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Drift phase resolved diffusive
radiation belt model: 2.
implementation in a case of
random electric potential
fluctuations
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Laboratory, Kirtland AFB, Albuquerque, NM, United States

In the first part of this work, we highlighted a drift-diffusion equation capable
of resolving the magnetic local time dimension when describing the effects
of trapped particle transport on radiation belt intensity. Here, we implement
these general considerations in a special case. Specifically, we determine the
various transport and diffusion coefficients required to solve the drift-diffusion
equation for equatorial electrons drifting in a dipole magnetic field in the
presence of a specific model of time-varying electric fields. Random electric
potential fluctuations, described as white noise, drive fluctuations of trapped
particle drift motion. We also run a numerical experiment that consists of
tracking trapped particles’ drift motion. We use the results to illustrate the
validity of the drift-diffusion equation by showing agreement in the solutions.
Our findings depict how a structure initially localized in magnetic local time
generates drift-periodic signatures that progressively dampen with time due to
the combined effects of radial and azimuthal diffusions. In other words, we
model the transition from a drift-dominated regime, to a diffusion-dominated
regime. We also demonstrate that the drift-diffusion equation is equivalent to
a standard radial diffusion equation once the distribution function is phase-
mixed. The drift-diffusion equation will allow for radiation belt modeling with
a better spatiotemporal resolution than radial diffusion models once realistic
inputs, including localized transport and diffusion coefficients, are determined.

KEYWORDS

radiation belts, fokker-planck equation, adiabatic invariants, radial transport, radial
diffusion, azimuthal diffusion, cross-terms, electric fields

1 Introduction

The effects of trapped particle spatial transport on radiation belt intensity are usually
described by the radial diffusion paradigm. According to this model, in the absence of
any other process besides spatial transport, the time evolution of radiation belt intensity is
described by a one-dimensional diffusion equation:

∂ f(L*, t)
∂t
= L*2 ∂
∂L*
(
DLL

L*2
∂ f
∂L*
) (1)
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where f is a distribution function proportional to phase space
density, L* is inversely proportional to the third adiabatic invariant,
and DLL = ⟨(∆L*)

2⟩/2 is the radial diffusion coefficient (Roederer,
1970). Since all the quantities involved in Eq. 1 are drift-averaged,
i.e., averaged over all three gyration, bounce and drift phases, there
is no information on trapped particle drift phase—or equivalently,
on the magnetic local time (MLT) dimension. In a companion
paper (Lejosne and Albert, 2023), we discussed the limitations
associated with the inability to resolve the drift phase. We also
proposed a theoretical solution to address this difficulty. Namely,
we highlighted a two-dimensional drift-diffusion equation to
describe trapped particle transport effects on radiation belt intensity
(Birmingham et al., 1967). According to this model, in the absence
of any other process besides transport, radiation belt intensity varies
such that:

∂F(𝕃,φ, t)
∂t = −[�̇�] ∂F∂𝕃 − [φ̇]

∂F
∂φ +𝕃

2 ∂
∂𝕃(

D𝕃𝕃
𝕃2
∂F
∂𝕃)

+ 𝕃2 ∂∂𝕃(
D𝕃φ
𝕃2
∂F
∂φ)+
∂
∂φ(Dφ𝕃

∂F
∂𝕃)+
∂
∂φ(Dφφ

∂F
∂φ)

(2)

where F is a distribution function proportional to the number of
particles per unit of surface, d𝕃dφ, φ is the azimuthal location
(i.e., MLT, in radians), and the “double-struck L” (or “L-Euler”)
coordinate is: 𝕃 = 1/sin2θE, with θE the magnetic colatitude of the
intersection between the Earth’s surface and the footpoint of the field
line passing through the location considered. The parameters D𝕃𝕃,
Dφφ, D𝕃φ and Dφ𝕃 are the MLT-dependent diffusion coefficients,
and the parameters [�̇�] and [φ̇], also MLT-dependent, are the
mean time rates of change of 𝕃 and φ. All the quantities involved
in Eq. 2 are bounce-averaged quantities that depend on MLT. In
particular, the coordinate double-struck L, 𝕃, corresponds to the
normalized equatorial radius of the field line on which trapped
particles would bounce if all non-dipolar contributions to the
magnetic field were turned off on a timescale comparable to a
few bounce periods. There are various benefits of using L-Euler as
a coordinate for radial transport over L-McIlwain or L-Roederer.
From the theoretical standpoint, the set of coordinates (𝕃,φ) is
proportional to a set of canonical variables, which allows for a
reduction of the general two-dimensional Fokker-Planck equation
into a drift-diffusion equation (Eq. 2) (Lejosne and Albert, 2023).
In addition, computing the L-Euler, 𝕃, is much less expensive
than computing the L-Roederer, L*, coordinate: The former only
requires local field line tracing, while the latter requires computing
the magnetic flux through the instantaneous drift shell. The set of
coordinates (𝕃,φ) can also be used to parameterize both trapped
and quasi-trapped populations (since the definition of L-Euler, 𝕃,
only requires a closed local field line). On the other hand, the L*

parameter requires a closed instantaneous drift shell, meaning that
it can only parameterize trapped populations. Thus, the L-Euler,
𝕃, is an appropriate coordinate for modeling the trapping and de-
trapping of energetic particles at transition regions (e.g., close to the
magnetopause, or at low L regions, below the inner radiation belt).

In the following, we specify the field and particle characteristics
assumed to compute the transport and diffusion coefficients
introduced in Eq. 2 in a special case. For the sake of simplicity,
we focus on the magnetic equator and assume dipolar magnetic

field lines thereafter. In this context, 𝕃 = L = r/RE, where r is the
equatorial radius andRE = 6,370km is one Earth’s equatorial radius.

2 Theoretical setup

The objective of this section is to show how to determine the
localized transport ([�̇�] and [φ̇]) and diffusion (D𝕃𝕃, Dφφ, D𝕃φ
and Dφ𝕃) coefficients in the simple case of equatorially mirroring
particles trapped in a magnetic dipole field with a drift motion
perturbed by a special case of random electric potential fluctuations.
The characteristics of the fields are provided in Section 2.1, and
their effects on the drift motion of trapped particles are detailed in
Section 2.2.

2.1 Fields

We assume a magnetic dipole field, B, and an electric potential,
V, whose random time variations lead to small perturbations of
trapped particle drift motion. The dipole field at the magnetic
equator in spherical coordinates (r,θ,φ) is:

B =(

0

−
BER

3
E

r3

0

) (3)

where BE = 30,000nT is the magnetic equatorial field at the Earth’s
surface. We model the total electric potential, V, as the sum of a
well-determined corotation potential, and some ad hoc fluctuations
proportional to a random variable, w:

V = −C
r
+w(t)rcosφ (4)

where C =ΩEBER
3
E is a constant, with ΩE = 2π/86400s ≅ 7.3e−5 s−1

the angular velocity of the Earth’s rotation, so −C/r is the corotation
potential. The electric field, E = −∇V, at the magnetic equator is:

E =(

−C
r2
−w(t)cosφ

0

w(t)sinφ

) (5)

Characteristics of the electric fluctuation:The electric fluctuation,
w(t) (in V/m), is assumed to be not well known. This lack of
determination in field variations is what drives the need for a
stochastic model, rather than a deterministic one. We view the
electric fluctuation, w(t), as a sequence of possible outcomes
by a random variable. In this first implementation, we favor
practicality over realism to characterize the properties of the
variable. Specifically, we assume that the variable, w, is a white
noise. We describe it as a piecewise constant function: the value
stays constant for a set amount of time, T (in seconds), and it
updates instantaneously and unpredictably at the end of every time
interval. We choose the size of the time interval, T, such that
the time variations of the electric fluctuation, w(t), result in the
variation of the third adiabatic invariant, while conserving the first
two invariants of the population considered. In other words, we
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require that τB ≪ T≪ τD, where τB and τD are the bounce and
drift periods, respectively. This assumption differs from the drift
resonance condition, where T ∼ τD.

The standard deviation of the white noise, W, is a parameter
that we set arbitrarily. The mean value of the white noise, [w],
is theoretically 0, by definition. Yet, when considering a finite
sequence of values for w(t), the ensemble average is not necessarily
0 in practice. Thereafter, we consider that the average value, [w],
remains small enough that: [w]2 ≪ΩTW2, where Ω/2π is the
unperturbed drift frequency. This assumption is verified in our
numerical experiment, and it simplifies mathematical derivations.

2.2 Trapped particles

2.2.1 Computation of the localized transport and
diffusion coefficients

The objective of this Section is to determine D𝕃𝕃, Dφφ, D𝕃φ
and Dφ𝕃, the diffusion coefficients, and [�̇�] and [φ̇], the transport
coefficients, defined as the mean time rates of change of the radial
and azimuthal locations, respectively. This is done for a population
of equatorially trapped particles drifting in the fields described in
Section 2.1. Generally speaking, a diffusion coefficient for a set of
variables, X and Y, is:

DXY =
⟨∆X∆Y⟩

2
(6)

where ⟨∆X∆Y⟩ = [∆X∆Y]/∆t is the rate of change of the expected
value for the product of the time variations of X and Y during a time
interval, ∆t:

[∆X∆Y] = [(X(t+∆t) −X(t))(Y(t+∆t) −Y(t))] (7)

In our case, the time interval, ∆t, is long with respect to the
bounce period, but very small in comparison with the drift period,
τB ≪∆t≪ τD. Thus, we need to compute the time variations for the
radial and azimuthal locations of the trapped particles, ∆r and ∆φ,
respectively, to determine the diffusion coefficients.

The equations for the driftmotion of equatorial particles trapped
in the fields described in Section 2.1 are:

(

̇r

0

φ̇

)=(

(

r3
BER

3
E
w(t)sinφ

0

− 3M
γqr2
+ΩE +

r2
BER

3
E
w(t)cosφ

)

)

(8)

where M is the first adiabatic invariant, q is the electric charge of
the particle and γ is the Lorentz factor. Given that �̇� = ̇r/RE at the
magnetic equator of a dipole field, the transport coefficients are:

{{{
{{{
{

[�̇�] = 𝕃
3[w]

BERE
sinφ

[φ̇] =Ω+ 𝕃
2[w]

BERE
cosφ

(9)

where Ω = −3M/γqR2
E𝕃

2 +ΩE is the unperturbed angular drift
velocity. In the presence of an ideal white noise signal ([w] = 0) the
transport coefficients become [�̇�] = 0 and [φ̇] =Ω.

Using Eq. 8, the general expressions for the total variations
in radial and azimuthal locations after a time interval ∆t are,
respectively:

{{{
{{{
{

∆r = 1
BER

3
E
∫t+∆tt r3(u)w(u)sinφ(u)du

∆φ = − 3Mq ∫
t+∆t
t

1
γ(u)r2(u)

du+ΩE∆t+
1

BER
3
E
∫t+∆tt r2(u)w(u)cosφ(u)du

(10)

We consider a time interval, ∆t, very small in comparison
with the drift period (∆t≪ τD), but long enough to have many
small fluctuations during ∆t (T≪∆t). We also assume small radial
displacements (∆r/r≪ 1). As detailed in the Appendix, it results
that:

{{{{{{{{
{{{{{{{{
{

⟨(∆r)2⟩ = r
6W2T
B2
ER

6
E
sin2φ

⟨(∆φ)2⟩ = r
4W2T
B2
ER

6
E
cos2φ

⟨∆r∆φ⟩ = ⟨∆φ∆r⟩ = r
5W2T
B2
ER

6
E
sinφcosφ

(11)

With the definition provided Eq. 6, the MLT-localized diffusion
coefficients are:

{{{{{{{{
{{{{{{{{
{

D𝕃𝕃 =
𝕃6W2T
2B2

ER
2
E
sin2φ

Dφφ =
𝕃4W2T
2B2

ER
2
E
cos2φ

D𝕃φ = Dφ𝕃 =
𝕃5W2T
2B2

ER
2
E
sinφcosφ

(12)

We note that the diffusion coefficients provided in Eq. 12
are functions of magnetic local time, φ. This is in contrast with
the standard radial diffusion coefficient, independent of magnetic
local time by definition, which involves drift-phase averaging (e.g.,
Lejosne and Kollmann, 2020). The relationship between these
coefficients and the standard radial diffusion framework is further
discussed in Section 3.1.

The diffusion coefficients provided in Eq. 12 are also
proportional to W2T, the product of the variance of the random
signal, w, and a time, T, that is similar to an autocorrelation time.
This finding is consistent with theoretical expectations: the higher
the variance, the stronger the perturbation, the higher the diffusion.
We also expect electric field perturbations that stay correlated for a
longer time interval to be more efficient in perturbing drift motion.
On the other hand, the coefficients are independent of the energy of
the trapped population considered, provided that the updating time,
T, remains very small in comparison with the drift period (see also
the discussion in Appendix). The coefficients are also independent
of the charge of the population. These findings would need to be
reassessed in the presence of more realistic field perturbations.

2.2.2 Contextualization using Hamiltonian
equations

We expect a relationship between the first and second moments
characterizing transport. Indeed, assuming small variations over the
course of a couple of bounce periods,we have shown in the first part
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of this work (Lejosne and Albert, 2023) that:

{{{
{{{
{

−⟨∆α⟩ + 12
∂⟨(∆α)2⟩
∂α + 12

∂⟨∆α∆β⟩
∂β = −[α̇]

−⟨∆β⟩ + 12
∂⟨(∆β)2⟩
∂β + 12

∂⟨∆β∆α⟩
∂α = −[β̇]

(13)

where (α,β) are the Euler potentials. In a dipole field at the magnetic
equator, given that α∝ 1/r, and β = φ, this set of equations is
equivalent to:

{{{{
{{{{
{

−⟨∆r⟩ + r
2

2
∂
∂r(
⟨(∆r)2⟩

r2
)+ 12
∂
∂φ (⟨∆r∆φ⟩) = −[ ̇r]

−⟨∆φ⟩ + 12
∂⟨(∆φ)2⟩
∂φ + r

2

2
∂
∂r(
⟨∆φ∆r⟩

r2
) = −[φ̇]

(14)

A second-order Taylor expansion of Eq. 10 yields

{{{{
{{{{
{

⟨∆r⟩ = r
3[w]
BER

3
E
sinφ+ r

5W2T
B2
ER

6
E
(12 + sin

2φ)

⟨∆φ⟩ =Ω+ r
2[w]
BER

3
E
cosφ+ r

4W2T
2B2

ER
6
E
sinφcosφ

(15)

Leveraging Eqs 9, 11 and 15, it is straightforward to verify Eq. 14.
A notable consequence of this result is that:

⟨∆r⟩ ≠ r
2

2
∂
∂r
(
⟨(∆r)2⟩

r2
) (16)

when the drift phase is resolved. In other words, the commonly
assumed relationship between the first and second moments of
radial transport, ⟨∆r⟩ and ⟨(∆r)2⟩ (e.g., Fälthammar, 1968, their
Eq. 3), is verified only on average over all magnetic local times.

3 On the drift-diffusion equation

3.1 Equivalence with a radial diffusion
equation in the case of an azimuthally
symmetric distribution function

We leverage the coefficients computed in Section 2.2 to
demonstrate that Eq. 2 is like a radial diffusion equation (Eq. 1)
when the distribution function is independent of MLT, i.e., when
∂F/∂φ = 0. Eq. 2 becomes:

∂F
∂t
= −[�̇�] ∂F
∂𝕃
+𝕃2 ∂
∂𝕃
(
D𝕃𝕃
𝕃2
∂F
∂𝕃
)+ ∂
∂φ
(Dφ𝕃)
∂F
∂𝕃

(17)

when ∂F/∂φ = 0.This is also:

∂F
∂t
= −[�̇�] ∂F
∂𝕃
+D𝕃𝕃
∂2F
∂𝕃2
+(𝕃2 ∂
∂𝕃
(
D𝕃𝕃
𝕃2
)+ ∂
∂φ
(Dφ𝕃))

∂F
∂𝕃
(18)

Leveraging Equations 9, 12 yields:

∂F
∂t
= −
𝕃3[w]
BERE

sinφ ∂F
∂𝕃
+ 𝕃

6W2T
2B2

ER
2
E

sin2φ ∂
2F
∂𝕃2

+(𝕃
5W2T
2B2

ER
2
E
(1+ 2sin2φ)) ∂F

∂𝕃
(19)

Averaging over all MLT-phases, we have that:

∂F
∂t
= 𝕃

6W2T
4B2

ER
2
E

∂2F
∂𝕃2
+ 𝕃

5W2T
B2
ER

2
E

∂F
∂𝕃

(20)

Introducing the drift-averaged diffusion coefficient, DLL, as:

DLL =
𝕃6W2T
4B2

ER
2
E

(21)

Equation 20 also becomes:

∂F
∂t
= L2 ∂
∂L
(
DLL

L2
∂F
∂L
) (22)

We emphasize that 𝕃 = L = r/RE in this demonstration, since
we assume a dipole magnetic field. Given that the phase-averaged
distribution function, f, is proportional to the bounce-averaged
distribution function, F, by a physical constant when F is
independent on MLT, Eq. 22 can be rewritten as:

∂ f
∂t
= L2 ∂
∂L
(
DLL

L2
∂ f
∂L
) (23)

Thus, we have shown how the drift-diffusion Eq. 2 relates to
the standard radial diffusion Eq. 1 when the distribution function
is phase-mixed (i.e., independent of MLT). We have also shown
that the corresponding radial diffusion coefficient, DLL, is the
MLT-average of the localized radial diffusion coefficient, D𝕃𝕃. The
expression forDLL provided Eq. 21 is the same as the one that would
be obtained by following standard procedures to compute radial
diffusion coefficients (e.g., Schulz and Lanzerotti, 1974, their section
III.3).

3.2 Change of variables to remove the
cross terms

The drift-diffusion equation (Eq. 2) contains cross-terms
(D𝕃φ = Dφ𝕃 ≠ 0), which poses numerical challenges to guarantee
positivity of the solution (Tao et al., 2008; 2009; 2016). Albert and
Young (2005) and Albert (2018) discussed changes of coordinates
to address this difficulty. In the present situation, the determinant of
the 2 × 2 diffusion matrix is 0:

D𝕃𝕃Dφφ −D2
𝕃φ = 0 (24)

This means that 0 is an eigenvalue of the diffusion matrix, and
there exists a system of coordinates in which the diffusive part of the
drift-diffusion equation is one-dimensional. We introduce a new set
of variables:

{
{
{

x = 𝕃cosφ

y = 𝕃 sinφ
(25)

which corresponds to a conversion from polar to Cartesian
coordinates. In this coordinate system, with the values of the
diffusion coefficients provided Eq. 12, Eq. 2 becomes:

∂F
∂t
= −[ẋ] ∂F
∂x
− [ẏ] ∂F
∂y
+ (x2 + y2)

3
2
∂
∂y
(

Dyy

(x2 + y2)
3
2

∂F
∂y
) (26)
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FIGURE 1
Three different sequences of randomly generated outcomes for the white noise signal, w (t), are represented in black, blue and red over a 2-h time
interval. The signal is updated every T = 200 s. The expected (i.e., average) value is 0 mV/m, and the standard deviation is set to 0.5 mV/m.

FIGURE 2
Time evolution of the distribution function centered at L = 3.5 and
22:00 MLT. The magnitude of the flux oscillation characteristic of
trapped particle injections decreases with time until it vanishes after a
time characteristic of phase mixing. This figure compares numerical
results from (in red) a test particle simulation and (in blue) the solution
of the drift-diffusion equation. It illustrates the transition from a
drift-dominated regime (with the presence of drift periodic oscillations
in the distribution function) to a diffusion-dominated regime
(characterized by a slow and steady variation of the distribution
function).

with

Dyy =
W2T
2B2

ER
2
E
(x2 + y2)3 (27)

Looking back at the drift motion equations (Eq. 8), we notice
that the perturbation of the drift velocity is indeed along the y-
direction: The velocity perturbation is along sinφer + cosφeφ = ey,

where ey and er ,eφ are unit vectors associated with the Cartesian
and polar frames of reference.

In the following, we assume [w] = 0 for the sake of simplicity.
This means that [�̇�] = 0 and [φ̇] =Ω. As a result, Eq. 26 is also:

∂F
∂t
= −Ω ∂F
∂φ
+𝕃3 ∂
∂y
(
Dyy

𝕃3
∂F
∂y
) (28)

This latest equation is the one used for numerical
implementation, as discussed in Section 4.

4 Numerical simulations

4.1 Numerical setups and methods

Parameters: Since this work assumes electric potential
fluctuations in a time-stationary dipole field, we focus on a
region where this is most likely to happen, namely, the inner
belt and slot region (below L = 4). We consider populations
that have been associated with drift period structures in this
region, i.e., electrons in the tens to hundreds of keV energy
range (e.g., Ukhorskiy et al., 2014). Specifically, we focus on
equatorial electrons with kinetic energy of 200 keV at L = 3.These
electrons have a first adiabatic invariant of M = 21.5 MeV/G,
and a second adiabatic invariant of J = 0. The standard deviation
of the white noise, W, is a parameter that we set to a plausible
value of about 0.5 mV/m (W2 = 2.5 × 10-7V2/m2). We set the
updating time (i.e., the duration between changes in value) for
the sequence of outcomes w(t) to be T = 200s. At L = 3, the bounce
and drift periods of the electrons considered are τB ∼ 0.4 s and
τD ∼ 1.5hr, so the ordering, τB ≪ T≪ τD, is verified. With this set
of parameters, the coefficient of proportionality for the diffusion
coefficients is W2T/2B2

ER
2
E = 6.8× 10

−10s−1 = 5.9× 10−5day−1.
Therefore, given Eq. 21, the drift-averaged diffusion coefficient
DLL is set to DLL ∼ 3.0× 10−5L6day−1 (2.2× 10−2day−1 at L =
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3 for instance). This order of magnitude is consistent with
previous estimates for radial diffusion in the inner belt and
slot region (e.g., Selesnick, 2012; O’Brien et al., 2016, their
Figure 4).

Method for particle tracking: We solve Eq. 8 to determine
trapped particle drift motion. We launch particles in many
different sequences of outcomes for w (t). We use the RANDOMN
function from IDL, which returns pseudorandom numbers from
a Gaussian distribution to generate an original time sequence
of outcomes. Every different sequence is created by randomly
reordering (permuting) the vector indices of the original sequence
of outcomes. To create a permutation of the vector indices,
we use the RANDOMU function from IDL, which returns an
array of uniformly distributed random numbers. An illustration
of the approach is provided in Figure 1. It represents three
different permutations for the sequence of outcomes for w(t),
over a time intervals of 2 h. For the numerical experiment, we
perform 200 different permutations. We track more than 10,000
particle drift trajectories for 18 h every time, recording their
locations every 5 min. The particle initial locations are distributed
homogeneously, following the initial condition described
hereafter.

Initial condition: To solve numerically Eq. 28, we consider a
simple initial condition, assuming that:

- Particles are present homogeneously at all MLTs at 3.8RE and
above (up to 7 RE).

- Particles are also present homogeneously in an area mimicking
a localized injection, extending from r = 2.5RE to r = 3.8RE, and
initially centered around 00:00 MLT (from 22:15 to 01:45).

The distribution function, F, is chosen to be initially constant
and normalized (= 1) at all locations where particles are present. It
is set to zero otherwise.

Method for numerical simulation: To solve numerically Eq. 28,
we use an operator splitting method. At each time step, we first
solve the transport part of the equation, using the method of
characteristics. We then use the updated function to solve the
diffusive part of the equation, using an explicit scheme for the sake of
simplicity. We record the value of the distribution function, F, every
5 min over a 24-h interval.

4.2 Results

4.2.1 Comparison between the results of the test
particle experiments and the solution of the
drift-diffusion equation

We compare: a) the outputs of the particle tracking experiment
with b) the solution of Eq. 28. First, we focus on one location
(L = 3.5 ± 0.05 and 22:00 MLT ± 00:15): We record the time
evolution of the distribution functions derived from the drift-
diffusion equation and from the particle tracking experiment. The
results, presented in Figure 2, highlight the consistency of the two
approaches. The location is initially out of the artificial injection
region thus F(t = 0) = 0. As the particles drift eastwards starting
from the midnight region, no particles are visible for a moment.
Then, they briefly drift through the location, creating a transient
peak in the distribution function, and so on. Figure 2 shows
how the distribution function oscillates at the trapped particles’

FIGURE 3
Time evolution of a distribution function (initially centered around 00:00 MLT for 2.5RE < r < 3.8RE, and constant at all MLTs for r ≥ 3.8RE) (A) At t =
3:00 h, the MLT-dependent structure is visible. It creates a spiral around the Earth due to the L-dependence of the drift frequency. As a result, the
distribution function is strongly dependent on MLT for r between ∼ 2.5RE and 3.8RE (B) At t = 10:00 h, the MLT-dependent structure has disappeared:
The distribution function is barely dependent on MLT. The effect of transport on radiation belt intensity is now more consistent with the radial diffusion
paradigm.
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unperturbed drift frequency. With time, the magnitude of the
peak decreases, and the width of the peak increases: This is due
to the combined effects of radial and azimuthal diffusions. In
parallel, new particles transported radially from L ≥ 3.8 fill the
region: The drift-averaged minimum of the distribution function
increases with time. After some time, the drift-periodic signature
disappears and the regime is purely diffusive. In other words: In
this numerical experiment, the radial diffusion equation represents
a valid description of the system after ∼15 h at L = 3.5 (or about
9 drift periods for the population considered). For shorter times,
it is necessary to use the drift-diffusion equation to represent
the time evolution of drift echoes. In general, we expect the
magnitude of the typical phase-mixing time scale to be a function
of: (a) the initial condition for the distribution function (the more
MLT-localized the inhomogeneity, the longer it will take to cover
all MLT sectors), (b) the magnitude of the diffusion coefficients
(the higher the coefficient, the most efficient at smoothing MLT-
dependent fluctuations, thus the shorter the characteristic time
for phase mixing) and (c) the drift frequency (the higher the
drift frequency, the shorter the characteristic time for phase
mixing).

4.2.2 Visualization of the solution of the
drift-diffusion equation

A 2D video of the simulation run for the solution of
the drift-diffusion equation over a 24 h interval is provided in
Supplementary Material. Two screenshots (at t = 3:00 h and t =
10:00 h) are provided in Figure 3.

From the video, it is clear that the effect of the azimuthal
drift on radiation belt intensity is at first more striking than the
effects of radial and azimuthal diffusion. That said, drift alone
would only lead to trajectories wrapping around, meaning that
the distribution function would only become more structured.
Radial and azimuthal diffusions act to smooth out the MLT-
dependent structure, dampening it until it disappears and
the distribution becomes independent of MLT. This phase-
mixing process is consistent with observations. It allows for the
transition from a drift-dominated regime to a diffusion-dominated
regime.

5 Conclusion

We have shown how the drift-diffusion equation is capable
of modeling phase mixing, allowing for a transition from drift-
resolved structures (e.g., drift-periodic fluctuations associated with
MLT-localized sources or losses) to the standard radial diffusion
framework. We illustrated our case using simple assumptions,
focusing on the magnetic equator of a dipole field and modeling
electric potential fluctuations by a white noise. A next step of
physical importance is to model the effect of the thermospheric
wind driven electric field fluctuations on radiation belt dynamics.
Indeed, electric potential fluctuations are present in the inner
belt. They are viewed as the primary driver of radial diffusion
in this region (e.g., O’Brien et al., 2016). In particular, electric
fluctuations associated with quiet time wind dynamo have
significant day-to-day variability, even during geomagnetically

quiet periods (e.g., Fejer, 1993). Thermospheric wind driven
electric fields are also known to shape the inner belt drift shells
(Lejosne et al., 2021). Future work should consist of determining a
more realistic form for the electric perturbation using information
on thermospheric wind driven electric field fluctuations. Going
back to the general expression of the drift-diffusion equation,
future work should also consist of determining the various
transport and diffusion coefficients in the presence of a time
varying magnetic field. Once realistic inputs, including localized
transport and diffusion coefficients, are determined, the drift-
diffusion equation will enable operational radiation belt modeling
with a better spatiotemporal resolution than current radial diffusion
models.
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Appendix

We explain how we derived the expressions for ⟨(∆r)2⟩,
⟨(∆φ)2⟩, and ⟨∆r∆φ⟩ (Eq. 11), in order to obtain the diffusion
coefficients required to solve the drift-diffusion equation.
A first-order Taylor expansion for the expressions of the total
variations in radial and azimuthal locations (Eq. 10) yields:

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
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(A1)

where ro,φo,γo are the values for the radial and azimuthal locations,
and Lorentz factor, at time, t, respectively.
The expression for the ensemble average of the square of the total
variation of the radial displacement is:
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(A2)

Since ΩΔt≪ 1, the variation in phase is not significant, and Eq. A2
becomes
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Since the signal w is a piecewise constant function, we have that:

w(u) = wi for iT ≤ u < (i+ 1)T (A4)

And by definition of the white noise sequence, [wiwj] =W2δij,
where δij is the Kronecker delta. As a result, expressing the
time interval, ∆t, as ∆t = NT+ k, where N is an integer, and
0 < k < T:

[(∆r)2] =
r6oW

2sin2(φo)

B2
ER
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E
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As a result:

⟨(∆r)2⟩ =
[(∆r)2]
∆t
=
r6oW2T
B2
ER

6
E

sin2(φo) (A6)

A similar approach allows for a computation of [(∆φ)2], and
[(∆r∆φ)2] as first order functions of ∆t, yielding analytical
expressions for ⟨(∆φ)2⟩, and ⟨∆r∆φ⟩. Alternatively, the total
variation in phase, ∆φ, can also be related the total variation in
radial displacement, ∆r, and the time variation, ∆t, by considering
a multivariate Taylor expansion for the expression of total energy
conservation (e.g., Whipple, 1978):

Ek(ro +∆r,φo +∆φ, t+∆t) + qV(ro +∆r,φo +∆φ, t+∆t)

= Ek(ro,φo, t) + qV(ro,φo, t) (A7)

where Ek = Eo(√1+ 2MB/Eo − 1) is the kinetic energy, with Eo the

rest mass energy.
The formula provided Eq. A6 is not dependent on the energy of
the particles considered, provided that the drift period is very
long in comparison with the updating time, T. If we were to
consider particles of higher energies, with a drift period smaller
than the updating time, T, the magnitude of the radial diffusion
coefficient would drop, in accordance with theoretical expectations.
Indeed, with ∆t = k < T, N = 0, and [(∆r)2] Eq. (A5) would become
proportional toW2∆t2(<W2T∆t). In parallel, the ensemble average
of the signal, [w], would not be 0 anymore during∆t: this means that
the effects of field fluctuations would be accounted for through the
transport coefficients, [�̇�] and [φ̇] (Eq. 9).
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Glossary

(α,β) Euler potentials

B Magnetic field

BE Magnetic equatorial field at the Earth’s surface

C constant to model the corotation potential

DXY Diffusion coefficient with respect to the X and Y coordinates

E electric field

f,F Distribution functions

γ Lorentz factor

J second adiabatic invariant

L* L-star, inversely proportional to the third adiabatic invariant

𝕃 double-struck L, or L-Euler

L normalized equatorial radial distance

M first adiabatic invariant

ΩE angular velocity of the Earth’s rotation

Ω/2π unperturbed drift frequency

q electric charge of a particle

r radial location at the magnetic equator

RE Earth’s equatorial radius

φ Azimuthal location (i.e., magnetic local time, in radians)

τB Bounce period

τD Drift period

t,∆t Time, small time interval

T updating time for the sequence of outcomes w(t)

V Electric potential

w random variable

W standard deviation of the random variable w

[ ] Square brackets = expected value (average value over an ensemble of fluctuations) of the bracketed quantity

< > Angle brackets = average change per unit time of the bracketed quantity (= [ ]
∆t
)

∝ Proportionality symbol

Frontiers in Astronomy and Space Sciences 10 frontiersin.org

https://doi.org/10.3389/fspas.2023.1232512
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	1 Introduction
	2 Theoretical setup
	2.1 Fields
	2.2 Trapped particles
	2.2.1 Computation of the localized transport and diffusion coefficients
	2.2.2 Contextualization using Hamiltonian equations


	3 On the drift-diffusion equation
	3.1 Equivalence with a radial diffusion equation in the case of an azimuthally symmetric distribution function
	3.2 Change of variables to remove the cross terms

	4 Numerical simulations
	4.1 Numerical setups and methods
	4.2 Results
	4.2.1 Comparison between the results of the test particle experiments and the solution of the drift-diffusion equation
	4.2.2 Visualization of the solution of the drift-diffusion equation


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Author disclaimer
	Supplementary material
	References
	Appendix
	Glossary

