. Since these expressions follow directly from the exact
solution, they also have no restrictions on the value of the thermal
conduction coefficient. Thus, the expressions (Eq. 23) and (Eq. 24)
are generalisations of the previously obtained relationship for the
fundamental harmonic (see, e.g., Wang et al., 2021; (Eq. 51)).

Let us analyze the dependence of the phase shift between
temperature and density perturbations for the first three harmonics
on characteristic timescale τcond. Our calculations are shown
in Figure 3. One can notice, that regardless of the number
of harmonics, the phase shift ϕρT (Eq. 23) tends to 90° as
τcond→ 0 and tends to 0° as τcond→∞. However, an increase
in the harmonic number leads to an increase in the phase shift
compared to the fundamental harmonic. Here, we also compare
our results with the well-known expression for the phase shift of
fundamental harmonic obtained using assumptions of the weak
impact of thermal conduction (see, e.g., (Owen et al., 2009)), which
is shown by the dashed curve in Figure 3 and can be written
as arctan(π/τcond√γ) using introduced dimensionless units. The
approximate solution works well in the area of its applicability,
however, with a strong effect of thermal conductivity, differences
appear.

For example, Kupriyanova et al. (2019) observed the event of
quasi-periodic pulsations (QPP) which has been associated with the
second harmonic of a standing slow MA wave in a flaring loop. The
oscillations with period p ≈ 74− 80 s have been detected in the loop
with length L ≈ 17− 22 Mm, temperature T ≈ 1.1− 1.6 MK. The
estimated plasma density is N ≈ 1.2− 1.5× 1011 cm−3 and assumed
magnetic field is B ≈ 100− 150 G.The phase shift observed between
temperature and density perturbations has been estimated to
equal ϕρT ≈ 180°. It follows, from the result shown in Figure 3,
that such a large value of the phase shift cannot be described
by the thermal conduction, even for the second harmonic
of a slow wave. However, for the given loop parameters the
estimated dimensionless characteristic timescale τcond ≈ 220 (Eq.
6). According to the results shown in Figure 2, this value of τcond
implies the significant impact of entropy mode in the perturbation
evolution. In this case, the observed compression perturbation

cannot be unambiguously associated with the slow mode. In other
words, the use of the expressions for slow mode phase shifts (Eq.
23) and (Eq. 24) for the interpretation of observations may not be
justified.

6 Summary and conclusion

The obtained exact solution (Eq. 20) presents the effect
of thermal conduction on the evolution of the compression
perturbation in the non-adiabatic plasma of the hot solar corona.
This solution gives us comprehensive information about the
spatio-temporal dynamics of some initiated variations of plasma
parameters.Moreover, it allows us not only to follow the dynamics of
the full solution but also to analyze the eigenmodes that determine
it, namely, entropy and slow mode. In particular, we can check
how justified the association of the observed oscillations with the
evolution of only slow waves is. Further, we summarise results,
which have been revealed using the exact solution obtained.

• The theory presented is developed for any values of
the characteristic timescale τcond associated with thermal
conduction. Thus, the performed quantitative analysis
extends the predictions made using assumptions of weak
(Owen et al., 2009; Van Doorsselaere et al., 2011; Wang et al.,
2015; Krishna Prasad et al., 2018; Prasad et al., 2022) or strong
(Krishna Prasad et al., 2014; Duckenfield et al., 2021) impact of
thermal conduction. It also generalises the phase-shift theory
constructed earlier with no constraints on thermal conduction
(see e.g., Wang et al., 2021) for the fundamental harmonic to
the case of an arbitrary harmonic number.
• Analyzing the behaviour of individual Fourier harmonic, we
solve the general dispersion relation (Eq. 10) for slow and
entropy modes in the plasma affected by thermal conduction
only (see e.g., De Moortel and Hood (2003). Our analysis of
its solution (Eq. 12) reveals that in contrast to the thermal
misbalance (Zavershinskii et al., 2021), the thermal conduction
gives no possibility for properties of entropy mode and slow
mode to be mixed. The slow waves are always propagating and
decaying and entropy modes are always decaying and non-
propagating for any value of thermal conduction and harmonic
number.
• In this manuscript, we analyze some possible evolution ways
of Gaussian compression perturbation (see Figures 1A, B). It
has been shown, that the energy fraction attributable to the
slow wave in the full solution can vary not only due to a
change in the initialization mechanism but also due to a change
in the characteristic timescale τcond attributed to the thermal
conduction and loop parameters. Our estimations of the ratio
of the total initial energies gained by the entropy and slow MA
modes in an initial Gaussian pulse are shown in Figure 2. In
order to propose for the oscillations in which coronal loops it
is important to take into account the entropy mode on a par
with the slow wave, we estimated the characteristic time τcond
for typical coronal loop parameters (Reale, 2014). It follows that
in the bright points, the compression perturbation is totally
defined by the slow mode only. However, for the long and
dense loops in the active region, flaring loops, and giant arches
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the entropy mode can become not only comparable but the
dominant part of perturbation.
• The obtained exact solution allows us to derive the expressions
(Eq. 23) and (Eq. 24) for the phase shifts between perturbations
of various plasma parameters, without limitation on the
harmonic number and thermal conduction impact. The phase
shift between temperature and density ϕρT (Eq. 23) calculated
for the first three harmonics and various values of characteristic
timescale τcond is shown in Figure 3. It is seen that for any
values of thermal conduction and harmonic number, the
phase shift is between 90° and 0°. Such a conclusion is in
agreement with the results obtained using assumptions of
the weak impact of thermal conduction for the fundamental
harmonic only (see e.g;, Owen et al., 2009). Using our analytical
results, we show that the approximate solution for ϕρT
works well in the area of its applicability, however, with
a strong effect of thermal conductivity, differences appear.
An increase in the harmonic number leads to an increase
in the phase shift compared to the fundamental harmonic.
Comparing our estimations of the second harmonic phase
shift and observations presented by Kupriyanova et al. (2019),
we should admit that the observed value ϕρT ≈ 180° are out
of range of values prescribed by thermal conduction effect.
However, our estimation of characteristic thermal conduction
timescale for the given loop parameters gives value τcond ≈ 220.
According to the results shown in Figure 2, this means that
observed compression perturbationmay not be unambiguously
associated with the slow mode.Thus, the use of the expressions
for slow mode phase shifts in their pure form (Eq. 23), and Eq.
24may not be justified.

As we have mentioned previously, the main limitation of the
conducted research is the neglecting of the thermal misbalance
effect. In our future work, we plan to consider the combined
effect of thermal conduction and thermal misbalance. In other
words, we are aiming for derivation of exact solution of Eq. 1.
The solution of such a general problem will improve the accuracy
of the determination coronal heating function using compression
perturbation. Nevertheless, in our opinion for the regions where the
effect of thermal misbalance is weak, the presented solution (Eq.
20) and expression following from it are a good help for coronal
seismology problems.
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