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The distribution of turbulence in the heliosphere remains a mystery, due to the
complexity in not only modeling the turbulence transport equations but also
identifying the drivers of turbulence that vary with time and spatial location.
Beyond the ionization cavity (a few astronomical units (AU) from the Sun), the
turbulence is driven predominantly by freshly created pickup ions (PUIs), in
contrast to the driving by stream shear and compression. Understanding the
source characteristics is necessary to refine turbulence transport models and
interpret measurements of turbulence and solar wind temperature in the outer
heliosphere. Using a recent latitude-dependent solar wind speed model and the
ionization rate of neutral interstellar hydrogen (H), we investigate the temporal
and spatial variation in the strength of low-frequency turbulence driven by PUIs
from 1998 to 2020. We find that the driving rate is stronger during periods of high
solar activity and at lower latitudes in the outer heliosphere. The driving rates for
parallel and anti-parallel propagating (relative to the background magnetic field)
slab turbulence have different spatial and latitude dependences. The calculated
generation rate of turbulence by PUIs is an essential ingredient to investigate the
latitude dependence of turbulence in the outer heliosphere, which is important
to understand the heating of the distant solar wind and themodulation of cosmic
rays.

KEYWORDS

magnetohydrodynamic turbulence, heliosphere, solar wind, waves and instabilities,
pickup ions

1 Introduction

Although turbulence plays a crucial role in multiple aspects of space physics and
astrophysics, the distribution of turbulence in our solar system remains unclear, especially in
the outer heliosphere, which has been explored by few spacecraft. Many models have been
developed over the past fewdecades to describe the transport of turbulence in the heliosphere
(Breech et al., 2008; Ng et al., 2010; Oughton et al., 2011; Usmanov et al., 2011; Zank et al.,
2012; 2017; 2018; Nakanotani et al., 2020; Wang et al., 2022; Adhikari et al., 2023), and the
source terms that describe the driving of turbulence are indispensable. Due to uncertainty in
the model parameters, oversimplified source terms, and a lack of observations, a consensus
has not been reached yet about the overall model, and consequently, differentmodels coexist.
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FIGURE 1
Angle between the solar wind velocity and heliospheric magnetic field
(θUB) from 1 to 30 AU for the year 2009. The color bar chart indicates
θUB from 0° to 90°.

In this work, we investigated the temporal and latitudinal
evolution of turbulence driven by pickup ions (PUIs). Beyond the
ionization cavity for neutral hydrogen, turbulence is mainly driven
by PUIs. The newborn PUIs initially form a ring-beam distribution,
which is highly unstable and drives electromagnetic fluctuations.
The energy transferred from PUIs to turbulence is free energy. The
driving rate of turbulence by PUIs is the product of the free energy
of a single PUI and the creation rate of PUIs. The latter is also
closely related to solar activity and depends on latitude. To calculate
the driving rate of turbulence by PUIs, we adopt the solar wind
speed model derived from remote observations via interplanetary
scintillations (IPSs). The heliospheric magnetic field measured by
the ACE spacecraft in the ecliptic plane is used as the input for the
Parker magnetic field model to obtain the magnetic field within the
termination shock. The observation-based solar wind and extreme
ultraviolet radiation data provide the ionization rates as a function
of time and latitude. We investigate the evolution of the turbulence
driving rate by PUIs (i.e., the source of turbulence due to PUIs) from
1998 to 2020.

2 Methods and results

In the outer heliosphere, beyond the ionization cavity, freshly
created pickup ions are the main source of turbulence (Zank et al.,
1996). The amplification of turbulence/waves due to newborn
pickup ions is observed by multiple spacecraft (Smith et al., 2017;
Sokół et al., 2022). The driving rate of the turbulence is given by
Zank et al. (1996) as follows:

dE
dt
=
dnPUI
dt

U2 ×(
vA
U
), (1)

where nPUI(SW) is the pickup ion (solar wind) density, dnPUI/dt = naβ
denotes the production rate of pickup ions, U is the solar wind
speed, and vA is the Alfvén speed. na is the density of neutral H

atoms, and β is the ionization rate. The factor vA/U represents the
fraction of pickup ion kinetic energy available for the generation of
turbulence (the so-called free energy) (Lee and Ip, 1987; Huddleston
and Johnstone, 1992; Williams and Zank, 1994). Although this
fraction gives the correct free energy for most of the heliospheric
region where the solar wind velocity is perpendicular to the
heliospheric magnetic field, the free energy for the slab turbulence
that propagates parallel (E+) and anti-parallel (E−) relative to the
large-scale magnetic field is generally different and depends on the
angle between the solar wind velocity and large-scale magnetic field
(θUB) (Williams and Zank, 1994)1.

E+ = nPUImvA
2πv+
aT
[1
2
(v+ − vA)2 +U‖(

U‖
2
+ vA − v+)]; (2)

E− = nPUImvA
2πv−
aT
[1
2
(v− − vA)2 +U‖(

U‖
2
+ v− − vA)], (3)

where v2± = U2
⊥ + (U‖ ± vA)

2 and aT = 2π[v2+ + v2− − v+(U‖ + vA)
+v−(U‖ − vA)]. U ‖= Ucos(θUB) is the solar wind speed parallel to
the magnetic field, and cos(θUB) is given by

cos(θUB) =
Br

√1+ γ2 (r,θ)
, (4)

where γ = rΩsin(θ)/U and Ω is the angular frequency of the solar
rotation. The three fast latitude scans of Ulysses measured the solar
wind speed out of the ecliptic plane, covering nearly the entire
range of solar latitudes in a relatively short time (07/94–08/95,
11/2000–10/2001, and 02/2007–02/2008) (McComas et al., 2002).
During the first and third scans around the solar minimum, Ulysses
observed a well-ordered solar wind structure, and the solar wind
speed increased from ∼400 km s−1 at low latitudes to ∼800 kms−1 at
high latitudes (McComas et al., 2000). Ulysses’ second fast latitude
scan, near the solar maximum, found an irregularly structured
mixture of slow and intermediate speed flows (McComas et al.,
2002). The structure of the solar wind speed during periods
of moderate solar activity is unclear due to the lack of direct
observations. To investigate the time and latitude dependence of
the turbulence driving rate by PUIs, indirect measurements of the
solar wind speed are needed. In this work, we adopt the latest
solar wind speed model, which is based on remote observations via
interplanetary scintillations (IPSs). The solar wind speed is inferred
as a function of latitude based on the study of the delay time
of the measured scintillation pattern of the radio signal between
stations (Sokół et al., 2020). The simple analytic formula based on
Legendre polynomials proposed by Porowski et al. (2022) is adopted
to model the latitudinal profiles of the solar wind speed at 1 AU
(U1).

U1 (θ) =
N

∑
0
QiPi (z) , z = cos (θ) , (5)

where Pi is the Legendre polynomial of ith order,Qi is the coefficient
of ith polynomial, and N is the order. The coefficients are listed

1 We note that there are typos in the equations for free energy given by
Huddleston and Johnstone (1992), Eqs 27, 28. The correct expressions should
be EF,u = 0.5minu[VAV

2
u sin2(θu)/(Vu +u cos (α) −VA) +2uVA cos (α) −2V2

A]
and EF,d = 0.5mind[VAV

2
d sin2(θd)/(Vd −u cos (α) −VA) +2uVA cos (α) −2V2

A].
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FIGURE 2
Profile for the driving rate of turbulence by PUIs during the solar maximum (2000) and minimum (2009) of solar cycle 23 as a function of heliocentric
radius r and latitude θ. The upper (bottom) panels show the driving rate for slab turbulence mode propagating parallel (anti-parallel) to the heliospheric
magnetic field dE−/dt (dE+/dt).

in Table 2. The deceleration of the solar wind speed in the outer
heliosphere by PUIs is modeled as (Isenberg et al., 2010)

U (r,θ) = U1 (θ) − 1.4× (r− 18) , r ≥ 18AU; (6)

= U1 (θ) r < 18AU, (7)

where U is measured in the units of km s−1 and r is measured in the
units of AU.

For the heliospheric magnetic field, we use the Parker magnetic
field model (Parker, 1958):

B =
B0

r2
(er − γeϕ) , (8)

where B0 is a constant. The magnetic field in the elliptic plane is
measured by the ACE spacecraft and can be obtained from the ACE
Science Center2. With the solar wind speed and the heliospheric

2 https://izw1.caltech.edu/ACE/ASC.

magnetic field, we can calculate their angle, θUB. As shown in
Figure 1, in the inner heliosphere and at high latitudes, θUB is not
as large as 90°, and thus, the more general Eqs 2, 3 are needed to
accurately describe the free energies.

To obtain the Alfvén speed for Eqs 2, 3, we further need the
profile of the plasma density. The solar wind speed and density are
linked through the solar wind energy flux, and the energy flux is
independent of the latitude within a factor of 10% (Le Chat et al.,
2012).The latitude-dependent density at 1 AU (ρ1(θ)) can be derived
via (Le Chat et al., 2012)

W[Wm2] = ρ1 (θ)U1 (θ)(
1
2
U1(θ)

2 +
GMs

Rs
)

= ρEUE(
1
2
U2
E +

GMs

Rs
), (9)

where UE = U (r = 1AU,θ = π/2), ρE/mp is the measured solar
wind proton density near Earth (mp is the proton mass), G is the
gravitational constant, Ms is the mass of the Sun, and Rs is the
radius of the Sun. We use the yearly averaged values to calculate
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FIGURE 3
Ratios of the driving rate of turbulence by PUIs between the north and south heliospheres for 2015.

ρ(θ). According to the mass continuity equation, the density in the
outer heliosphere is ρ(r,θ) = ρ1(θ)(

1 AU
r
)2 U1(θ)

U(r,θ)
. For more detailed

models, taking into account α particles in the plasma density (the
yearly averaged ratio of the number density between α particles and
protons from 1998 to 2020measured by the ACE spacecraft is within
the range of 0.0173–0.0417), we refer the readers to Le Chat et al.
(2012) Sokół et al. (2020); Porowski et al. (2022). The Alfvén speed

( = 21.8( B
nT
)/√

ρ
mp cm−3

km s−1) in Eqs 2, 3 introduces a strong

latitudinal dependence. For θ→ 0, VA is ∝ 1/r, but for θ→ π/2
or r≫ 1, VA approaches a constant VA0r0Ω/U. Thus, the newborn
pickup ions can effectively amplify turbulence at low and middle
latitudes, but they scarcely drive the turbulence over the poles in the
outer heliosphere.

The driving rate is proportional to the creation rate of PUIs,
dE±/dt∝ dnPUI

dt
= naβ. Under the assumption that the neutrals

constitute a unidirectional flow (a “cold” gas), particularly in
cases where solar radiation pressure equals gravity, which may
be applicable during low solar activity levels (Thomas, 1978;
Nakanotani et al., 2020), the distribution of the density of the
neutral atoms is (seeThomas, 1978; Zank et al., 2022, and references
therein).

na = na,TS exp(−
λθ′

r sin(θ′)
), (10)

where λ ≡ β1r
2
0/Ua is the length of the ionization cavity, β1 is the

ionization rate at 1 AU, and Ua ≈ 25 km s−1 is the bulk speed of
neutral atoms relative to the Sun. Here, θ′ is the angle distance
from the upwind direction. Since θ′ = |θ− π/2|, it corresponds to the
heliospheric latitude for the upwind region. In this work, we treat
the neutral H density at the termination shock (na,TS) as a latitude-
independent constant (= 0.127 cm−3 (Swaczyna et al., 2020)) for
simplification. Nonetheless, due to the elongation of the heliosphere,
the density of theHwall located between the heliopause and the bow
shock is maximum in the ecliptic plane, i.e., neutral H is filtrated

more effectively in the ecliptic plane, and thus, less interstellar H
can be expected to flow into the heliosheath in the ecliptic plane
compared to over the poles, despite the small difference in H density
at the termination shock(Pauls and Zank, 1996; Pauls and Zank,
1997). The distribution of neutral atoms is symmetric with respect
to the direction of upwind interstellar flow.

The ionization rate changes with latitude and solar activity
cycle as a result of variation in the solar wind flow and the solar
extreme ultraviolet (EUV) flux (Bzowski et al., 2013; Sokół et al.,
2019; Sokół et al., 2020). The dominant ionization process for H
atoms is the charge exchange with solar wind particles.The resulting
ionization rate is equal to the product of solar wind (number)
density, the relative speed between H atoms and solar wind speed,
and the cross section as a function of relative speed. As the
latitude dependence of the solar wind speed is derived from the
fact that the energy flux of the solar wind is almost latitude-
independent, the product of solar wind density and solar wind
speed is approximately inversely proportional to the square of the
solar wind speed, and the cross section decreases with an increase
in solar wind speed (Barnett et al., 1990; Lindsay and Stebbings,
2005; Wang et al., 2023). Therefore, a higher solar wind speed
leads to a smaller ionization rate and vice versa. Obviously, the
ionization rate is closely related to latitude and the solar cycle. In this
work, we use the data for the total ionization rate (sum of charge
exchange, photoionization, and electron impact ionization) for H
atoms from Sokół et al. (2020) based on the solar wind and solar
EUV data.

The profiles of the driving rate (dE±/dt) of turbulence due to
the creation of PUIs are shown in Figure 2 for 2000 and 2009,
corresponding to the solar maximum and minimum of solar cycle
23. dE±/dt decreases with an increase in distance and strongly
depends on latitude. At the solar minimum and within ∼ 5 AU from
the Sun, dE−/dt is larger at intermediate and high latitudes than
at low latitudes due to a higher solar wind speed (i.e., PUI kinetic
energy), although the ionization rate is weaker.When the solar wind
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speed becomes nearly uniform at the solarmaximum, the latitudinal
dependence of the ionization rate becomes important, and thus,
dE−/dt is larger at low latitudes. A small θUB value at high latitudes
results in a large E− (and E+) value. This effect only plays a minor
role in determining the latitudinal dependence of dE−/dt. However,
E+ decreases quickly with an increase in θUB at high latitudes;
therefore, dE+/dt is large at low latitudes. In the outer heliosphere,
θUB approaches 90° for most of the region except near the poles,
which leads to the difference between E− and E+ becoming smaller
for different latitudes, correspondingly dE−/dt ≈ dE+/dt. Comparing
the left and right panels, we can see that dE±/dt is larger at the
solar maximum than at the solar minimum in the outer heliosphere.
Yearly dE±/dt from 1998 to 2020 is illustrated in the Supplementary
Material. As illustrated in Figure 3, the driving rates present a strong
north–south asymmetry due to the asymmetric solar wind speed,
especially near the solar maximum, and these differences change
with latitude and radial distance.

3 Conclusion

Turbulence in the outer heliosphere is predominantly driven
by freshly created pickup ions. The resulting generation rate of
turbulence energy depends on the solar wind speed, Alfvén speed,
magnetic field-flow geometry, neutral density, and ionization rate.
Using the latest latitudinal-dependent solar wind speed model
inferred from the remote IPS observations, a comprehensive
investigation of the ionization rate model, and the Parker magnetic
field model inferred from the measurements by the ACE spacecraft,
we calculated the yearly rate of turbulence energy generated
by PUIs from 1998 to 2020. We found that the driving rate
significantly changes with the solar cycle and latitude. In the
outer heliosphere, the driving rate increases with the level of solar
activity and decreases with an increase in the latitude. Our work
shows that it is inappropriate to treat PUI-driven source terms
in turbulence transport models as time-independent and latitude-
independent (Adhikari et al., 2014). Improving the source term
in turbulence transport models is important for understanding
phenomena such as the heating of the solar wind (Matthaeus et al.,
1999) and the scatting of cosmic rays (Zank et al., 1998; Zhao et al.,
2018).
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