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The study of Martian surface topography is important for understanding the
geological evolution of Mars and revealing the spatial differentiation of the
Martian landscape. Identifying typical landform units is a fundamental task when
studying the origin and evolution of Mars and provides important information
for landing on and exploring Mars, as well as estimating the age of the Martian
surface and inferring the evolution of the Earth's environment. In this paper,
we first investigate Mars exploration, data acquisition and mapping, and the
classification methods of Martian landforms. Then, the identification of several
typical Martian landform types, such as aeolian landforms, fluvial landforms,
and impact landforms, is shown in detail. Finally, the prospects of Mars data
acquisition, landform mapping, and the construction and identification of the
Martian landform classification system are presented. The construction of the
Martian landform classification system and the identification of typical Martian
landforms using deep learning are important development directions in planetary
science.

KEYWORDS

Martian topography, landform classification, target recognition, Mars science, Martian
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1 Introduction

Mars is the most Earth-like planet in the Solar System (Ouyang and Xiao, 2011).
Following studies of the Moon, Mars is a frontier area for space agency competition. As the
planet that is closest to the Earth in the Solar System, Mars has attracted the attention of the
United States, the European Union, India, and the former Soviet Union. Mars exploration
began in October 1960, and vehicles that have successfully reached Mars to carry out
missions include Mariner 9, the Viking series, the Mars Global Surveyor, Mars Odyssey,
Mars Express, and theMars Reconnaissance Orbiter.With the successful return of data from
China's “Tianwen-1” probe, new research on Mars is well underway. Mars exploration is
the first and crucial step from lunar exploration to planetary exploration. The study of the
evolution of Mars is helpful for further exploration of possible life on Mars. Moreover, it has
an important role in promoting evolutionary simulations and future climate predictions of
the Earth.
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The surface environment of Mars resembles those of both the
Earth and the Moon. Mars has a lunar-like impact landform and
volcanic landforms. However, the current state of the Martian
landscape is more complex than that of the moon. Mars has sand
dunes, gullies, alluvial fans and canyons, which have a similar
landscape to that of Earth. Mars has a thin atmosphere and four
seasons. Thus, Mars can be considered a composite version of the
Moon and the Earth, which is a combination of many types of
landforms. Explorations of the geological evolution of Mars and
the conditions needed for the existence of life have attracted the
attention of many researchers. Scientists have begun to search
for areas on Earth that are similar to the Martian landscape to
simulate and study the Martian environment. Mars-like regions
are called “Mars analogs”, such as the Antarctic Dry Valleys, the
Atacama Desert in Chile, the Mars Desert Experiment Station in
Utah, and the Tarim and Qaidam Basins in China (Xiao et al., 2017;
Gou et al., 2018). Mars has many similarities to Earth; therefore, the
study of the morphological characteristics of the Martian landscape
has implications for the study of future evolutionary processes on
Earth.

Martian landforms result from a combination of internal and
external forces, revealing important geological events on Mars.
Martian landforms reflect the highs and lows on the Martian
surface and record the global distribution of water, heat and
atmospheric motion on Mars. Currently, although many countries
and institutions have launched probes toMars, it remains impossible
to bring back Martian samples to be studied, such as through
dating and analysis (Yue et al., 2022). Therefore, it is important
for Martian geomorphology research to focus on the surface
topographic features of Mars based on remote sensing. With the
continuous acquisition of higher-resolution and higher-accuracy
Mars data, the quantification of Martian surface topography
is becoming increasingly urgent. The quantitative analysis of
Mars topographic features can provide a research basis for the
exploration of Mars, landing on Mars, and the exploitation of
Martian resources. Martian geomorphology research deepens
the understanding of geomorphology research on Earth and is
valuable as an important reference for estimating the age of the
Martian surface, selecting of rover landing areas, and the assessing
the evolution of the Martian geological landscape. However,
there are few review studies of Martian surface topography.
In this paper, we reviewed Mars exploration, data acquisition
and mapping, as well as Mars geomorphological classification
and identification methods, to reveal the characteristics of
Martian topography. Additionally, the current research status
of typical geomorphic unit identification was explored, and a
reference and basis for both Mars science and related fields was
provided.

2 Progress in Mars data acquisition
and mapping

Humans have been exploring Mars since the 1960s, and
the launched probes are shown in Table 1. Between 1960 and
2022, more than 40 probe missions were conducted, and a large
amount of scientific data was obtained (Liu et al., 2006). Prior
to the 1990s, Mars exploration projects mainly ended in failure.

However, following the 1990s, the success rate of Mars exploration
projects increased significantly and the requirements for exploration
missions became increasingly high, evolving from flybys to orbits
to landing and rover missions (Di et al., 2018). “Tianwen-1” was
the first Mars probe launched in China, and “orbiting, landing and
patrolling” were completed simultaneously (Li et al., 2015), which
was historically significant.

Exploring the geomorphology, material composition, and
atmospheric activity of Mars was among the main reasons to launch
the probe. The successful launch of the rover has enabled the human
understanding of Mars to evolve from “long-range exploration”
(astronomical telescopes) to “close-range exploration” (orbiters,
Mars rovers, etc.). The image data for Mars include both visible and
thermal infrared images as well as topographic data. Currently, the
above data are available for download on the internet at various
spatial resolutions, as shown in Table 2.

NASA's Mars Survey/Mapping Working Group (MGCWG)
defines the Mars coordinate system in polar and right-handed
systems with specific parameters (Seidelmann, 2002). The stellar
solid coordinate system (Di et al., 2021) used for Mars positioning
and mapping includes the stellar solid Cartesian coordinate system
(Vaucouleurs et al., 1973). The stellar solid geodetic coordinate
system (Duxbury et al., 2002; Archinal et al., 2011), with an origin
and a base plane, is similar to that of the Earth. Kim and Muller,
2008 developed a processing workflow by combining digital terrain
models (DTMs) of 0.5–4 m networks extracted from the High-
Resolution Imaging Science Experiment (HiRISE) and DTMs of
12–18 m grids extracted from stereo image pairs. Yan et al. (2022)
produced a topographic dataset of the “Tianwen-1” landing area
based on the HiRIC stereo photogrammetry processing scheme,
with a ground sampling distance of 0.7 m, a digital orthophoto map
(DOM) resolution of 3.5 m, and a digital elevation model (DEM)
resolution of 3.5 m. Lakdawalla (2005) used Mars Orbiter Laser
Altimeter (MOLA) data to produce a global topographic map of
Mars.

Mars topographic mapping is the most direct means of studying
Martian landforms, which provides a solid foundation for the
selection of the landing area of Mars exploration projects and the
study of the geological evolution of Mars. Currently, the accepted
method of Mars mapping is to divide Mars into 30 panels (MC1-
30), whose latitude and longitude are shown in Table 3. The USGS
published a geologic map of Mars by Tanaka et al. (2014), which
is geologically zoned to map Mars in a geologic age combining
geomorphic unit code, which contains 44 geologic units at a scale
of 1:20,000,000. In terms of a single type of landform mapping,
Piqueux et al. (2019) mapped the location of near-surface ice across
Mars based on the location of ice found under thin sandy soils.
Liu et al. (2020) mapped the global distribution of centroids of
Martian yardangs based on multisource Mars remote sensing data
and provided a presumed time of yardang landform formation.
Zhao (2017) mapped different types of paleolakes in the southern
highlands of Mars, including open-system paleolakes. Dong and his
team (Dong, 2020a) created theworld's first aeolian geomorphologic
map ofMars, classifyingwind erosion andwind accretion landforms
and filling the gap in the thematic map of Mars wind and sand.
Carr (2006), Alemanno et al. (2018), Hynek et al. (2010) and Luo
and Stepinski (2009) mapped the distribution of the global valley
networks on Mars and formed a vector database, among which Luo
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TABLE 1 Mars exploration projects since the 1960s.

Launch time Detector name Nation Result

1960.10 Mars 1960A/1960B Soviet Union Launch failure

1962.10-11 Mars 1962A/1962B Soviet Union Launch failure

1962.11 Mariner 1 Soviet Union Lost midstream

1964.11 Mariner 3 United States Launch failure

1964.11 Detector 2 Soviet Union Lost midstream

1965.7 Mariner 4 United States Successful flyby, first photos of Martian surface

1969.7-8 Mariner 6/7 United States Flyby success, flyby analysis of the Martian atmosphere and surface

1969-1971 Mars 1969A/1969B/Universe 419 Soviet Union Launch failure

1971.5 Mariner 8 United States Launch failure

1971.11 Mariner 9 United States Surrounding success

1971.11 Mars 2 Soviet Union Surrounding success, landing failure

1971.12 Mars 3 Soviet Union Surrounding success, landing failure

1974.2-3 Mars 4/5/6/7 Soviet Union Detector failure

1976.7-9 Viking 1/2 United States Successful orbit, successful landing, first human photos of the surface of Mars

1988-1989 Phobos 1/2 Soviet Union Lost midstream

1992.9 Mars Observer United States Lost midstream

1996.11 Mars 96 Russia Launch failure

1997.7 Pathfinder/Sojourner United States Successful landing, first human rover on Mars

1997.9 Mars Global Surveyor United States Successful orbiting and global mapping of Mars completed

1998.7 Hope Japan Detector failure

1998.12 Mars Climate Orbiter United States Lost midstream

1999.1 Mars Polar Lander United States Landing failure

2001.10 Mars Odyssey United States Surrounding Success

2003.12 Mars Express Europe Surrounding success, landing failure

2004.1 Mars Exploration Rover United States Launch success

2006.3 Mars Reconnaissance Orbiter United States Surrounding success

2007.2 Rosetta Philae Europe Successful fly by

2008.5 Phoenix Mars Lander United States Successful landing, first landing on Martian North Pole

2009.2 Dawn United States Successful fly by

2011.11 Phobos/Ground Russia/China Launch failure

2012.8 Curiosity United States Landing success

2014.9 MAVEN United States Surrounding Success

(Continued on the following page)
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TABLE 1 (Continued) Mars exploration projects since the 1960s.

Launch time Detector name Nation Result

2014.9 Mangalyaan India Surrounding Success

2016.10 ExoMars2016 Europe/Russia Surrounding success, landing failure

2018.11 InSight/MarCO United States Successful landing, successful flyby

2020.7 Perseverance/Ingenuity United States First unmanned Martian helicopter

2021.2 Hope United Arab Emirates Surrounding Success

2021.2 Tianwen-1 China The first time “surrounding, landing, and patrol” were completed at once

TABLE 2 Landform and image data for theMartian surface (available for download online).

Data source Resolution (m) Scale Download address

HiRISE DTM 1 Local https://www.uahirise.org/dtm/index.php?page=2

THEMIS optical image 100 Global http://themis.asu.edu/feature

MOLA DEM 463 Global https://astrogeology.usgs.gov/search/details/Mars/GlobalSurveyor/MOLA/Mars_MGS_MOLA_
DEM_mosaic_global_463m

HRSC DEM, relief 200 Global https://astrogeology.usgs.gov/search/map/Mars/Topography/HRSC_MOLA_Blend/Mars_HRSC_
MOLA_BlendShade_Global_200mp

MRO CTX optical image 6 South pole https://planetarymaps.usgs.gov/mosaic/Mars/Mars_MRO_CTX_SPole_Mosaic_Robbins/

MRO CTX optical image 5 Global https://murray-lab.caltech.edu/CTX/tiles/

and Stepinski (2009) also calculated the volume, length and other
attributes of valley networks.

3 Research progress on the
classification of Martian landform
types

3.1 Macroscopic analysis of the surface
topographic features of Mars

The north‒south dichotomy is the most obvious geomorphic
feature of Mars. The Southern Hemisphere is highly topographically
variable with complex landform types, and includes impact craters,
highlands, canyons, dry rivers, sand dunes, yardangs, volcanoes,
and other landform types of various sizes. There are three clearly
visible impact basins on Mars: the Argyre and Hellas basins in
the south and the Isidis basin near the equator. Figure 1 shows
the global topography of Mars. On the other hand, the Northern
Hemisphere is dominated by low-relief plains. The main northern
plain consists of Vastitas Borealis. The Tharsis bulge is near the
equator, and its northern edge includes three volcanic regions:
OlympusMons, AlbaMons, andTempeTerra.Thepresence of liquid
water onMars has been amystery pursued by scientists. Orosei et al.

(2018), through the Mars Express orbiter mission, found a 20-
km-wide body of liquid water at a depth of 1.5 km below the ice
cap.

3.2 The basis of Martian landform
classification

The landform types mentioned above have been influenced by
endogenic and exogenic forces. The geological lifetime of Mars
ended when the magma activity in the interior of Mars ceased.
Subsequently, the external magnetic field of Mars disappeared with
the disappearance of nuclear convection. The disappearance of the
magnetic field left Mars completely exposed to solar wind and
cosmic high-energy rays.The combination of endogenic forces, such
as early volcanic eruptions and tectonic movements, and exogenic
forces, includingmeteorite impacts, wind accumulation and erosion,
and water scouring, have resulted in the formation of a variety of
landforms.

The common landforms included impact craters, volcanic
landforms, glacial landforms, valley networks, and sand dunes on
the surface of Mars and Earth (Wang, 2018). Typical flowing water
features, such as alluvial fans and canyons, were preserved on
the Martian surface, indicating the possibility of liquid water on
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TABLE 3 Mars Quadrangles (modified from https://marspedia.org/Mars_
Quadrangles).

Number Name Latitudes Longitudes

MC-01 Mare Boreum 65°–90° N 180°W-180°E

MC-02 Diacria 30°–65° N 120°–180° W

MC-03 Arcadia 30°–65° N 60°–120° W

MC-04 Mare Acidalium 30°–65° N 0°–60° W

MC-05 Ismenius Lacus 30°–65° N 0°–60° E

MC-06 Casius 30°–65° N 60°–120° E

MC-07 Cebrenia 30°–65° N 120°–180° E

MC-08 Amazonis 0°–30° N 135°–180° W

MC-09 Tharsis 0°–30° N 90°–135° W

MC-10 Lunae Palus 0°–30° N 45°–90° W

MC-11 Oxia Palus 0°–30° N 0°–45° W

MC-12 Arabia 0°–30° N 0°–45° E

MC-13 Syrtis Major 0°–30° N 45°–90° E

MC-14 Amenthes 0°–30° N 90°–135° E

MC-15 Elysium 0°–30° N 135°–180° E

MC-16 Memnonia 0°–30° S 135°–180° W

MC-17 Phoenicis Lacus 0°–30° S 90°–135° W

MC-18 Coprates 0°–30° S 45°–90° W

MC-19 Margaritifer Sinus 0°–30° S 0°–45° W

MC-20 Sinus Sabaeus 0°–30° S 0°–45° E

MC-21 Iapygia 0°–30° S 45°–90° E

MC-22 Mare Tyrrhenum 0°–30° S 90°–135° E

MC-23 Aeolis 0°–30° S 135°–180° E

MC-24 Phaethontis 30°–65° S 120°–180° W

MC-25 Thaumasia 30°–65° S 60°–120° W

MC-26 Argyre 30°–65° S 0°–60° W

MC-27 Noachis 30°–65° S 0°–60° E

MC-28 Hellas 30°–65° S 60°–120° E

MC-29 Eridania 30°–65° S 120°–180° E

MC-30 Mare Australe 65°–90° S 180° W—180° E

Mars. Atmospheric movement and the high diurnal temperature
differences have contributed to the formation of typical aeolian
landforms, such as sand dunes and yardangs. The University of
WesternOntario (Canada) initiated the InteractiveMapping ofMars

(https://imars.uwo.ca/tutorial/) project, which classified Martian
landforms into aeolian, water, glacial/periglacial, impact cratering,
mass movement and volcanic landforms. Di et al. (2021) classified
the landforms according to the causes of formation, including
aeolian landforms, fluvial landforms, and tectonic landforms
(referring to impact geomorphology and volcanic geomorphology).
The above macroscopic landform classifications were further
subdivided based on morphology and formation. OuYang and
Zou, 2015 proposed classifying Martian landforms into aeolian,
fluvial, canyon, impact, volcanic, and glacial landforms. This
classification, combined with the traditional method of Martian
landform classification, was used in this paper according to the
relevant formation mechanisms, as shown in Figure 2.

In addition, the geomorphological classification systems of the
Earth and Moon can aid in the geomorphological classification
of Mars. The three-level and nine-class classification system of
Earth (Institute of Geography Chinese Academy of Sciences, 1987;
Geomorphic Map Editorial Committee of the People's Republic
of China, 2009; Zhou et al., 2009) includes the geomorphological
category, geomorphological class, geomorphological shape (three
levels), and macromorphological type subclass, land elevation
and seafloor bathymetry subclass, maincrop force type subclass,
maincrop force mode of action subclass, material composition
and lithology subclass, geomorphic age subclass, combined
morphological subclass, micromorphological subclass, and slope
morphological subclass (nine classes). The three-level and eight-
class classification system of the Moon (Cheng et al., 2018; Liu et al.,
2022) does not include the maincrop force mode of action
compared with the three-level and nine-class classification systems
of Earth.

3.3 Method of classifying Martian
landforms

In terms of overall classification,Martian landform classification
methods can be divided into two categories.

One category is mainly based on surface elevation, relief,
slope and other features, which can be used to parameterize
the surface morphology or extract surface features to classify
landforms with clustering or machine learning methods. Bue
and Stepinski, 2007 classified Martian landforms into highlands,
impact craters, lowlands, high-relief landforms, and channels based
on six topographic parameters (elevation, flood, slope, flooded
slope, contributing area, and flooded contributing area), using a
self-organizing mapping method and Ward clustering. However,
a limitation was misclassification for certain features, such as
craters. Wang et al. (2017) classified lunar landforms into high-
relief, highlands, lowlands, impact craters and other landform
types. Comparably, Wang et al. (2017) added relief to topographic
parameters and replaced Ward clustering with ISO clustering to
achieve an overall accuracy of 83.34% and a kappa coefficient of
up to 0.77, despite certain limitations influenced by aggradation,
degradation, and complex landform types.

Additionally, with the rapid development of machine learning,
deep learning and other methods to segment the content of images
at the pixel level, image segmentation has been used in classification
tasks. The related steps include creating training sets, designing
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FIGURE 1
Global topographic map of Mars (MOLA DEM; Resolution: 463 m per pixel.) (https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOLA/
Mars_MGS_MOLA_ClrShade_merge_global_463m).

FIGURE 2
Types of Martian landforms.

network model structures, and adjusting parameters, among others,
for the binary/multiclass segmentation of landform elements. Shang
and Barnes, 2013 used the fuzzy rough feature selection method
combinedwith a support vectormachine (SVM) to classify landform
types in a single Mars image, and the comparative experimental
results showed that the method outperformed decision trees and
K-nearest neighbor classification. Jiang et al. (2021) developed a
new end-to-end deep learning framework, rotated SSD, to localize
and identify different Martian landforms at the same time by
using a rotatable-based anchor box mechanism and introducing
unsupervised training based on autoencoders. Barrett et al. (2022)
used HiRISE images of Oxia Planum and Mawrth Vallis and
developed a deep learning terrain classification system (NOAH-
H) based on semantic segmentation with deep neural networks.
Wright et al. (2022) used NOAH-H to classify four HiRISE images
of the terrain near the 2020 Perseverance Rover landing site at

Jezero based on impact crater images, and the classification results
agreed with the manually created geological maps. Rothrock et al.
(2016) developed an algorithm (SPOC) based on deep convolutional
neural networks (CNNs) that can identify terrain elements, such
as sand, bedrock, wrinkled ridges, and steep slopes, and the
algorithm was successfully applied for terrain identification in
the Mars 2020 rover landing zone and MSL mission sliding
prediction. Wang et al. (2021) designed a new framework for Mars
rover image classification with semisupervised contrast learning; it
ignores intraclass pairs in labeled data and counterexample pairs
in unlabeled data, thus substantially improving the classification
model.

With the rapid development of computer vision, image
segmentation, deep learning and other fields, Martian landform
classification research has also been rapidly developed, and an
increasing number of types of landform elements can now be
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recognized, thus providing the basis for research on landform
recognition and the evolution pattern of Mars landings.

4 Progress in the identification of
typical landform types on Mars

4.1 Aeolian landforms

Aeolian landforms are themost prevalent and active geomorphic
features onMars, and the ancient Chinese name forMars “Yinghuo,”
is in part due to the sand phenomenon that causes Mars to be bright
and pale (Dong et al., 2020b). Li et al. (2022) developed a similar
visual degradation process based on the remote sensing images of
“Tianwen-1” to synthesize real dust images and used these real dust
images to train a deep learning model to identify dust-free images,
inspired by the fog formation process on Earth. Yao, 2021 identified
882 dust storms with a diameter of 4,000 km in the southern part of
Utopia based on Tianwen-1 landing area image data and analyzed
their causes and distribution characteristics.

Sand dunes are the most typical manifestation of aeolian
landforms. The methods for identifying sand dunes on Mars can be
classified into four types.

1) Visual observation: Hayward et al. (2007) produced a database
of medium and large sand dunes with areas larger than 1 km2,
covering 550 dunes between 65°N and 65°S; however, many
dunes are still not included in the database. “Visual observation”
could obtain sand dunes intuitively and qualitative information,
while it is inefficient for analyzing large-scale datasets.

2) Extracting gradient and grayscale statistical features:
Carrera et al. (2019) used gradient and statistical features
to structure a probabilistic classifier based on the R-vine
distribution to identify Martian dunes and compared it with
a centralized advanced classification algorithm, and superior
results were obtained. “Extracting gradient and grayscale
statistical features” can efficiently provide quantitative data
related to texture and shape efficiently. Moreover, it could be
used as input features for machine learning models. However, it
is sensitive to variations in lighting and image quality and may
miss complex patterns.

3) Machine learning and deep learning: Rubanenko et al. (2021)
used Mask R-CNN based on the MRO's background camera
(CTX) for the automatic extraction of Martian dunes and
then mapped the distribution of the full Martian dune field,
discovering that dunes were more abundant in the Northern
Hemisphere than in the Southern Hemisphere, which might be
attributed to latitudinally dependent wind regimes, sediment
supply, or sediment availability. “Machine learning and deep
learning” can be used to process large-scale image analysis and
reduce human subjectivity. Nevertheless, it requires substantial
training data and depends on the data quality.

4) Combining machine learning with feature extraction:
Bandeira et al. (2010) extracted gradient and grayscale
histogram features from images aggregated into larger areas,
which constituted detection units, and combined boosting and
SVM classifiers to extract Martian surface dunes with a 98.7%
recognition rate. This method combines the strengths of both

approaches, while it requires expert knowledge in both feature
extraction and machine/deep learning. This high complexity
makes it difficult to interpret subsequent results.

Machine/deep learning requires a complete training dataset.
The diverse shapes (Li, 2018) and sizes (Mandt and LeoneYardang,
2015) of yardang landforms make it difficult to establish a complete
training dataset or a unified identification standard. Therefore,
the identification of yardang landforms is primarily performed
manually. Researchers have focused on the color, morphology, and
formation conditions of yardang landforms to characterize the
Martian atmospheric environment and prevailing wind direction.
Ward (1979), Bridges et al. (2007), and Zimbelman and Griffin,
2010 conducted analyses of the aspect ratio, scale distribution,
and material properties of large-scale yardang landforms in the
Martian Amazonian plain and Medusa trough layer, respectively.
Additionally, some scholars have focused on dating yardang
landforms (Kerber et al., 2011; Zimbelman and Scheidt, 2012;
Liu et al., 2021a).

The identification of transverse aeolian ridges (TARs) is largely
based on their sediment composition (Fenton et al., 2003; Balme
and Bourke, 2005; Balme et al., 2008; Bourke et al., 2003) and
the difference in albedo (Bouke et al., 2008; Gou et al., 2022) using
visual interpretation. Lu et al. (2022) identified four crescent-shaped
lateral sand ridges based on Zhurong rover exploration data and
analyzed the erosion process of these beds. The orientation of these
beds is related to the angle between the bed crest and the wind
direction. Several typical aeolian landforms are shown in Figure 3.

4.2 Fluvial landforms

Fluvial landforms have long been regarded as the best evidence
for the existence of liquid water on the Martian surface, which is
essential for the existence of life and an indication of the warm
and humid climate that once existed on Mars. Fluvial landforms
can be categorized into narrowly defined fluvial landforms and
broadly defined fluvial landforms. Narrowly, Ouyang and Zou
(2015) further classified the fluvial landforms of Mars into outflow
channels, valley networks, and gullies according to their size scale,
as shown in Figure 4. Broadly, Zhao et al. (2021) classified the
fluvial landforms of Mars into valley networks, outflow channels,
paleolake basins, and alluvial fans and deltas. In this article,
fluvial landforms were discussed from a narrow perspective,
namely, outflow channels, valley networks, and gullies. These three
landforms were distinguished by their sizes, patterns, and formation
mechanisms.

The outflow channels on Mars formed during catastrophic
floods (Cutts and Blasius, 1981), with a width of 1 km to several
hundred km. Consequently, the age of their formation was deduced
to be Hesperian (Liu et al., 2021b). Outflow channels are mostly
found in fracture zones or near canyons. There are distinct tear-
drop islands in the channels. In addition to their size, another
obvious difference between valley networks and outflow channels
is dendritic branching. Valley networks are mostly found in the old
southern hemisphere and are very rare in the younger northern
hemisphere, with a width of several kilometers. This suggested that
valley network formation occurred on early Mars (Tanaka et al.,
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FIGURE 3
Several typical aeolian landforms (left, dunes, HiRISE; middle, TARs, HiRISE; right, yardangs, Themis day IR; modified after Balme et al., 2008).

FIGURE 4
Several typical fluvial landform types (left, outflow channels, MOLA hillshade; middle, valley networks, Themis day IR; right, gullies, HiRISE).

2014; Ouyang and Zou, 2015; Liu et al., 2021b). The traditional
view holds that valleys resulted from surface runoff on early Mars,
which climate was warm and wet (Carr, 2006; Hynek et al., 2010).
Another view holds that valleys resulted from groundwater loss
or glaciation. Gullies are distributed along slopes, with a width
of several meters. Their formation is controversial, and may have
included melting snow or CO2 ice. Generally, the identification of
gullies is based on high-resolution data due to their small-scale
features.

The methods used to identify valley networks can be divided
into 1) Visual interpretation: Carr (2006) mapped the distribution
of Martian valley networks and outflow channels. Hynek et al.
(2010) mapped a Mars-wide network of canyons based on visible,
infrared, and topographic data and analyzed the reasons for
the presence of these canyons. Alemanno et al. (2018) modified
the approach of Carr (2006), and the results showed that the
valley network of Mars is predominantly located in the Southern
Hemisphere, with small distributions in the Northern Hemisphere
on the rim of the plateau and near Elysium volcano. “Visual
interpretation” relies on the level of experts and costs a lot of
manpower and time, which is similar with the pros and cons of
visual interpretation for aeolian landforms. 2) Hydrological analysis:
Stepinski and Collier (2004) proposed a method for extracting
drainage networks from lower basins using a contributing area
threshold, which was validated for 28 Noachian-age regions on
Mars, with high efficiency and accuracy. Gou et al. (2018) extracted
valley networks based on the DEM data from the Evros Vallis

basin using traditional hydrological analysismethods, such as filling,
flow direction analysis, catchment accumulation, and catchment
area calculation. “Hydrological analysis” relies on quantitative
algorithms and can provide more objective results compared
to visual interpretation, reducing the potential for human bias.
However, the accuracy of hydrological analysis methods depends on
the validity of certain assumptions, which may not hold true in all
situations. Furthermore, it is limited by the resolution of DEM. 3)
Extraction of elevation change characteristics: Molly and Stepinski
(2007) proposed a DEM-based method for the identification
of landforms characterized by curvature and separated valleys
from other landforms with convex shapes and then reconnected
the segments along the drainage networks. The research about
identification of gullies is rare due to the data resolution limitations
(Li et al., 2015). Li et al. (2015) extracted Martian gullies in six
regions using HiRISE images based on mathematical morphology,
the bottom-hat transform and path opening and closing, with
detection rates reaching 76%–94%. “Extraction of elevation change
characteristics” is suitable for regional and global studies, while
choosing appropriate parameters for elevation change analysis can
be challenging.

4.3 Impact landforms

Impact landforms include impact craters and impact basins,
such as the geomorphic units shown in Figure 5. As tracers of
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FIGURE 5
Impact crater and impact basin. (MOLA hillshade; resolution: 463 m/pixel).

surface processes, impact craters are informative for studying
subsurface minerals and useful for dating the planetary surface
(Neukum et al., 1975; Wilhelms et al., 1987; Hartmann and
Neukum, 2001). Thus, related studies are important for assessing
planetary geomorphology. Furthermore, impact basins are often
regarded as impact craters when they are identified. Mars and the
Moon are largely similar in their morphological characteristics
regarding impact crater landforms, and therefore, this paper
combines the progression of impact crater studies on Mars and
the Moon.

The methods for identifying impact craters can be divided
into manual and automatic identification methods. Manual
identification aims to identify accurate boundaries based on the
visual interpretation of impact craters in images, topographic data
and the subsequent derived data. However, manual identification
is time-consuming and laborious, relying heavily on expert
knowledge of individual identifiers, and the identification standards
are inconsistent. Currently, the published Mars impact crater
databases include the Barlow (1988) database, MA132843GT
(Salamuniccar et al., 2012; Robbins and Hynek, 2010; Robbins and
Hynek, 2012) database. The Barlow database manually extracted
25,826 impact craters with diameters greater than or equal to 8 km
and relatively young ages based on Viking images, of which 60%
were formed by heavy bombardment. The MA132843GT catalog is
based on the MA130301GT catalog (Salamunićcar et al., 2011b),
which combines manually mapped impact craters and 72,668
impact craters extracted by automatic identification algorithms. The
Robbins database contains 384,343 impact craters with diameters
greater than or equal to 1 km, which were manually identified from
images.

The automatic recognition algorithm saves time and effort
compared with manual recognition, and the recognition standard
is uniform. Automatic recognition algorithms can be roughly
divided into four categories: 1) Traditional edge detection and
circle fitting algorithms. Edge extraction is achieved by using
grayscale mutation on both sides of the impact crater rim
(Kim et al., 2005), such as via the Sobel operator (Lu et al., 2013),
the Robert operator (Yuan et al., 2013), the Prewitt operator, the
Canny algorithm (Salamunićcar et al., 2010; Jiang et al., 2013),
the region growing method (Luo et al., 2014), and the Hough

transform. In addition, the bright and dark areas formed by
impact craters in optical images (Urbach and Stepinski, 2009)
can be paired to identify impact craters. This method can be
easily understood, while the results were fitting circles, instead
of accurate boundaries. 2) Digital terrain analysis method. Based
on the changes in terrain factors, such as elevation and slope
at the rim of a crater, watershed analysis, contour lines, and the
extraction of terrain features were used to identify impact craters
from a three-dimensional perspective (Bue and Stepinski, 2007;
Luo et al., 2013; Xie et al., 2013; Liu et al., 2017; Chen et al., 2018).
This method obtained changes from elevation and variations in
crater boundaries. However, it may provide low efficiency and
be influenced easily by minor terrain mutations. 3) Traditional
machine learning algorithms. These methods tend to first express
the features of impact craters using feature descriptors, such
as Haar and PHOG, and then combine them with traditional
machine learning models, such as SVM and AdaBoost (Ding et al.,
2013; Bandeira et al., 2014), to perform impact crater detection.
The quality of the training results depends on the quality of
feature selection (Liu et al., 2023). 4) Deep learning algorithms.
Deep learning is data-driven and is used to delegate feature
selection to a machine learning algorithm. Deep learning can
be used to extract features automatically from images, which
is comparable to the idea of a “black box”. Nevertheless, it
is highly dependent on the quality of the data and uneasily
interpretative (Hsu et al., 2021; Silburt et al., 2019; Yang et al.,
2020; Zheng et al., 2020; Gao et al., 2022). Combining digital
terrain analysis and deep learning may be a further development
direction, which could consider geographical information. The
results could provide accurate boundaries over large-scale
regions.

4.4 Glacial landforms

Martian glacial landforms are closely related to the presence
of water, the stable presence of which is necessary to support life.
The topography of Mars has a distinct north‒south dichotomy, with
high south and low north topography. The large topographic height
difference redistributes water between the poles, resulting in glacial
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FIGURE 6
Glacier-like features on Mars (HiRISE).

landforms in the mid-latitudes (Hepburn et al., 2020), as shown in
Figure 6.

Souness and Hubbard, 2012 identified and cataloged Martian
glacier-like landforms from 8058 CTX images, 1,309 of which were
concentrated at mid-latitudes of 39.3°N and 40.7°S, and inferred
the response mechanisms of Martian glacial landforms based on
latitude and altitude. There are various types of Martian glacial
landforms, including concentric crater fills (CCFs), lobed valley
fills (LVFs), lobate debris aprons (LDAs), and viscous flow features
(VFFs) (Levy et al., 2010; Pedersen and Head, 2010; Liu et al.,
2021c). Milliken et al. (2003) used 13,000 Mars orbiting camera
images distributed globally to identify 146 images containing VFFs
and marked the locations of these VFFs as points. Galofre et al.
(2022) combined data from CaSSIS, SHARAD, CTX, and HiRISE
to explore the deformation history of tongue-shaped rocky debris
slopes, their internal structure, and their influence on regional
climate change from surface morphology, which can be used to
infer past glaciation on Mars. Petersen et al. (2018) used SHARAD
radar data to estimate the water ice content (greater than 80%) in
LDAs. Furthermore, only a small fraction of cases that matched
typical surface water erosion indicated extensive subglacial erosion
on the Martian surface after analyzing more than 10,000 Martian
valleys.

In addition to Martian glacial landforms (beyond CCFs,
LVFs, LDAs, and VFFs), periglacial landforms, such as pingos
(Dundas et al., 2008; Richard et al., 2021), scallop-shaped
depressions (Lefort et al., 2010), polygonal terrains (Soare et al.,
2021), and thermokarst depressions (Bernhardt et al., 2016), are also
present. Especially, some glacial-relevant landforms were found in
the mid-latitudes of the Utopia Planitia. Wang et al. (2021) applied
2D-PCA and identified potential water ice in Utopia Planitia using
FP-SPR data from the Zhurong rover. Bina and Osinski, 2021
found a new landform “decameter-scale rimmed depressions”
in Utopia Plantita using SHARAD, which represents a further
marker for the presence of ground ice in the northern plains of
Mars.

Although glacial landforms, such as VFFs, CCFs, LVFs, and
LDAs, have been discussed, studies have focused more on the
formation, evolution, material composition, and structure of the

above landforms and less on their identification. Additionally,
the relationship of periglacial and glacial landforms between
Mars climate evolution has been a focus of glacial landform
research.

5 Prospects for studying Martian
surface topography

Since Martian samples cannot be returned to Earth at
present, the study of the surface topographic features of Mars
based on remote sensing is still a very important direction of
research, which has promoted a better understanding of the
geological development and evolution of Mars, the dating of
typical geomorphic units and the inference of its genesis. The Mars
exploration project, the production of Mars optical image data and
derivative products, and the study ofMartian aeolian landforms and
impact landforms have received more attention than other topics.
However, more focus and deeper research are still needed in the
directions of Martian landform classification and mapping, fluvial
and glacier landform identification, and comparative planetary
studies.

5.1 Mars data acquisition and mapping

Topographic data are characterized without the limitation of
optical light and darkness and reflect the real terrain. Global-
scale Martian data are usually characterized by low resolution,
and localized data have a high resolution but a limited range. In
low-resolution data, some fine-textured geomorphic units, such as
gullies, miniature yardangs, and secondary impact craters, cannot
be identified. Data resolution is an important factor affecting the
recognition accuracy. However, the current Mars global DEM data
resolution is 463 m/pixel (the blended DEM from MOLA and
HRSC data resolution has a resolution of 200 m/pixel), which is
not sufficient for the recognition and analysis of fine features.
The production of higher-resolution global-scale Mars topographic
data would be beneficial for the identification of finer geomorphic
units.

In Mars geomorphology mapping research, some specific
geomorphological units and Mars geological maps have been
produced, but there is a lack of global geomorphological
regionalization maps for Mars. Therefore, the digital
geomorphological regionalization methods of the Earth and Moon
could be used as references to draw the Mars geomorphological
regionalization classification map based on the topographic indexes
of Mars, such as relief, slope and elevation. This approach could aid
in exploring the spatial differentiation characteristics of the Mars
surface evolution process.

5.2 Construction of a classification system
for Martian landforms

Mars has landforms that are typical of both the Earth and
the Moon. The “three classes and nine levels” classification system
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for Earth's landforms and the “three classes and eight levels”
classification system for lunar landforms are useful for establishing
a complete classification system ofMartian landforms. However, the
applicability of these classification systems to Martian landforms
needs to be further explored. At present, studies on impact
craters (Lei, 2017), sand dunes (Li et al., 2020), and yardangs
(Liu, 2021) have established a detailed morphological index
system, but index systems for describing other geomorphic types
has been less studied. Most of the existing geomorphological
classification studies (Bue and Stepinski, 2006; Wang et al., 2017;
Deng et al., 2022; Liu et al., 2022) have divided geomorphological
units into subtypes based on morphology. However, there have
been few studies of descriptive indexes reflecting the formation
or material composition. Combining the cause of formation
and morphology is the key to geomorphological classification
(Shen et al., 1982; Cheng et al., 2011). Combined with multisource
remote sensing data, including visible images, thermal infrared
images and topographic data, descriptive indexes considering
the formation, material composition and geological age was
introduced to build a complete index system and a database of
corresponding geomorphic units. The construction of an index
system for Martian geomorphic classification needs to be further
explored.

5.3 Identification of typical geomorphic
units of Mars

In terms of recognizable objects, automatic recognition has
been rapidly developed in the field of impact crater recognition;
however, to recognize more complex geomorphic units, such
as sand dunes, yardangs, canyons, valley networks, gullies and
degraded impact craters, manual recognition is still the main
identification method. Manual identification could represent
the real morphology accurately, but it is time-consuming and
laborious and depends on the professional knowledge level of
the experts. That results in heterogeneous mapping standards
and heterogeneous mapping quality. Therefore, in research
on the recognition of geomorphological units with complex
morphology, automatic recognition methods need to be studied
further.

In terms of the applicable scope of the recognition methods,
most existing terrain classification methods are applicable to small-
scale or local-scale terrain classification, while there are fewer
automatic recognition methods applicable to large-scale or even
global-scale classification. Although large-scale catalogs of impact
craters (Robbins and Hynek, 2012), sand dunes (Hayward et al.,
2007), yardangs (Liu, 2021), valley networks (Alemanno et al.,
2018), and glacial-like landforms (Souness and Hubbard, 2012)
were proposed, these features were identified manually rather
than automatically. Because the accuracy, efficiency and robustness
of these automatic methods for the global-scale regions were
unsatisfactory, the automatic methods were typically applied in
local regions. The methods that are applicable only for local small-
scale target recognition lose the essential advantages of automatic

recognition methods. Therefore, automatic recognition methods
that are applicable at large and global scales require further
research.

In terms of the requirements of recognition methods based
on the users' level of knowledge, the current Mars morphology
recognition are mostly based on traditional machine learning,
with a lack of end-to-end deep learning methods. On the one
hand, the effect of machine learning depends on feature selection
(Guyon and Elisseeff, 2003; Domingos, 2012), which requires a
high level of expertise for the user. Deep learning is data-driven
with the ability of automatic representation learning (Qian et al.,
2022; Chen et al., 2023). On the other hand, traditional machine
learning provides interpretable models, while deep learning is often
seen as a “black box”. It is difficult to interpret the modeling
process. Furthermore, deep learning requires more computational
resources and larger training datasets than machine learning.
Currently, end-to-end deep learning models are widely used in
various professional fields, and it is hoped that they can be
applied to intelligent terrain type recognition in the case of Mars.
Broadly applicable training datasets and well-performing models
are expected to be developed to identify multiple Martian terrain
units.

Author contributions

DL: Investigation, Writing–original draft, Writing–review
and editing, Conceptualization. WC: Conceptualization, Funding
acquisition, Project administration, Supervision, Writing–review
and editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article. This
article was funded by the B-type Strategic Priority Program of
the Chinese Academy of Sciences, Grant No. XDB41000000
and National Natural Science Foundation of China, No.
42130110.

Acknowledgments

We appreciate the detailed suggestions and constructive
comments from the editor and the reviewers.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Frontiers in Astronomy and Space Sciences 11 frontiersin.org

https://doi.org/10.3389/fspas.2023.1275516
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Danyang and Weiming 10.3389/fspas.2023.1275516

Publisher's note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Alemanno, G., Orofino, V., and Mancarella, F. (2018). Global map of Martian fluvial
systems, age and total eroded volume estimations. Earth Space Sci. 5 (10), 560–577.
doi:10.1029/2018ea000362

Archinal, B. A., A’Hearn, M. F., Bowell, E., Conrad, A., Consolmagno, G. J., Courtin,
R., et al. (2011). Report of the IAU working group on cartographic coordinates
and rotational elements: 2009. Celest. Mech. Dyn. Astron. 109 (2), 101–135. doi:10.
1007/s10569-010-9320-4

Balme, M., Berman, D. C., Bourke, M. C., and Zimbelman, J. R. (2008). Transverse
aeolian ridges (TARs) on Mars. Geomorphology 101 (4), 703–720. doi:10.1016/j.
geomorph.2008.03.011

Balme, M. R., and Bourke, M. C. (2005). Preliminary results from a new study of
transverse aeolian ridges (TARS) on mars//36th lunar and planetary science conference.
Houston, Texas: The Open University 1892.

Bandeira, L., Machado, M., and Pina, P. (2014). Automatic detection of sub-km
craters on the Moon. Lunar Planet. Sci. Conf.

Bandeira, L., Marques, J. S., and Saraiva, J. (2010). Automated detection of sand
dunes on Mars//7th international conference on image analysis and recognition. Image
Analysis Recognit. 6112 (1), 306–315. doi:10.1007/978-3-642-13775-4_31

Barlow, N. G. (1988). Crater size-frequency distributions and a revised Martian
relative chronology. Icarus 75 (2), 285–305. doi:10.1016/0019-1035(88)90006-1

Barrett, M. A., Balme, R. M., Woods, M., Karachalios, S., Petrocelli, D., Joudrier, L.,
et al. (2022). NOAH-H, a deep-learning, terrain classification system for Mars: results
for the ExoMars Rover candidate landing sites. Icarus 371 (1), 114701. doi:10.1016/j.
icarus.2021.114701

Bernhardt, H., Reiss, D., Hiesinger, H., and Ivanov, M. A. (2016). The honeycomb
terrain on the Hellas basin floor, Mars: a case for salt or ice diapirism. J. Geophys. Res.
Planets 121 (4), 714–738. doi:10.1002/2016je005007

Bina, A., and Osinski, R. G. (2021). Decameter-scale rimmed depressions in Utopia
Planitia: insight into the glacial and periglacial history of Mars. Planet. Space Sci. 204,
105253. doi:10.1016/j.pss.2021.105253

Bourke,M. C.,Wilson, S. A., andZimbelman, J. R. (2003).Thevariability of transverse
aeolian ridges in troughs on Mars//34th Lunar and Planetary Science Conference.Texas:
League, 2090.

Bridges, N. T., Geissler, P. E., Mcewen, A. S., Thomson, B. J., Chuang, F.
C., Herkenhoff, K. E., et al. (2007). Windy Mars: a dynamic planet as seen by
the HiRISE camera. Geophys. Res. Lett. 34 (23), 497–507. doi:10.1029/2007gl03
1445

Bue, B. D., and Stepinski, T. F. (2006). Automated classification of landforms onMars.
Comput. Geosci. 32 (5), 604–614. doi:10.1016/j.cageo.2005.09.004

Bue, B. D., and Stepinski, T. F. (2007). Machine detection of Martian impact craters
from digital topography data. IEEE Trans. Geosci. Remote Sens. 45 (1), 265–274. doi:10.
1109/tgrs.2006.885402

Carr,M.H. (2006).The surface of mars. Cambridge, UK: CambridgeUniversity Press.

Carrera, D., Bandeira, L., Santana, R., and Lozano, J. A. (2019). Detection of sand
dunes on Mars using a regular vine-based classification approach. Knowl. Based Syst.
163 (1), 858–874. doi:10.1016/j.knosys.2018.10.011

Chen, M., Liu, D. Y., Qian, K. J., Li, J., Lei, M., and Zhou, Y. (2018). Lunar crater
detection based on terrain analysis and mathematical morphology methods using
digital elevation models. IEEE Trans. Geosci. Remote Sens. 56 (7), 3681–3692. doi:10.
1109/tgrs.2018.2806371

Chen, M., Qian, Z., Boers, N., Jakeman, A. J., Kettner, A. J., Brandt,
M., et al. (2023). Iterative integration of deep learning in hybrid Earth
surface system modelling. Nat. Rev. Earth Environ. 4, 568–581. doi:10.1038/
s43017-023-00452-7

Cheng, W. M., Liu, Q. Y., and Wang, J. (2018). A preliminary study of classification
method on lunar topography and landforms. Adv. Earth Sci. 33 (9), 885–897. doi:10.
11867/j.issn.1001-8166.2018.09.0885

Cheng, W. M., Zhou, C. H., Li, B. Y., Shen, Y., and Zhang, B. (2011). Structure and
contents of layered classification system of digital geomorphology for China. J. Geogr.
Sci. 21 (5), 771–790. doi:10.1007/s11442-011-0879-9

Cutts, J. A., and Blasius, K. R. (1981). Origin of Martian outflow channels: the Eolian
hypothesis. J. Geophys. Res. 86 (NB6), 5075–5102. doi:10.1029/jb086ib06p05075

Deng, J. Y., Cheng, W. M., Liu, Q. Y., Jiao, Y. M., and Liu, J. Z. (2022). Morphological
differentiation characteristics and classification criteria of lunar surface relief amplitude.
J. Geogr. Sci. 32 (11), 2365–2378. doi:10.1007/s11442-022-2052-z

Di, K. C., Liu, B., and Liu, Z. Q. (2018). Review and prospect of Mars mapping
technique using remote sensing data. Spacecr. Eng. 27 (1), 10–24. doi:10.3969/j.issn.
1673-8748.2018.01.002

Di, K. C., Ye, L. J., Wang, R. Z., and Wang, Y. (2021). Advances in planetary target
detection and classification using remote sensing data. Nat. Remote Sens. Bull. 25 (1),
365–380. doi:10.11834/jrs.20210231

Ding, M., Cao, Y. F., and Wu, Q. X. (2013). Novel approach of crater detection by
crater candidate region selection and matrix-pattern-oriented least squares support
vector machine. Chin. J. Aeronaut. 26 (2), 385–393. doi:10.1016/j.cja.2013.02.016

Domingos, P. (2012). A few useful things to know about machine learning.Commun.
ACM 55 (10), 78–87. doi:10.1145/2347736.2347755

Dong, Z. B. (2020a). Aeolian geomorphologic map of mars. Scale 1:12,000,000. Xi’an
Map Press.

Dong, Z. B., Lu, P., and Li, C. (2020b). Research methodology of Martian aeolian
geomorphology. Adv. Earth Sci. 35 (8), 771–788.

Dundas, C.M.,Mellon,M.T.,McEwen,A. S., Lefort, A., Keszthelyi, L. P., andThomas,
N. (2008).HiRISE observations of fracturedmounds: possibleMartian pingos.Geophys.
Res. Lett. 35, L04201. doi:10.1029/2007GL031798

Duxbury, T. C., Krik, R. L., and Archinal, B. A. (2002). Mars geodesy/cartography
working group recommendations on mars cartographic constants and coordinate
systems//Proceeding of the ISPRS Commission IV Symposium “Geospatial Theory,
Processing and applications”. Ottawa: ISPRS Comission IV.

Fenton, L. K., Bandfield, J. L., and Ward, A. W. (2003). Aeolian processes in Proctor
Crater onMars:Sedimentary history as analyzed frommultiple data sets. J. Geophys. Res.
Planets 108 (E12), 5129. doi:10.1029/2002JE002015

Galofre, G. A., Whipple, K. X., Christensen, P. R., and Conway, S. J. (2022).
Valley networks and the record of glaciation on ancient Mars. Geophys. Res. Lett. 49,
e2022GL097974. doi:10.1029/2022GL097974

Gao, A., Zhou, Y. J., and Wang, J. W. (2022). Lightweight deep learning method for
Lunar surface crater detection. J. Astron. 43 (6), 830–838. doi:10.3873/j.issn.1000-1328.
2022.06.014

Geomorphic Map Editorial Committee of the People’s Republic of China (2009).
Geomorphic atlas of the People’s Republic of China (1:100000). Science Press.

Gou, S., Yue, Z. Y., Di, K. C., and Xu, Y. (2018). Quantitative comparison of
morphometric and hydrological characteristics of valley networks between Evros Vallis
on Mars and Kaidu River in Tarim Basin as terrestrial analog. J. Remote Sens. 22 (2),
313–323. doi:10.11834/jrs.20187014

Gou, S., Yue, Z. Y., Di, K. C., Zhao, C., Bugiolacchi, R., Xiao, J., et al. (2022). Transverse
aeolian ridges in the landing area of the tianwen-1 Zhurong rover on utopia Planitia,
Mars. Earth Planet. Sci. Lett. 595 (10), 117764. doi:10.1016/j.epsl.2022.117764

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature selection.
J. Mach. Learn. Res. 3, 1157–1182. doi:10.5555/944919.944968

Hartmann, W. K., and Neukum, G. (2001). Cratering chronology and the evolution
of Mars. Space Sci. Rev. 96 (1-4), 165–194. doi:10.1023/a:1011945222010

Hayward, R. K., Mullins, K. F., Fenton, L. K., Hare, T. M., Titus, T. N., Bourke, M. C.,
et al. (2007). Mars global digital dune database and initial science results. J. Geophys.
Res. Planets 112 (E11), E11007. doi:10.1029/2007je002943

Hepburn, A. J., Ng, F. S. L., Holt, T. O., and Hubbard, B. (2020). Late amazonian
ice survival in kasei valles, Mars. J. Geophys. Res. Planets 125, e2020JE006531. doi:10.
1029/2020JE006531

Hsu, C. Y., Li,W., andWang, S. (2021). Knowledge-Driven GeoAI: integrating spatial
knowledge into multi-scale deep learning for Mars crater detection. Remote Sens. 13
(11), 2116. doi:10.3390/rs13112116

Hynek, M. B., Beach, M., and Hoke, T. M. (2010). Updated global map of Martian
valley networks and implications for climate and hydrologic processes. J. Geophys. Res.
Planets 115 (E9), E09008. doi:10.1029/2009je003548

Institute of Geography, Chinese Academy of Sciences (1987). China’s 1:100000
topographic map mapping specification[S]. Science Press.

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2023.1275516
https://doi.org/10.1029/2018ea000362
https://doi.org/10.1007/s10569-010-9320-4
https://doi.org/10.1007/s10569-010-9320-4
https://doi.org/10.1016/j.geomorph.2008.03.011
https://doi.org/10.1016/j.geomorph.2008.03.011
https://doi.org/10.1007/978-3-642-13775-4_31
https://doi.org/10.1016/0019-1035(88)90006-1
https://doi.org/10.1016/j.icarus.2021.114701
https://doi.org/10.1016/j.icarus.2021.114701
https://doi.org/10.1002/2016je005007
https://doi.org/10.1016/j.pss.2021.105253
https://doi.org/10.1029/2007gl031445
https://doi.org/10.1029/2007gl031445
https://doi.org/10.1016/j.cageo.2005.09.004
https://doi.org/10.1109/tgrs.2006.885402
https://doi.org/10.1109/tgrs.2006.885402
https://doi.org/10.1016/j.knosys.2018.10.011
https://doi.org/10.1109/tgrs.2018.2806371
https://doi.org/10.1109/tgrs.2018.2806371
https://doi.org/10.1038/s43017-023-00452-7
https://doi.org/10.1038/s43017-023-00452-7
https://doi.org/10.11867/j.issn.1001-8166.2018.09.0885
https://doi.org/10.11867/j.issn.1001-8166.2018.09.0885
https://doi.org/10.1007/s11442-011-0879-9
https://doi.org/10.1029/jb086ib06p05075
https://doi.org/10.1007/s11442-022-2052-z
https://doi.org/10.3969/j.issn.1673-8748.2018.01.002
https://doi.org/10.3969/j.issn.1673-8748.2018.01.002
https://doi.org/10.11834/jrs.20210231
https://doi.org/10.1016/j.cja.2013.02.016
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1029/2007GL031798
https://doi.org/10.1029/2002JE002015
https://doi.org/10.1029/2022GL097974
https://doi.org/10.3873/j.issn.1000-1328.2022.06.014
https://doi.org/10.3873/j.issn.1000-1328.2022.06.014
https://doi.org/10.11834/jrs.20187014
https://doi.org/10.1016/j.epsl.2022.117764
https://doi.org/10.5555/944919.944968
https://doi.org/10.1023/a:1011945222010
https://doi.org/10.1029/2007je002943
https://doi.org/10.1029/2020JE006531
https://doi.org/10.1029/2020JE006531
https://doi.org/10.3390/rs13112116
https://doi.org/10.1029/2009je003548
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Danyang and Weiming 10.3389/fspas.2023.1275516

Jiang,H.K., Tian, X. L., andXu,A. (2013). An automatic algorithm for detecting lunar
impact craters in a defined feature space. Sci. Sin-Phys Mech. As 43 (11), 1430–1437.
doi:10.1360/132013-321

Jiang, S. C., Wu, F., Yung, K. L., Yang, Y., Ip, W., Gao, M., et al. (2021). A robust
end-to-end deep learning framework for detecting Martian landforms with arbitrary
orientations. Knowl. Based. Syst. 12, 107562. doi:10.1016/j.knosys.2021.107562

Kerber, L., Head, J. W., Madeleine, J.-B., Forget, F., and Wilson, L. (2011). The
dispersal of pyroclasts from apollinaris patera, Mars: implications for the origin of the
medusae fossae formation. Icarus 216 (1), 212–220. doi:10.1016/j.icarus.2011.07.035

Kim, J. R., Muller, J. P., Van Gasselt, S., Morley, J. G., and Neukum, G. (2005).
Automated Crater detection, A new tool for Mars cartography and chronology.
Photogramm. Eng. Remote Sens. 71 (10), 1205–1217. doi:10.14358/pers.71.10.1205

Kim, J. R., and Muller, J. P. (2008). Very high resolution stereo DTM extraction
and its application to surface roughness estimation over Martian surface. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 37 (B4), 993–998. doi:10.14358/PERS.71.10.
1205

Lakdawalla, E. (2005). The planetary society. Map of Mars with major regions labeled.
Available at: https://www.planetary.org/space-images/map-mars-major-features.

Lefort, A., Russell, P. S., and Thomas, N. (2010). Scalloped terrains in the peneus and
amphitrites paterae region of Mars as observed by HiRISE. Icarus 205 (1), 259–268.
doi:10.1016/j.icarus.2009.06.005

Lei, M. L. (2017). Indexes of lunar impact craters based on the morphology
characteristics. Nanjing: Nanjing Normal University.

Levy, J., Head, J.W., andMarchant, D. R. (2010). Concentric crater fill in the northern
mid-latitudes of Mars: formation processes and relationships to similar landforms of
glacial origin. Icarus 209 (2), 390–404. doi:10.1016/j.icarus.2010.03.036

Li, C., Dong, Z. B., Lü, P., Zhao, J., Fu, S., Feng, M., et al. (2020). A morphological
insight into the Martian dune geomorphology. Chin. Sci. Bull. 65, 80–90. doi:10.
1360/TB-2019-0168

Li, H. L., Li, J., and Ren, X. (2022). Deep learning eliminates massive dust storms
from images of tianwen-1. Comput. Vis. Pattern Recognit. ArXiv. Preprint. Available at:
https://arxiv.org/abs/2206.10145.

Li, L. L. (2018). A study of Martian Yardang landforms. Shaanxi Normal University.

Li,W., Di, K. C., Yue, Z. Y., Liu, Y., and Sun, S. (2015). Automated detection ofmartian
gullies from HiRISE imagery. Photogramm. Eng. Remote Sens. 81 (12), 913–920. doi:10.
14358/pers.81.12.913

Liu, D. Y., Chen, M., Qian, K. J., Lei, M., and Zhou, Y. (2017). Boundary detection
of dispersal impact craters based on morphological characteristics using lunar digital
elevation model. IEEE J-STARS 10 (12), 5632–5646. doi:10.1109/jstars.2017.2749403

Liu, D. Y., Cheng, W. M., Qian, Z., Deng, J. Y., Liu, J. Z., and Wang, X. M. (2023).
Boundary delineator formartian crater instanceswith geographic information and deep
learning. Remote Sens. 15, 4036. doi:10.3390/rs15164036

Liu, J., Di, K. C., and Gou, S. (2020). Mapping and spatial statistical analysis of Mars
Yardangs. Planet. Space Sci. 192, 105035. doi:10.1016/j.pss.2020.105035

Liu, J. (2021). Global mapping and formation mechanism study of Mars yardangs.
Beijing: University of Chinese Academy of Sciences.

Liu, J., Yue, Z. Y., Di, K. C., Gou, S., and Niu, S. (2021a). A study about the temporal
constraints on themartian yardangs’ development inmedusae fossae formation.Remote
Sens. 13, 1316. doi:10.3390/rs13071316

Liu, J. Z., Ouyang, Z. Y., and Li, C. L. (2006). A preliminary study on the scientific
objectives and optimization principles of mars exploration//improve the scientific quality
of the whole people and build an innovative country – proceedings of the 2006 annual
conference of the Chinese association for science and Technology, Volume II.

Liu, Q. Y., Cheng, W. M., and Yan, G. J. (2022). Distribution characteristics and
classification schemes of lunar surface elevation. Acta Geogr. Sin. 76 (1), 106–119.
doi:10.1016/j.epsl.2022.117785

Liu, Y., Wu, X., Liu, Z. H., Zhou, Q., and Chen, X. (2021b). Geological evolution and
habitable environment of Mars: progress and prospects. Rev. Geophys. Planet. Phys. 52
(4), 416–436. doi:10.1038/d41573-021-00080-0

Liu, Y., Liu, Z. H., Wu, X., Qin, L., Wu, Y. H., Zhang, C. L., et al. (2021c). Evolution
of water environment on Mars. Acta Geologica Sinica 95 (9), 2725–2741. doi:10.19762/
j.nki.Izhixuebao.2021270

Lu, Y. H., Miao, F., and Du, J. (2013). An automatic detection algorithm of lunar
craters based on feature matching. Sci. Surv. Map. 38 (5), 5.

Lu, Y., KennethEdgettWu, S. B., Wang, Y., Li, Z., Michael, G. G., et al. (2022).
Aeolian disruption and reworking of TARs at the Zhurong rover field site, southern
Utopia Planitia, Mars. Earth Planet Sci. Lett. 595 (10), 117785. doi:10.1016/j.epsl.2022.
117785

Luo, L., Mu, L. L., Wang, X. Y., Li, C., Ji, W., Zhao, J., et al. (2013). Global detection
of large lunar craters based on the CE-1 digital elevation model. Front. Earth Sci. 7 (4),
456–464. doi:10.1007/s11707-013-0361-3

Luo, W., and Stepinski, T. F. (2009). Computer-generated global map of valley
networks on Mars. J. Geophys. Res. 114, E11010. doi:10.1029/2009JE003357

Luo, Z. F., Kang, Z. Z., and Liu, X. Y. (2014).The automatic extraction and recognition
of lunar impact craters fusing CCD images and DEM data of Chang’e-1. Acta Geod.
Cartogr. Sin. 43 (9), 924–930. doi:10.13485/j.cnki.11-2089.2014.0137

Mandt, K., and LeoneYardang, G. (2015). Encyclopedia of planetary landforms.
Editors H. Hargitai, and A. Kereszturi (New York: Springer), 2340–2347.

Milliken, R. E., Mustard, J. F., and Goldsby, D. L. (2003). Viscous flow features on
the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC)
images. J.Geophys. Res. 108 (E6), 5057. doi:10.1029/2002je002005

Molly, I., and Stepinski, T. F. (2007). Automatic mapping of valley networks on Mars.
Comput. Geosci. 33, 728–738. doi:10.1016/j.cageo.2006.09.009

Neukum, G., König, B., and Arkani-Hamed, J. (1975). A study of lunar impact crater
size-distributions. moon 12 (2), 201–229. doi:10.1007/bf00577878

Orosei, R., Lauro, S. E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., et al.
(2018). Radar evidence of subglacial liquid water onMars. Science 361 (6401), 490–493.
doi:10.1126/science.aar7268

Ouyang, Z. Y., and Xiao, F. G. (2011). Major scientific issues involved in Mars
exploration. Spacecr. Environ. Eng. 28 (3), 205–217. doi:10.3969/j.issn.1673-1379.2011.
03.001

OuYang, Z. Y., and Zou, Y. L. (2015). Introduction to martian science. Shanghai
Science and Technology Education Press.

Pedersen, G. B. M., and Head, J. W. (2010). Evidence of widespread degraded
Amazonian-aged ice-rich deposits in the transition between Elysium Rise and Utopia
Planitia, Mars: guidelines for the recognition of degraded ice-rich materials. Planet.
Space Sci. 58 (14-15), 1953–1970. doi:10.1016/j.pss.2010.09.019

Petersen, L. E., Holt, W. J., and Levy, S. J. (2018). High ice purity of Martian lobate
debris aprons at the regional scale: evidence from an orbital radar sounding survey
in Deuteronilus and Protonilus Mensae. Geophys. Res. Lett. 45, 11595–11604. doi:10.
1029/2018gl079759

Piqueux, S., Buz, J., Edwards, C. S., Bandfield, J. L., Kleinböhl, A., Kass, D. M.,
et al. (2019). Widespread shallow water ice on Mars at high latitudesand midlatitudes.
Geophys. Res. Lett. 46 (24), 14290–14298. doi:10.1029/2019GL083947

Qian, Z., Min, C., Teng, Z., Fan, Z., Rui, Z., Zhang, Z. X., et al. (2022). Deep Roof
Refiner: a detail-oriented deep learning network for refined delineation of roof structure
lines using satellite imagery. Int. J. Appl. Earth Obs. 107, 102680. doi:10.1016/j.jag.2022.
102680

Robbins, S. J., and Hynek, B. M. (2012). A new global database of Mars impact
craters≥ 1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. Planets
117 (E5). 1991 –2012. E05004. doi:10.1029/2011je003966

Robbins, S. J., and Hynek, B. M. (2010). Progress towards a new global catalog of
Martian craters and layered ejecta properties, complete to 1.5 km//Proceedings of the 41st
Lunar and Planetary Science Conference.

Rothrock, B., Kennedy, R., and Cunningham, C. (2016). SPOC: deep learning-based
terrain classification for mars rover missions, 9. AIAA Space.

Rubanenko, L., Perez-Lopez, S., Schull, J., and Lapotre, M. G. A. (2021). Automatic
detection and segmentation of barchan dunes on Mars and Earth using a convolutional
neural network. IEEE J-STARS. 14 (11), 9364–9371. doi:10.1109/jstars.2021.3109900

Salamunićcar, G., Loncaric, S., and Lončarić, S. (2010). Method for crater detection
from Martian digital topography data using gradient value/orientation, morphometry,
vote analysis, slip tuning, and calibration. IEEE Trans. Geosci. Remote Sens. 48 (5),
2317–2329. doi:10.1109/tgrs.2009.2037750

Salamuniccar, G., Loncaric, S., and Mazarico, E. M. (2012). LU60645GT and
MA132843GT catalogues of Lunar andMartian impact craters developed using aCrater
Shape-based interpolation crater detection algorithm for topography data. Planet. Space
Sci. 60, 236–247. doi:10.1016/j.pss.2011.09.003

Salamunićcar, G., Loncaric, S., Pina, P., Bandeira, L., and Saraiva, J. (2011b).
MA130301GT catalogue of Martian impact craters and advanced evaluation of crater
detection algorithms using diverse topography and image datasets. Planet. Space Sci. 59
(1), 111–131. doi:10.1016/j.pss.2010.11.003

Seidelmann, P. K. (2002). Report of the IAU/IAG working group on cartographic
coordinates and rotational elements of the planets and satellites: 2000. Celest. Mech.
Dyn. Astron. 82, 83–110. doi:10.1007/s10569-007-9072-y

Shang, C., and Barnes, D. (2013). Fuzzy-rough feature selection aided support vector
machines for Mars image classification. Comput. Vis. Image Underst. 117 (3), 202–213.
doi:10.1016/j.cviu.2012.12.002

Shen, Y. C., Su, S. Y., and Yin, Z. S. (1982). Retrospect and prospect of the research
work on the classification, regionalization andmapping of the geomorphology of China.
Sci. Geol. Sin. 2 (2), 97–105. doi:10.13249/j.cnki.sgs.1982.02.97

Silburt, A., Ali-Dib, M., Zhu, C. C., Jackson, A., Valencia, D., Kissin, Y., et al. (2019).
Lunar crater identification via deep learning. Icarus 317 (1), 27–38. doi:10.1016/j.icarus.
2018.06.022

Soare, J. R., Williams, J. P., Conway, J. S., and El-Maarry, M. R. (2021). Pingo-
like mounds and possible polyphase periglaciation/glaciation at/adjacent to the
Moreux impact crater.Mars Geol. Enigmas, 407–435. doi:10.1016/B978-0-12-820245-6.
00014-8

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2023.1275516
https://doi.org/10.1360/132013-321
https://doi.org/10.1016/j.knosys.2021.107562
https://doi.org/10.1016/j.icarus.2011.07.035
https://doi.org/10.14358/pers.71.10.1205
https://doi.org/10.14358/PERS.71.10.1205
https://doi.org/10.14358/PERS.71.10.1205
https://www.planetary.org/space-images/map-mars-major-features
https://doi.org/10.1016/j.icarus.2009.06.005
https://doi.org/10.1016/j.icarus.2010.03.036
https://doi.org/10.1360/TB-2019-0168
https://doi.org/10.1360/TB-2019-0168
https://arxiv.org/abs/2206.10145
https://doi.org/10.14358/pers.81.12.913
https://doi.org/10.14358/pers.81.12.913
https://doi.org/10.1109/jstars.2017.2749403
https://doi.org/10.3390/rs15164036
https://doi.org/10.1016/j.pss.2020.105035
https://doi.org/10.3390/rs13071316
https://doi.org/10.1016/j.epsl.2022.117785
https://doi.org/10.1038/d41573-021-00080-0
https://doi.org/10.19762/j.nki.Izhixuebao.2021270
https://doi.org/10.19762/j.nki.Izhixuebao.2021270
https://doi.org/10.1016/j.epsl.2022.117785
https://doi.org/10.1016/j.epsl.2022.117785
https://doi.org/10.1007/s11707-013-0361-3
https://doi.org/10.1029/2009JE003357
https://doi.org/10.13485/j.cnki.11-2089.2014.0137
https://doi.org/10.1029/2002je002005
https://doi.org/10.1016/j.cageo.2006.09.009
https://doi.org/10.1007/bf00577878
https://doi.org/10.1126/science.aar7268
https://doi.org/10.3969/j.issn.1673-1379.2011.03.001
https://doi.org/10.3969/j.issn.1673-1379.2011.03.001
https://doi.org/10.1016/j.pss.2010.09.019
https://doi.org/10.1029/2018gl079759
https://doi.org/10.1029/2018gl079759
https://doi.org/10.1029/2019GL083947
https://doi.org/10.1016/j.jag.2022.102680
https://doi.org/10.1016/j.jag.2022.102680
https://doi.org/10.1029/2011je003966
https://doi.org/10.1109/jstars.2021.3109900
https://doi.org/10.1109/tgrs.2009.2037750
https://doi.org/10.1016/j.pss.2011.09.003
https://doi.org/10.1016/j.pss.2010.11.003
https://doi.org/10.1007/s10569-007-9072-y
https://doi.org/10.1016/j.cviu.2012.12.002
https://doi.org/10.13249/j.cnki.sgs.1982.02.97
https://doi.org/10.1016/j.icarus.2018.06.022
https://doi.org/10.1016/j.icarus.2018.06.022
https://doi.org/10.1016/B978-0-12-820245-6.00014-8
https://doi.org/10.1016/B978-0-12-820245-6.00014-8
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Danyang and Weiming 10.3389/fspas.2023.1275516

Souness, C., and Hubbard, B. (2012). Mid-latitude glaciation on Mars. Prog. Phys.
Geogr. Earth Env. 36 (2), 238–261. doi:10.1177/0309133312436570

Stepinski, T. F., and Collier, M. L. (2004). Extraction of Martian valley networks
from digital topography. J. Geophys. Res. Planets. 109 (E11): E11005, doi:10.
1029/2004je002269

Tanaka, L. K., Skinner, A. J., andDohm,M. J. (2014). Geologicmap ofMars: U.S.Geol.
Surv. Sci. Investig. Map 43. 3292, scale 1:20,000,000, pamphlet. doi:10.3133/sim3292

Urbach, E. R., and Stepinski, T. F. (2009). Automatic detection of sub-km craters in
high resolution planetary images. Planet. Space Sci. 57 (7), 880–887. doi:10.1016/j.pss.
2009.03.009

Vaucouleurs, G.D., Davies,M. E., and Sturms, F.M., Jr. (1973).Mariner 9 areographic
coordinate system. J. Geophys. Res. 78 (20), 4395–4404. doi:10.1029/jb078i020p0
4395

Wang, J. (2018). Geologic characteristics of yardangs on Mars and their
implications for paleo-environments: constraints from analog study between
the Qaidam Basin and Aeolis-Zephyria region. Wuhan: China University of
Geosciences.

Wang, J., Cheng, W. M., Zhou, C. H., and Zheng, X. (2017). Automatic mapping of
lunar landforms using DEM-derived geomorphometric parameters. J. Geogr. Sci. 27
(11), 1413–1427. doi:10.1007/s11442-017-1443-z

Wang,W. J., Lin, L. L., Fan, Z. J., and Liu, J. (2021). Semi-supervised learning forMars
imagery classification. IEEE international conference on image processing (ICIP). doi:10.
1109/ICIP42928.2021.9506533

Wang, Y., Feng, X., Zhou, H., Dong, Z., Liang, W., Xue, C., et al. (2021).
Water ice detection research in utopia Planitia based on simulation of Mars
rover full-polarimetric subsurface penetrating radar. Remote Sens. 13, 2685. doi:10.
3390/rs13142685

Ward, A. W. (1979). Yardangs on Mars: evidence of recent wind erosion. J. Geophys.
Res. 84 (B14), 8147–8166. doi:10.1029/jb084ib14p08147

Wilhelms, D. E., Mccauley, J. F., and Trask, N. J. (1987). The geologic history of the
Moon. Washington DC: US Government Printing Office.

Wright, J., Barrett, M. A., Fawdon, P., Favaro, E. A., Balme, M. R., Woods, M.
J., et al. (2022). Jezero crater, Mars: application of the deep learning NOAH-H
terrain classification system. J. Maps. 18 (2), 484–496. doi:10.1080/17445647.2022.209
5935

Xiao, L., Wang, J., Dang, Y. N., Cheng, Z. Y., Huang, T., Zhao, J. N., et al.
(2017). A new terrestrial analogue site for Mars research: the Qaidam Basin, Tibetan

Plateau (NW China). Earth-Science Rev. 164, 84–101. doi:10.1016/j.earscirev.2016.11.
003

Xie, Y. Q., Tang, G. A., Yan, S. J., and Hui, L. (2013). Crater detection using the
morphological characteristics of Chang’E-1 digital elevation models. IEEE Geosci.
Remote Sens. Lett. 10 (4), 885–889. doi:10.1109/lgrs.2012.2226432

Yan, W., Ren, X., Liu, J. J., Zhang, L., Chen, W., Wang, D., et al. (2022). Topographic
reconstruction of the “tianwen-1” landing area on the Mars using high resolution
imaging camera images. IEEETrans. Geosci. Remote Sens. 60 (9), 1–14. doi:10.1109/tgrs.
2022.3206961

Yang, C., Zhao, H., Bruzzone, L., Benediktsson, J. A., Liang, Y., Liu, B., et al. (2020).
Lunar impact crater identification and age estimation with Chang’E data by deep and
transfer learning. Nat. Commun. 11 (12), 6358. doi:10.1038/s41467-020-20215-y

Yao, P. W. (2021). Spatiotemporal distribution of dust storm activity in Tianwen-1
landing area and Mars non-polar region based on Mars remote sensing images. Jinan:
Shandong University.

Yuan, Y. F., Zhu, P.M., and Zhao,N. (2013). Automated identification of circularmare
craters based on mathematical morphology. Sci. Sin-Phys Mech. As 43 (3), 324–332.
doi:10.1360/132012-425

Yue, Z. Y., Di, K. C., Gregory, M., Gou, S., Lin, Y., and Liu, J. (2022). Martian surface
datingmodel refinement based onChang’E-5 updated lunar chronology function.Earth
Planet. Sci. Lett. 595, 117765. doi:10.1016/j.epsl.2022.117765

Zhao, J. N. (2017). Geologic characteristics of the paleolakes in Martian southern
highland: implications for Martian paleo-climate and paleo-environment. China
University of Geosciences.

Zhao, J. N., Shi, Y. T., and Zhang, M. J. (2021). Advances in Martian water-related
landforms. Acta Geol. Sin. 95 (9), 2755–2768. doi:10.19762/j.cnki.dizhixuebao.2021267

Zheng, L., Hu, W. D., and Liu, C. (2020). Large crater identification method based on
deep learning. J. B. Univ. Aeron. Astron. 46 (5), 994–1004. doi:10.13700/j.bh.1001-5965.
2019.0342

Zhou, C. H., Cheng,W.M., andQian, J. K. (2009).Digital geomorphical interpretation
and mapping from remote sensing/. Science Press.

Zimbelman, J. R., and Griffin, L. J. (2010). HiRISE images of yardangs and sinuous
ridges in the lower member of the Medusae Fossae Formation, Mars. Icarus 205 (1),
198–210. doi:10.1016/j.icarus.2009.04.003

Zimbelman, J. R., and Scheidt, S. P. (2012). Hesperian age for westernmedusae fossae
formation, Mars. Science 336 (6089), 1683. doi:10.1126/science.1221094

Frontiers in Astronomy and Space Sciences 14 frontiersin.org

https://doi.org/10.3389/fspas.2023.1275516
https://doi.org/10.1177/0309133312436570
https://doi.org/10.1029/2004je002269
https://doi.org/10.1029/2004je002269
https://doi.org/10.3133/sim3292
https://doi.org/10.1016/j.pss.2009.03.009
https://doi.org/10.1016/j.pss.2009.03.009
https://doi.org/10.1029/jb078i020p04395
https://doi.org/10.1029/jb078i020p04395
https://doi.org/10.1007/s11442-017-1443-z
https://doi.org/10.1109/ICIP42928.2021.9506533
https://doi.org/10.1109/ICIP42928.2021.9506533
https://doi.org/10.3390/rs13142685
https://doi.org/10.3390/rs13142685
https://doi.org/10.1029/jb084ib14p08147
https://doi.org/10.1080/17445647.2022.2095935
https://doi.org/10.1080/17445647.2022.2095935
https://doi.org/10.1016/j.earscirev.2016.11.003
https://doi.org/10.1016/j.earscirev.2016.11.003
https://doi.org/10.1109/lgrs.2012.2226432
https://doi.org/10.1109/tgrs.2022.3206961
https://doi.org/10.1109/tgrs.2022.3206961
https://doi.org/10.1038/s41467-020-20215-y
https://doi.org/10.1360/132012-425
https://doi.org/10.1016/j.epsl.2022.117765
https://doi.org/10.19762/j.cnki.dizhixuebao.2021267
https://doi.org/10.13700/j.bh.1001-5965.2019.0342
https://doi.org/10.13700/j.bh.1001-5965.2019.0342
https://doi.org/10.1016/j.icarus.2009.04.003
https://doi.org/10.1126/science.1221094
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	1 Introduction
	2 Progress in Mars data acquisition and mapping
	3 Research progress on the classification of Martian landform types
	3.1 Macroscopic analysis of the surface topographic features of Mars
	3.2 The basis of Martian landform classification
	3.3 Method of classifying Martian landforms

	4 Progress in the identification of typical landform types on Mars
	4.1 Aeolian landforms
	4.2 Fluvial landforms
	4.3 Impact landforms
	4.4 Glacial landforms

	5 Prospects for studying Martian surface topography
	5.1 Mars data acquisition and mapping
	5.2 Construction of a classification system for Martian landforms
	5.3 Identification of typical geomorphic units of Mars

	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

