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The Space Weather Investigation Frontier (SWIFT) mission will aim at making
major discoveries on the three-dimensional structure and dynamics of
heliospheric structures that drive space weather. The focus will be on
Interplanetary Coronal Mass Ejections (ICMEs) that originate from massive
expulsions of plasma and magnetic flux from the solar corona. They cause
the largest geomagnetic storms and solar energetic particle events, threatening
to endanger life and disrupt technology on Earth and in space. A big
current problem, both regarding fundamental solar-terrestrial physics and
space weather, is that we do not yet understand spatial characteristics and
temporal evolution of ICMEs and that the existing remote-sensing and in-
situ observatories are not suited for resolving multi-layered and evolutionary
structures in these massive storm drivers. Here, we propose a groundbreaking
mission concept study using solar sail technology that, for the first time, will
make continuous, in-situ multi-point observations along the Sun-Earth line
beyond the Lagrange point L1 (sub-L1). This unique position, in combination
with L1 assets, will allow distinguishing between local and global processes,
spatial characteristics, temporal evolution, and particle energization mechanisms
related to ICMEs. In addition, measurements of the magnetic field in earthbound
ICMEs and their sub-structures from the SWIFT location will double the
current forecasting lead-times from L1. This concept also paves the way
for missions with increasingly longer forecasting lead-times, addressing NASA
and NOAA's space weather goals, as set forth by the Decadal Survey. The
objective of this communication is to inform the community of the ongoing
effort, including plans to further develop the mission concept, supported by
the Heliophysics Flight Opportunities Studies (HFOS) program under NASA's
Research Opportunities in Space and Earth Sciences (ROSES).
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SPACE WEATHER INVESTIGATION FRONTIER

(SWIFT)

To unravel the three-dimensional structures and dynamics of
extreme space weather phenomena
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The Space Weather Investigation Frontier (SWIFT) mission will aim at making
major discoveries on the three-dimensional structure and dynamics of
heliospheric structures that drive space weather. The focus will be on Interplanetary
Coronal Mass Ejections (ICMEs) that originate from massive expulsions of plasma and
magnetic flux from the solar corona. They cause the largest geomagnetic storms and
solar energetic particle events, threatening to endanger life and disrupt technology on
Earth and in space. A big current problem, both regarding fundamental solar-terrestrial
physics and space weather, is that we do not yet understand spatial characteristics and
temporal evolution of ICMEs and that the existing remote-sensing and in-situ
observatories are not suited for resolving multi-layered and evolutionary structures in
these massive storm drivers. Here, we propose a groundbreaking mission concept
study using solar sail technology that, for the first time, will make continuous, in-
situ multi-point observations along the Sun-Earth line beyond the Lagrange point
L1 (sub-L1). This unique position, in combination with L1 assets, will allow
distinguishing between local and global processes, spatial characteristics, temporal
evolution, and particle energization mechanisms related to ICMEs. In addition,
measurements of the magnetic field in earthbound ICMEs and their sub-structures from
the SWIFT location will double the current forecasting lead-times from L1. This concept
also paves the way for missions with increasingly longer forecasting lead-times,
addressing NASA and NOAA’s space weather goals, as set forth by the Decadal
Survey. The objective of this communication is to inform the community of the ongoing
effort, including plans to further develop the mission concept, supported by the
Heliophysics Flight Opportunities Studies (HFOS) program under NASA’s Research
Opportunities in Space and Earth Sciences (ROSES).
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1 Introduction
1.1 Interplanetary coronal mass ejections

Coronal mass ejections (CMEs), which are massive expulsions
of plasma and magnetic flux, originate from the solar corona and
propagate into interplanetary space with speeds up to 3,000 km/s.
The occurrence rate of CMEs is dependent on the solar cycle,
ranging between 1 per day at solar minimum to 5 per day during
solar maximum (Webb and Howard, 2012). CMEs are the main
drivers of extreme space weather effects at Earth, considered the
main cause of major geomagnetic storms. Their detrimental impacts
include disrupting satellite operations, navigation systems, radio
communications and ground power grids (Schrijver et al., 2015).

Interplanetary coronal mass ejections (ICMEs) are traditionally
envisioned as expanding flux ropes (Burlaga et al., 1981; Klein and
Burlaga, 1982; Marubashi, 1986; Lepping, Burlaga, and Jones, 1990).
They are believed to be still magnetically attached to the Sun at
both ends. As ICME propagate through the ambient solar wind
plasma and magnetic field in the interplanetary medium, they often
form a leading shock, as illustrated in Figure 1. While instructive,
this simplified picture of an ICME and its coronal connection has
informed in-situ observation interpretations, heliospheric models,
and geomagnetic-storm predictions (Gonzalez and Tsurutani,
1987; Wilson, 1987; Russell et al., 2000). However, remote-sensing
observations and in-situ measurements from vantage points have
shown that the ICME evolution from the solar corona to 1AU
may substantially diverge from the self-similar flux-rope expansion
picture.

STEREO launched in 2006, has provided the heliophysics
community a unique and revolutionary view of the Sun-Earth
system. Heliospheric images (HI) from STEREO/HI-2 have revealed
detailed spatial structures within interplanetary CMEs, including
leading-edge pileup, interior cavities, filamentary structure, and
rear cusps (DeForestetal, 2011). Various techniques have been
developed that enable the spatial locations and propagation
directions of CMEs to be inferred, based on fitting their
moving radiance patterns (e.g., Daviesetal., 2012). With the
STEREO/SECCHI package, a CME can be remotely imaged from its
nascent stage in the inner corona all the way out to 1 AU and beyond
(e.g., Harrison et al., 2008). However, understanding the structural
characteristics of ICMEs requires quantitative in situ particle and
field measurements from a plurality of well-separated probes, to
constrain physical models.

1.2 Simple evolution of interplanetary
coronal mass ejections

Single-spacecraft observations have indicated that some ICMEs
are simple in structure and evolve self-similarly up to 1 AU,
therefore current physical models are successful in determining
their characteristics and geo-effectiveness. For example, Davies et al.
(2021) reported the in-situ detection of an ICME on 19 April 2020
by Solar Orbiter (SolO) at a heliocentric distance of 0.809 AU. The
ICME was later observed (SolO+20.5h) by Wind near the Sun-
Earth Lagrange point L1 at 0.996 AU. Figure 2 provides an overview
of magnetic field and spacecraft locations. Figures 2F, G further
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FIGURE 1

A “standard” ICME includes a leading shock, a compressed ambient
solar-wind “sheath” where the magnetic field may be perturbed by the
shock and foreshock, and a shock “driver” consisting of a magnetic
cloud with a flux rope-like magnetic-field structure. Image courtesy of
Zurbuchen and Richardson (2006).

provides a model of the ICME flux rope using the 3DCORE flux rope
modeling technique (Weiss et al., 2021a), assuming a 3D torus-like
structure anchored on the surface of the Sun which expands self-
similarly during its propagation throughout the heliosphere. The
scaling factor between SolO and Wind magnetic field components
is close to unity, indicating that the flux rope or magnetic
cloud (MC) underwent little to no expansion as it propagated
beyond 0.8 AU to L1. However, the authors show that the ICME
sheath region sharply expanded (+64%), while the magnetic field
magnitude dropped (B oc r2). Similarly, Nieves-Chinchilla et al.
(2022) reported the “elastic” interaction of two ICMEs wherein the
two ICMEs survived the collision, resulting only in a momentum
exchange. A radial distribution of well-separated probes will provide
boundary constraints for simple ICME models.

1.3 Complex evolution of interplanetary
coronal mass ejections

By contrast, the structure, evolution, and geo-effectiveness of
complex ICMEs are very difficult to predict, due to both the
complexity of the processes that occur at the Sun during the CME
emergence, and specially the various processes that occur during
CMEs" propagation through the interplanetary space. Various
aspects of the ICME geo-effectiveness have been previously studied,
including the formation of shocks and sheaths (Gosling, 1990), the
CME dynamics in the solar corona (Mostl et al., 2010; Owens et al.,
2012), as well as compression effects at their back owing to
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FIGURE 2

(A—D) Magnetic field measurements at Wind (orange) and Solar Orbiter (green). The vertical dashed (dotted) lines constrain the (unperturbed) flux rope.
(E) The spatial distribution of L1 observatories and SolO in geocentric solar ecliptic (GSE) coordinates (F) top-down and (G) side views of the 3DCORE
geometry within the solar system up to 1 AU. Image courtesy of Davies et al. (2021).

trailing high-speed solar wind streams (Fenrich and Luhmann,
1998; Rouillard et al., 2010a).

The ICME evolution from the solar corona to 1AU and
beyond (Gosling J. T. et al., 2006) has been repeatedly shown to
substantially differ from the self-similar flux-rope expansion picture
(Gosling et al., 2005; Fermo et al., 2014). One process responsible
for the complex evolution of ICMEs in the interplanetary
environment is magnetic reconnection at the front of ICMEs, as
demonstrated in Figure 3. Magnetic reconnection, a ubiquitous
process in the solar wind (Farrugiaetal., 2001; Goslingetal,
2005; Gosling J. T. et al., 2006; Davis et al., 2006; Phan et al., 2006;
Huttunen et al., 2008; Eriksson et al., 2009; Lavraud et al., 2009)
can rearrange magnetic fields, including, in this case, eroding away
part of the magnetic flux impinging on the Earth’s magnetosphere.
One of the key signatures of magnetic reconnection is the
presence of a velocity jet (Burchetal, 2016), associated with
the explosive conversion of magnetic energy to plasma kinetic
energy. Magnetic reconnection has been reportedly observed at
various key boundaries, including the heliospheric current sheet
(Gosling J. T. et al., 2006; Lavraud et al., 2009) and within (Gosling
and Szabo, 2008) and at the front boundary of MCs (Ruffenach et al.,
2012). Reconnection is particularly frequent in low-p plasma such
as the magnetic cloud, even in the presence of a low magnetic shear
(Gosling and Szabo, 2008). Lavraud et al. (2014) showed using both
in-situ observations and models that MC-erosion due to magnetic
reconnection can reduce the geo-effectiveness of a storm by up to
30%, adding that 50% of the erosion likely takes place between the
Mercury and Earth’s obits. These findings highlight the critical need
for upstream satellites to sample complex ICMEs at various solar
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radii to further our understanding of the ICME evolution processes
as well as the corresponding geo-effectiveness in the interplanetary
medium.

1.4 Small- and meso-scale solar wind
structures

Small- and meso-scale structures, such as density blobs and
flux ropes, exist in the solar wind (Sanchez-Diazetal., 2017a;
Sanchez-Diaz et al., 2017b; Sanchez-Diaz et al., 2019) with scales
ranging between 5 and 10,000 Mm (equivalent to transit times of
10 seconds-7 hours) and periodicities of 1-20 h (Allen et al., 2022).
The meso-scale structures are released periodically from the tip
of helmet streamers (periodicity of 10-20 h; Sheeley et al., 2009;
Rouillard et al., 2010b). Smaller density and magnetic structures are
also often observed (periodicity on the order of 1-3 h; Viall et al.,
2010; Viall & Vourlidas, 2015) in the solar wind. The latter category
also involves small flux ropes, as observed by Parker Solar Probe
(PSP), with durations ranging between 1 and 4 h (corresponding to
a size of 3 solar radii; Kepko et al., 2016).

The heliospheric current sheet (HCS) is a narrow plasma
layer that divides the heliosphere into regions of opposite
magnetic field polarity. In-situ observations of the HCS crossing
(Winterhalter et al,, 1994; Zhou et al., 2005) indicate a very thin
(0.1-1.0 Earth radii in the interplanetary medium). Instead of
passing through zero (change in polarity), the magnetic field rotates
(that is, changes its orientation), inside the HCS (Smith et al., 2001;
2008). Magnetic reconnection is also frequently observed within the
HCS (Gosling J. T. et al., 2006).
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FIGURE 3

(Left) The magnetic structure of a MC, (A) prior to, and (C) during reconnection, together with (B, D) the expected variations in the magnetic field
components and accumulated azimuthal magnetic flux. Image Courtesy of Ruffenach et al. (2012). (Right) Sketch of magnetic reconnection as the
origin of blobs in a plane (A) containing, and (B) perpendicular to the neutral line. The gray shading denotes the high-density regions (or plasma blobs).
The black lines represent the magnetic field lines around the HCS. The magnetic field lines of the flux ropes are represented with dashed black lines.
The orange and blue arrows show the reconnection inflow and outflow regions, respectively. Image Courtesy of Sanchez-Diaz et al. (2017a).

Heliospheric plasma sheet (HPS) is a high-density region, made
up of a large reconnection exhaust mostly disconnected from the
Sun (Lavraud et al., 2020). HPS is composed of a succession of high-
B blobs and flux ropes, as shown in Figure 3, Right). The flux ropes,
likely released through sequential magnetic reconnection above the
helmet streamers, range in scale between tens of minutes to few
tens of hours. Well-separated probes are needed to determine the
structural characteristics and drivers of these different scales and
periodicities, as well as their evolution and geo-effectiveness, and to
derive their association to magnetic reconnection.

Turbulence is a universal process driving the transport of mass,
momentum, and energy in plasmas throughout our Solar System
and the Universe. Helioswarm (Spence, 2019) aims to investigate
turbulence in the weakly-collisional environment of the Earth’s
magnetosphere and solar wind, using an array of probes with
inter-spacecraft separations ranging from fluid scales (1,000’s of
km) to sub-ion kinetic scales (10s of km). Using the SWIFT
measurements along the Sun-Earth line, the radial evolution of solar
wind turbulence properties, ranging between 10s to 100s of RE
(104 km-106 km) can be further discovered.

1.5 Space weather

Knowledge of the structure and evolution of solar wind
structures are critical for reliable space weather prediction. While
the magnetic cloud of an ICME forms in the solar corona, the
sheath region, characterized as having enhanced thermal pressure,
accumulates only during the propagation. Presently, the orientation
and strength of the interplanetary magnetic field (IMF) and thermal
pressure, key parameters driving space weather geo-effectiveness
(Akhavan-Tafti et al., 2020), are largely unknown until the ICME
has propagated to 1 AU, unless an interplanetary spacecraft with
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magnetic field instrument is fortuitously in the right place at the
right time. Similarly, the arrival at Earth of an interplanetary shock
and its accompanying energetic particle intensity enhancements
(e.g., Vandegriff et al., 2005) can be forewarned by using a spacecraft
conveniently located upstream of Earth (at sub-L1), capable of
transmitting near-real time space weather data back to Earth. A
radially aligned set of SWIFT-class probes are critical for space
weather readiness, enabling doubling the current forecasting lead-
times from L1.

2 Mission overview
2.1 Science traceability matrix (STM)

Space Weather Investigation Frontier (SWIFT) aims (science
objective) to determine whether local or global processes drive geo-
effective solar wind structures, using solar sail technology that, for
the first time, will make consistent, in-situ multi-point observations
along the Sun-Earth line beyond the Lagrange point L1 (sub-L1;
~1.8-L1).

To achieve this, three main science questions are introduced.
As Table 1 shows, the science questions are organized based on the
general form of the energy equation for charged species (Akhavan-
Tafti et al., 2019): 1) spatial terms (d/9dx), 2) temporal terms (9/9t),
and 3) the kinetic energy term (dU/dt).

2.1.1 Science questions
2.1.1.1 Spatial characteristics (9/9x)

Our current understanding of the ICME structure is based
mostly on single-point or remote measurements. The ICME
structures can be further complicated by the interaction of fast
and slow ICMEs along their propagation paths in interplanetary
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space. The interaction of fast and slow ICMEs can result in
many different types of complex structures, including complex
jets (Gopalswamy et al., 2001; Burlaga et al., 2002; Shen et al., 2012;
Lugaz et al., 2017) multi-magnetic clouds (Wang et al., 2003), and
a shock-ICME structure, wherein an ICME shock transmits into a
preceding ICME (Lugaz et al., 2015).

Because of a long-lasting intense southward magnetic field
component (-Bz) (Tsurutanietal, 1988; Kamideetal., 1998),
ICMEs can cause major geomagnetic storms (Gonzalez et al,
1994; Zhang et al., 2007; Shen et al.,, 2017). The geo-effectiveness of
complex ICME structures, such as in a shock-ICME structure, are
thought to be more significant than typical ICMEs, especially where
the magnetic field intensity in the interaction structures is enhanced
(Shenetal., 2017; 2018; Srivastavaetal., 2018; Scolini et al,
2020). At scales smaller than ICMEs, the spatial characteristics,
magnetic topologies, and geo-effectiveness of small- and meso-scale
structures in the solar wind, such as density blobs and flux ropes,
remain unknown.

Q1. Spatial Characteristics (9/0x): SWIFT will aim to answer
questions regarding the multi-dimensional spatial characteristics,
magnetic topologies, and geo-effectiveness of ICMEs and mesoscale
structures:

Q1. 1) What are the multi-dimensional spatial characteristics of
ICMEs and meso-scale structures?

Q1. 2) What are the multi-dimensional magnetic topologies of
meso-scale structures and the substructures of ICMEs?

Q1. 3) Which multi-dimensional magnetic topologies and sub-
structures are geo-effective? What determines their geo-effectivity?

To answer these questions, at least a magnetic field instrument
and a low-energy plasma instrument are needed, boarded on more
than one probe, separated between 0 and 400 Earth radii, RE,
perpendicular to the flow direction. The required separation will
resolve small to meso-scale structures (Allen et al., 2022), as well
as the substructure of large structures, such as ICMEs (Lugaz et al.,
2018; Ala-Lahti et al., 2020; 2021).

2.1.1.2 Temporal evolution (9/9t)
The magnetic elasticity, helicity, and compression of interacting

CMEs are key physical factors for determining their formation,
propagation, evolution, and resultant geoeffectiveness (Xiong et al.,
2006a; Xiong et al., 2006b; Xiong et al., 2007; Xiong et al., 2009).
In cases where the expansion and propagation of ICME ejecta
are super-magnetosonic speeds relative to the background plasma
(Siscoe and Odstrcil, 2008), shock waves are particularly expected
to form (Gopalswamy et al., 2010). In the corona, strong CMEs are
associated with rather-explosive particle acceleration, within mere
minutes after their initiation (Gopalswamy et al., 2012). In contrary,
in the interplanetary medium, there are, on average, more ICMEs
with shocks at 1 AU than at 0.7 AU, based on analyses of long-
term observations obtained during different solar cycles (Jian et al.,
2008a; Jian et al., 2008b). Furthermore, ICME sheath regions are
highly variable and often very geo-effective, due to large negative
Bz and/or turbulence (Huttunen and Koskinen, 2004; Kilpua et al.,
2013; Katus et al., 2015; Kilpua et al., 2020). It is unknown how fast
these sheaths evolve.

It is still unclear whether small- and meso-scale structures in the
solar wind evolve upon generation. Large scale flux ropes, such as
the magnetic cloud of an ICME, expand and relax while propagating
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radially away from the Sun, it is expected that small- and meso-scale
structures in the solar wind to interact with each other as well as
their surrounding environments, resulting in complex geo-effective
characteristics (Ala-Lahti et al., 2020; 2021).

Q2. Temporal Evolution (9/dt): SWIFT will aim to answer
questions regarding the temporal and radial evolutions of ICMEs
and mesoscale structures:

Q2.1) What processes drive the evolution of ICMEs and
mesoscale structures with time and/or heliocentric distance?

Q2.2) What is the rate at which ICMEs and mesoscale structures
evolve?

Q2.3) Does evolution change the geo-effectiveness of ICMEs and
mesoscale structures?

Answering the above questions, including the evolution of Bz
associated with various solar wind structures, will require magnetic
field measurements, labeled as primary (P). In this case, having
a low-energy plasma instrument will enable additional science,
though not required. Two or more probes are needed to answer the
science questions. The probes will need to be separated radially by at
least 200 RE, enabling studying the evolution of solar wind structures
within a span of about 60 min.

2.1.1.3 Particle energization (dU/dt)
Solar energetic particles (SEPs) can be divided into two

categories: a) impulsive, and b) gradual events (Cane et al., 1986).
Impulsive events are relatively short-lived. They are typically
associated with impulsive hard and soft X-ray flares, but not
necessarily with large ejections of coronal material. On average,
an impulsive SEP event lasts for a few hours, following the onset.
These events are characterized as being rich in electron content.
The 3He/4He ratio of impulsive SEP events is of the order of one,
sometimes even larger than 10. In contrast, the gradual events are
observable for days. Up to 96% of gradual SEP events are found
to be associated with CMEs (Kahler et al., 1984). They are proton-
rich, with very small 3He/4He ratio, compared to the impulsive SEP
events.

The effects of small- and meso-scale solar wind structures
on SEP populations are still unknown. The impulsive SEPs are
thought to be accelerated close to the Sun by the rapid energy
release in association with the impulsive phase of a solar flare and
by the consequent strong wave activity (non-adiabatic). The non-
adiabatic energization of plasmas is typically linked to processes
such as magnetic reconnection and wave/turbulence interactions.
By contrast, gradual SEP particles are likely driven by adiabatic
energization mechanisms. The adiabatic energization of plasmas
requires the conservation of the first and second adiabatic invariants,
as fast CMEs expand while propagating anti-sunward.

The erosion rate of a magnetic cloud can vary at different solar
wind conditions (at different solar radii). The distribution function
of magnetic fluctuations in the boundary layer is significantly
different from those in the ambient solar wind and the cloud body
itself (Wei et al., 2003). The ICME sheath substructure may also
contribute to particle energization (e.g., Kilpua et al., 2021).

The arrival of interplanetary shocks driven by ICMEs at 1
AU is not always accompanied by energetic particle intensity
enhancements (e.g., Larioetal, 2003). Nevertheless, the most
intense high-energy particle enhancements seen in association
with shocks tend to occur when the nearby medium through
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which shocks propagate is affected by the presence of other solar
wind structures (Lario et al., 2003). Simultaneous measurements
of the magnetic fleld and solar wind properties are needed to
characterize interplanetary shocks, the environment where these
shocks propagate, and the particle populations accelerated by the
shocks and the accompanying structures.

Q3. Particle Energization (dU/dt): SWIFT will aim to answer
questions regarding the energization mechanisms in ICMEs and
mesoscale structures:

Q3.1) Whether and how do ICMEs and mesoscale structures
contribute to local particle energization, and therefore determine
their impacts on terrestrial space weather?

Q3.2) What is the relative role of adiabatic (Fermi and betatron)
processes in driving local particle energization?

Q3.3) What is the relative role of non-adiabatic (magnetic
reconnection and turbulence) processes in driving local particle
energization?

Q3.4) Whether and how do ICMEs and mesoscale structures
disrupt SEPs in the terrestrial space environment?

Three of the four science questions require both magnetic field
and low-energy plasma suites. The fourth science question further
requires an onboard high-energy plasma detector. One probe is
sufficient to answer the first and fourth questions, though four
probes are needed to provide three-dimensional measurements to
reliably answer the second and third questions.

2.2 Mission requirements

SWIFT aims to determine whether local or global processes
generate or drive geo-effective solar wind structures. To achieve
this, SWIFT will uniquely investigate the spatial (9/0x), temporal
(9/0t), and total (d/dt) distributions of solar wind magnetic fields
and plasmas at altitudes greater than the Earth’s Lagrange point
L1. To reach this unique vantage point, SWIFT will take advantage
of state-of-the-art solar sail propulsion to provide near-indefinite
maneuvering and monitoring capabilities. These capabilities have
been and remain unattainable by any other propulsion systems in
service.

2.2.1 Instrumentation

The magnetic field instrument (threshold) can alone help answer
four science questions (Q1.1, Q2.1-3), thereby addressing two
science objectives (mission success criterion).

2.2.1.1 Magnetic field

The magnetic field instrument (MAG) on SWIFT will be a dual
redundant digital fluxgate magnetometer consisting of two triaxial
fluxgate sensors. The two sensors allow the ambient field to be
separated from magnetic disturbances created by the spacecraft. This
requires 1) the spacecraft to be magnetically clean, and 2) the sensors
to be mounted on a rigid boom. The two sensors will be mounted at
different distances from the spacecraft on the boom, hence operating
as a gradiometer and thus enabling the background spacecraft
magnetic field to be accurately subtracted from the measurements.
MAG will cover a range of —128 to +128 nT, with time cadence of
Is.
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2.2.12 Low-energy ions
The low-energy proton and alpha instrument (LEPA) on SWIFT

will measure the three-dimensional (3D) ion velocity distribution
functions and moments (velocity, density and temperature). To
achieve this, a sensor head will need to comprise a deflection unit to
selectively steer and measure ions, a top-hat electrostatic analyzer,
and micro-channel plates board with anodes. Arriving solar wind
ions enter the instrument through an outer aperture grid. LEPA will
cover arange of 50 eV to 40 keV with a 1-min (up to 10 s) resolution.

2.2.1.3 High-energy ions
The high-energy proton and heavy-ion instrument (HIPHI)

consists of two oppositely-pointing field of views (FOVs): (anti-)
parallel and perpendicular to the nominal Parker spiral angle.
HIPHI measures protons of a lower energy threshold of 20 keV
and higher energy threshold of 105 MeV. The instrument is further
capable of stopping and detecting heavy ions up to 210 MeV/nuc
(species dependent). HIPHI will have a resolution of 1-min (up to
6s).

2.2.2 Solar sail technology

Solar sails are large, mirror-like structures made of a lightweight
material that reflects sunlight to propel spacecraft. The source of
thrust is the continuous solar photon pressure, therefore avoiding
the heavy, expendable propellants used by conventional chemical
and electric propulsion systems. Solar sail technology has made
major advancements over the past 2 decades through Earth orbital
and interplanetary flight projects. Figure 4 summarizes the various
technology demonstration missions, as well as conceptual studies
and ground test programs., providing a foundation for a new era of
missions to utilize solar sailing to achieve space science goals (e.g.,
Harra et al., 2021).

The Japanese Interplanetary Kite-craft Accelerated by Radiation
of the Sun (IKAROS; Tsuda et al.,, 2013) was the first successful
interplanetary solar power sail technology demonstration mission.
Launched in 2022, the NASA Near-Earth Asteroid (NEA) Scout
utilized an 86 m? square solar sail to propel the 6-unit CubeSat bus
on areconnaissance flyby trajectory of asteroid 2020 GE. NEA Scout,
managed by NASA Marshall Space Flight Center (MSFC), was the
first space science mission designed to utilize solar sailing to achieve
its science objective(s).

Solar Cruiser (Pezentetal., 2021) aims to demonstrate a
1,653 m* sailcraft platform with pointing control and attitude
stability suitable for heliophysics instruments. The mission
is designed to demonstrate sailcraft operation (acceleration,
navigation, station keeping, heliocentric plane change) as well as
the scalability of sail technologies such as the boom, membrane,
and deployer to enable more demanding missions. The sailcraft is
designed to separate from the launch vehicle on a sub-L1 trajectory
(1.8 L1) and complete its primary mission in 11 months. As of
this writing, Solar Cruiser is not confirmed for flight. A full-scale
quadrant deployment of the sail was tested (TRL = 5+) in October.

To date, solar sailing is the only viable propulsion system to
allow affordable and long-term operations at the desired sub-L1
orbit. SWIFT will take advantage of a Solar Cruiser-derived solar
sail propulsion system to achieve a characteristic acceleration of
>0.13 mm/s” to achieve its desired orbit.
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Sail System (2023)
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FIGURE 4

Solar sail heritage, technology readiness level (TRL), and specifications

2.2.3 Constellation configurations

Figure 5 summarizes three different constellation configurations
enabling SWIFT to investigate multi-dimensional structure and
dynamics of ICMEs.

2.2.3.1 The 3:1 spoke-hub probe network
In order to independently measure the required spatial and

temporal variations of solar wind structures, SWIFT will consist of
four probes: one “hub,” and three “spoke” probes. The hub probe is
capable of communicating with the spoke probes and transferring
data to and from Earth. The spoke probes are equipped with science
data collection and communication with the hub probe. The hub
probe is equipped with a solar sail enabling reaching and orbiting
beyond L1 (sub-L1; XL1). The spoke probes will be stationed at L1.
The four probes will fly in a tetrahedron configuration, providing 3D
measurements of the solar wind structures and dynamics, including
gradients in magnetic field and plasma moments, similar to NASA’s
flagship Magnetospheric Multiscale (MMS) mission.

2.2.3.2 The 1:1 spoke-hub probe network

Alternatively, SWIFT can independently measure the required
spatial and temporal variations of solar wind structures and
dynamics with the deployment of one hub probe reaching sub-L1
altitudes and one spoke probe stationed at L1. This configuration
will provide 1D measurements of the solar wind structures and
dynamics, including radial investigation of the magnetic field and
plasma moments of solar wind structures. In this configuration,
the hub probe at sub-L1, in conjunction with the L1 satellites, will
further provide the required spatial and temporal variations of solar
wind structures and dynamics.

2.2.3.3 Threshold configuration
SWIFT can also fly to sub-L1 altitudes as a single-probe satellite,

equipped with a solar sail and scientific suites of magnetic field and
plasma instruments. In this configuration, SWIFT, in conjunction
with the L1 and near-Earth satellites, will provide the required spatial
and temporal variations of solar wind structures and dynamics.

L1 (ACE, DSCOVR, and Wind) and near-Earth probes (MMS)
can fortuitously be used to investigate the 3D characteristics of an
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ICME structure and its dynamics. Figure 6 shows an ICME sheath
observation on 20 April 2020. MMS1 (15 Rg) traversed across
both the ICME shock and sheath regions. Here, the curlometer
technique (Harvey, 1998) is applied on the tetrahedra of 1) L1
and MMS1 (green), and 2) MMS1-4 (black) probes to determine
current density. Panels b and ¢ show that the current densities
between the two tetrahedra agree and the error is relatively small
(ratio <5), respectively, indicating that the curlometer technique is
reliable. SWIFT will, for the first time, enable the continuous, in-situ
investigation of earthbound ICMEs multi-dimensional structures
and dynamics.

2.2.4 Orbital maneuvers
2.24.1 Stationed at sub-L1

By adding a solar sail to a spacecraft in the multi-body
gravitational regime, the equilibrium liberation points are artificially
shifted. In the Sun-Earth system, this shift results in a sailcraft
having Lagrange point orbits that are closer to the Sun than
what conventional spacecraft could achieve. Preliminary analysis,
as summarized in Figure 7, shows a possible shift of around
750,000 km (~1.8 L1) closer to the Sun. Once stationed in a sub-
L1 orbit, a sailcraft can easily maneuver to other families and orbit
amplitudes in the sub-L1 region to collect scientific measurements
from a wide range of positions.

2.24.2 Drifting sunward
With a “Hub” spacecraft stationed at a sail-induced sub-L1 orbit,

it could be possible to maneuver the sailcraft to temporarily drift
even closer to the Sun than what its sub-L1 orbit naturally does.
This sunward drifting maneuver would be performed by leveraging
prescribed sail pointing to perform a sail-enabled homoclinic
connection to the initial sub-L1 orbit. Preliminary analysis on this
maneuver suggests a shift closer to the Sun of around 250,000 km
on top of the shift already gained by adding a solar sail.

2.24.3 Drifting away from the Sun-Earth line
To further enhance SWIFT’s ability to map the spatial

characteristics of an ICME, it is possible for the “hub” spacecraft
to perform a sail-enabled maneuver that drifts away from the
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FIGURE 5
SWIFT constellation configurations. (#) sailcraft is optional for the L1 probes. (*) at least one L1 probe (ACE, WIND, DISCOVR, NASA IMAP, and NOAA

SWFO) is required for the threshold configuration.
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10s, (D) The shape of the tetrahedron (height = 210 RE) during the multi-mission observations. (E) Reconstructed magnetic field map for ACE for an
ICME observed on 9 November 2004. Image courtesy of Isavnin et al. (2011)
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FIGURE 7

SWIFT orbital maneuvers. Sun is to the left. Earth (L1) is marked with blue (black) circle, and trajectory as green arcs.

Sun-Earth line (SEL). Similar to the sunward drift maneuver, this
maneuver would utilize sail pointing angles that send the spacecraft
along a prescribed path. The destination of this maneuver would be
to the Lyapunov family of sub-L1 liberation point orbits, where the
sailcraft can reside for as long as desired and then can transfer back
to the nominal sub-L1 orbit.

2.3 Science closure

SWIFT at a vantage point of sub-L1 will enable multi-
point investigations of the solar wind to distinguish temporal
and spatial variations. The juxtaposition of in-situ measurements
of solar wind structures and the corresponding magnetospheric
response will further enable SWIFT to identify geo-effective solar
wind structures. SWIFT can also enable the multi-dimensional
investigation of ICMEs and meso-scale solar wind structures,
essential for investigating the relative roles of local (adiabatic and
non-adiabatic processes) and global (taking place in the solar
corona) mechanisms in energizing solar wind plasma. Together,
these studies will discover whether local or global processes drive
different geo-effective solar wind structures.

2.4 Mission context

The Sentinels element (Szabo, 2005) laid the groundwork for
future heliospheric missions. Their goal was to develop “the scientific
understanding necessary to effectively address aspects of the Sun-
Earth system that directly affect life and society” The Sentinels
envisioned an array of in-situ spacecraft monitoring solar wind
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characteristics at several heliocentric distances, and solar longitudes
and latitudes, together with remote sensing probes. To that end,
SWIFT uniquely joins a long list of heliospheric mission concepts,
including Lagrange (ESA), Magnetic Topology Reconstruction
Explorer (MagneToRE; Maruca etal.,, 2021), Polar investigation
of the Sun (Polaris; Appourchaux et al., 2009; Probst et al., 2022),
SPORT (Xiongetal.,, 2017), Solar Ring (Wang et al., 2023), and
InterMeso (Allen et al., 2022) aiming to fill the observational gaps
to determine the structure and long-term variations of the inner
heliosphere.

3 Summary

SWIFT will aim at making major discoveries on the three-
dimensional structure and dynamics of heliospheric structures
that drive space weather. The spatial characteristics and temporal
evolution of ICMEs are not yet well understood, and the existing
remote-sensing and in situ observatories are not well-suited for
resolving multi-layered and evolutionary structures in massive
storm drivers. Here, we lay out the preliminary design for a
groundbreaking mission using solar sail technology that, for the
first time, will make consistent, in situ multi-point observations
along the Sun-Earth line beyond the Lagrange point L1 (sub-L1).
This unique position, in combination with L1 assets and physical
models, will allow distinguishing between local and global processes,
spatial characteristics, temporal evolution, and particle energization
mechanisms related to ICMEs. In addition, measurements of the
magnetic field in earthbound ICMEs and their sub-structures from
the SWIFT location will double the current forecasting lead-times
from L1.
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