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The magnetospheric systems of ice giants, as the ideal and the unique template
of a typical class of exoplanets, have not been sufficiently studied in the
past decade. The complexity of these asymmetric and extremely dynamic
magnetospheres provides us a great chance to systematically investigate the
general mechanism of driving themagnetospheres of such common exoplanets
in the Universe, and the key factors of influencing the global and local
magnetospheric structures of this type of planets. In this paper, we discuss
the science return of probing magnetospheric systems of ice giants for the
future missions, throughout different magnetospheric regions, across from
the interaction with upstream solar wind to the downstream region of the
magnetotail. We emphasize the importance of detecting the magnetospheric
systems of ice giants in the next decades, which enables us to deeply understand
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the space enviroNMent and habitability of not only the ice giants themselves but
also the analogous exoplanets which are widely distributed in the Universe.

KEYWORDS

ice giant magnetospheres, future mission, Uranus magnetosphere, Neptune
magnetosphere, Uranus, Neptune, ice giants, planetary magnetosphere

1 Introduction

The scientific investigation and the community’s attention paid
to the magnetospheric systems of Uranus and Neptune have been
underestimated in the past decade, compared to other terrestrial
and gas giant planets. Previous studies intensively discussed the
significance of investigating Uranus system, e.g., Arridge et al.
(2014); Bocanegra-Bahamón et al. (2015) and Blanc et al. (2021).
With the proposed top-priority Flagship mission to Uranus by
Planetary Science and Astrobiology Decadal Survey 2023–2032, we
suppose that it is essential to identify and emphasize the scientific
goals in the community of heliophysics science to investigate the
unique magnetospheric systems of the ice giants which needs to be
addressed in the future mission.

Both Uranus and Neptune have very special magnetic and
rotational configurations among the other planets in our Solar
System, as Figure 1 shows. The resultant magnetospheric structure
and dynamics provide us an ideal and unique space laboratory
to study this type of planets, and a template to study the
habitability of analogous exoplanets, since Kepler Space Telescope’s
observation confirmed that the largest population of them are
near-Uranus/Neptune-size [See Figure 1 in Atreya et al. (2020);
Batalha et al. (2013); Zhu and Dong (2021)].

The rotational and magnetic characteristics of ice giants are
extraordinary and unique. Uranus has a very high obliquity
(∼97.9°), compared to that of Neptune (∼29.6°). Both of them
have extraordinarily large tilted angles between their spin axis

FIGURE 1
The comparison of the rotational (white dashed lines) and magnetic
axes (orange dashed lines) between the Earth, Saturn, Jupiter, Uranus
and Neptune. The yellow curves represent the magnetic field lines.
Modified from (Kivelson and Bagenal, 2014 and also credit: Fran
Bagenal & Steve Bartlett, see LASP’s MOP website: https://lasp.
colorado.edu/mop/resources/graphics/).

and magnetic axis (Uranus: ∼59° and Neptune: ∼47°) (Ness et al.,
1986; 1989). Besides, they have rapid rotation speed which
can drive the plasma dynamics actively in the magnetosphere.
Furthermore, both ice giants hold a significantly off-centered
dipole moment.

This paper will systematically discuss critical scientific
returns based on the magnetospheric structure and the potential
measurement regions for the future mission, across from the
interaction with upstream solar wind to the downstream region
of the magnetotail.

2 The interaction with solar wind

Themagnetospheric structure of ice giants are essentially formed
by the interaction between the planetary intrinsic magnetic field
and the high-speed solar wind. The magnetosphere of Uranus was
believed to be driven by the solar wind based on the theoretic
calculation (Vasyliunas, 1986), and the magnetosphere of Neptune
might be internally driven due to the potential plasma source
generated from its moon Triton (Mauk et al., 1991). In general, both
magnetospheres are dominated or, at least, largely affected by the
upstream solar wind, since the solar wind keeps exchanging the
mass, momentum and energy with the resultant magnetosphere.
Compared to the other planets in our Solar System, the ice giants’
interaction with the solar wind is way more complicated, because
of their unique rotational and intrinsic magnetic characteristics
described above, which directly determine the structure of planetary
magnetospheres. Besides, based on the ideal Parker’s solar wind
model (Parker, 1958), the IMF is almost perpendicular to the planet-
Sun line at such a far distance from the Sun.

The first measurement of Uranus’ bow shock was made by
the Voyager 2 spacecraft, and the detected bow shock location
is about 23.7 RU (Uranus radii) upstream from the planet. The
magnetopause boundary was located about 18 RU near the subsolar
point at solstice (Ness et al., 1986; Masters, 2014). The bow shock
and magnetopause locations at Neptune are respectively at 34.9 and
26.5 RN (Neptune radii) upstream, based on the Voyager 2’s fly-by
measurement in 1989. A single fluid MHD model reproduced the
approximate magnetopause and bow shock distance from Uranus
for the crossing period at solstice in 1986 (Tóth et al., 2004). Another
numerical simulation computed the magnetopause and bow shock
profile when Voyager 2 flew by Neptune (Mejnertsen et al., 2016).
However, it is still unknown how the structure of such ice giants’
magnetopause boundary would vary with the orbital season and
planetary rotation, since Voyager 2 had been limited to only
one fly-by measurement. A recent work quantitatively studied the
dynamic variation of Uranian magnetopause boundary with the
planetary rotation under different IMF orientation for the first time,
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FIGURE 2
The diurnal variation of Uranian magnetopause at solstice, based on a multi-fluid MHD model. The magnetopause boundaries in the XZ (meridian) and
XY (ecliptic) plane are respectively shown in each panel. The figure shows the variations of the shape of Uranus’ magnetopause during the planetary
rotation. Uday in the figure represents Uranus day or Uranus’ rotational period. See more details under different IMF orientations in Cao and Paty (2021).

which revealed that the magnetopause configuration (e.g., standoff
distance, flaring parameter and cusp indentation) of Uranus is
mainly dominated by the planetary rotation, but also modulated
by the IMF’s orientation (Cao and Paty, 2021), as Figure 2 shows.
The result of that paper appeals for an orbiter mission to Uranus
in order to validate the extremely dynamic diurnal variation of
the asymmetric magnetopause boundary and its dependence on
the different IMF and solar wind conditions. The complicatedly
varying boundary layers would result in much higher complexities
for related physical phenomena, such as reconnections, flux transfer
events, Kelvin-Helmholtz instabilities, surface waves, etc. In this
paper, we also propose that the future orbital mission to Uranus
and/or Neptune with a magnetometer on board should design
orbits crossing the magnetopause boundary multiple times for
further detection. Such a detection can help us deeply understand
the interaction between the magnetospheres of ice giants and
the solar wind, and understand how this interaction impacts the
magnetopause boundary in the upstream solar wind.

3 Inner magnetosphere and the
internal magnetic field

The closest approach to Uranus is about 4 RU when the
Voyager 2 spacecraft flew by (Ness et al., 1986). An offset titled
dipole (OTD) field model well represents the inner magnetosphere
of Uranus even if the spacecraft arrived at the closest regions
from the planet in 1986. Specifically, the OTD well represents the
magnetic field between 4 and 15 RN (Ness et al., 1989). However,
the inner magnetospheric region within 4 planetary radii is not
clearly known at both ice giants. Such a close region enables
higher order magnetic multipoles to dominate the ice giants’
magnetospheric environment, which has not been sufficiently
studied from the measurement by Voyager 2. This near-planet
space links the ionosphere to the distant magnetospheric regions,
and plays a crucial role in the magnetosphere-ionosphere coupling
process, e.g., providing a field topology for planetward flows,
outflows, and reconstruct a completely different substorm current
wedge (SCW) structure from that of the Earth. The trapped
energetic particles in the magnetosphere of Uranus are also affected

by the presence of its moons (Krimigis et al., 1986; Mauk et al.,
1987). In addition, the potential radiation belts at Uranus may
have different signatures and dynamics from that at the Earth
(Masters et al., 2022). Meanwhile, how the offset tilted magnetic
field is driven by the planetary internal fluid system lacks sufficient
direct exploration. Furthermore, the surface magnetic fields of both
ice giants are dominated by the multipole moments rather than
a dipole moment (Soderlund and Stanley, 2020). Measurement of
the magnetic field at different locations will provide details about
the high-order magnetic topology. Especially, a combination of
empirical model and numerical simulation will reveal how the
magnetic field is generated, similar to how Ganymede’s magnetic
field’s generation mechanisms were investigated (Bland et al., 2008).
This may also provide information about the internal structure
of ice giants.

Therefore, we propose that it would return us significant
scientific merits if the designed orbits of the future ice giant mission
include the near-planet space, e.g., within 4 planetary radii (across
different longitudes and latitudes from the planet) and include the
potential radiation belt region to investigate such an important and
representative magnetospheric region.

4 Moon-magnetosphere interaction

The moon-magnetosphere interaction is an important part in
the planetary systems of the ice giants. Some of the moons can
not only provide an internal plasma source to the magnetosphere
impacting the magnetospheric dynamics, but also create additional
linkages to the upper atmosphere/ionosphere of the planets affecting
the magnetosphere-ionosphere coupling.

With respect to Uranus, the detection of potential subsurface
oceans on the icy moons of Uranus is important for assessing their
potential habitability, as discussed in Arridge and Eggington (2021).
This understanding is vital for the broader study of celestial bodies
that could support life. Regarding Neptune system, the magnetic
and plasma environment at its moon Triton may be even more
complicated. Therefore, without loss of generality, we focus on
discussion on the Triton in this section. However, it is noteworthy
that the moons of Uranus hold equivalent scientific importance.
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FIGURE 3
The Neptune-Triton System. The relative locations of Neptune, Triton
and rings are shown in the figure. Note that the Triton’s orbit is not on
the equatorial plane of Neptune.

FIGURE 4
The expected twisted magnetotail structure of Uranus during solstice
when Voyager 2 flew by. The red arrow and blue arrow respectively
represent the rotation axis and magnetic axis of Uranus. The red cross
symbol indicates the dayside reconnection when the IMF is northward
oriented. See the similar magnetotail structure with the simplified
assumption of zero IMF at (Tóth et al., 2004).

Figure 3 reveals that Triton’s orbit is highly titled from Neptune’s
equatorial plane. Triton’s orbit is highly titled from Neptune’s
equatorial plane. Considering Neptune’s large tilted magnetic axis,
Triton crosses regions from low magnetic latitude to high magnetic
latitude during every orbital period. Combined with Neptune’s non-
negligible off-centered dipole moment, the temporal variation of the
surroundingmagnetic fields Triton experiences become asymmetric
over each orbit.

Previous studies showed that there exists a “trans-Triton” heavy
ion population corotating with Neptune, the pitch angle distribution
of which implied a likely interaction with a neutral torus; The
mechanism of how the nearby hot plasma and energetic particles
were controlled by the presence of Triton and the sourced neutral
particles is still unknown (Mauk et al., 1991). Furthermore, how
largely those internal sources influence the global magnetosphere
demands for further direct measurement.

The moon with self-sourced plasma in the planetary
magnetosphere usually generates an Alfven wing or a mass
loading structure. Such a physical structure has been observed at
some moons such as Io (Neubauer, 1980), Enceladus (Jia et al.,
2010), Titan (Sillanpää and Johnson, 2015) and Earth’s moon

FIGURE 5
The “switch-like” magnetosphere of Uranus, based on a multi-fluid
MHD simulation (Cao and Paty, 2017). The magnetosphere of Uranus
is expected to switch between an open and a closed global
configuration during one Uranian day, via the interaction with the
upstream solar wind. The upper panels show the open and closed
magnetospheric structures at equinox and the bottom show those at
solstice season in the XZ plane.

(Cao, et al., 2020). The aurora emission features on Jupiter have
been observed to be associated with its moon via the Alfven
wing structure (Connerney et al., 1993; Mura et al., 2018). The
Alfven wing structure also likely exists at Triton, based on a
recent numerical simulation (Liuzzo et al., 2021). But the difference
of the moon-magnetosphere interaction of Triton from that of
the other planetary moons is still lacking direct measurement
of fields and particles in the moon’s ambience. Meanwhile, the
moons in the inner magnetospheric region can absorb high energy
particles and leave significant signatures in the radiation belts.
Based on the reasons above, it would provide us a more complete
portrait about the moon-magnetosphere interaction and/or moon-
magnetosphere-ionosphere coupling if a measurement of fields and
particles to at least one or more moons of ice giants is included in
future missions.

5 Magnetotail

Based on the measurement made by Voyager 2 spacecraft, the
magnetotail was rotating almost about the Uranus-Sun line during
the solstice season (Ness et al., 1986). Such a rotation results in
a twisted magnetotail configuration at Uranus (Behannon et al.,
1987; Lepping, 1994; Tóth et al., 2004) with significant curvature
of plasma sheet (Tóth et al., 2004; Cao and Paty, 2017), which
have never been observed in the magnetospheric systems of other
planets in our Solar System. Figure 4 shows a snapshot of the
Uranus twisted magnetotail configuration at solstice. The twist of
tail field-lines at Neptune was small, compared to that of Uranus,
but the field lines’ pitch angle should oscillate with the planetary
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rotation (Lepping, 1994). The magnetotails of both Uranus and
Neptune are expected to have a seasonal variation with different tail
configurations during different seasons. However, how their unique
magnetotail structure transitions between different seasons, and
how the structure responds to the variation of upstream solar wind
conditions has not been directlymeasured yet.Therefore, we suggest
that significant scientific benefits could be gained if future missions
were to observe themagnetotail regions at various distances from the
planets over multiple planetary rotations. The designed trajectories
should cover the near-planet, mid- and distant-tail, the tail lobes and
tail plasma sheet. Such a detection will provide usmore details about
the diurnal variation of ice giants’ magnetotail configuration during
a specific season or a certain period between solstice and equinox.

The dominant protons and electrons of the plasma sheet in the
tail region at Uranus cross from a few to a few thousand electron
volts (Behannon et al., 1987). And streaming ions and electrons
towards Neptune were also observed in the tail plasma sheet
(Mauk et al., 1991), which indicates a possible tail reconnection
occurrence during the Voyager 2’s fly-by. How the extremely
dynamic magnetotail of the ice giants differs from those of the other
planets is still unclear. A recent study has reported the presence
of a tailward-traveling plasmoid with trapped plasma inside the
loop-like structure at Uranus (DiBraccio and Gershman, 2019). The
plasmoids may serve as a major transport for mass loss through the
magnetotail. The role of magnetic reconnection in the magnetotail
of Uranus and/or Neptune needs further exploration.

6 Aurora emissions and
magnetosphere-ionosphere coupling

The aurora on Uranus was first unambiguously observed in
the H2 Lyman and Werner bands around both magnetic poles
by Voyager 2/UVS at solstice (Broadfoot et al., 1986; Herbert
and Sandel, 1994) and more recently imaged from Earth by HST
past equinox (Lamy et al., 2012; Lamy et al., 2017). Due to the
unusual configuration of Uranus, with a highly tilted rotation axis,
and an almost 60 degrees offset of the magnetic poles, Uranus’
auroras are generated at unusual locations compared to other
planets. Overall, the auroras do not show a complete oval as other
planets, but patchy emissions clustered near the magnetic poles.
Furthermore, the aurora shows strong hemispheric asymmetry that
it is stronger and more extended around the northern magnetic
pole where the magnetic field is weak. Since the aurora is excited
due to the collision of the atmosphere and the precipitating
energetic particles from themagnetosphere, the evolution ofUranus’
aurora provides fundamental planetary properties of the Uranus’
magnetospheric dynamics (e.g., rotation characteristics, solar
wind and magnetosphere interaction, magnetosphere-ionosphere
coupling). For example, Uranus’ aurora maps to near magnetotail,
which have strong indications regarding its driving mechanisms
(Herbert and Sandel, 1999). In addition, the shape of the
patchy aurora, when mapped to the magnetotail, provides critical
information about its driving region. Analogously, the aurora
emission at Neptune also needs further direct measurement for
high-accuracy observations (Lamy, 2020). Besides, the limited
signal-to-noise ratio of Earth-based observations appeals for direct
measurements to Uranus in order to investigate the detailed

morphology variability of its auroras with high-quality imaging.
Therefore, we propose that the aurora emission should be one
of the potential observation goals by UV and/or IR imagers in
future missions, which provides important information regarding
themagnetospheric dynamics of Uranus and/orNeptune systems, as
well as their underexplored solar wind-magnetosphere-ionosphere
coupling process.

7 Global configuration and dynamics
of these magnetospheres

A recent study reveals that Uranus has a very special global
magnetospheric configuration: the “switch-like” magnetosphere.
The magnetosphere of Uranus switches between an open and a
closed global structure on a daily basis, due to its periodic magnetic
reconnection with the upstream IMF (Cao and Paty, 2014; 2017), as
Figure 5 shows. A similar structure was also expected at Neptune’s
magnetosphere (Mejnertsen et al., 2016). Such a drastic diurnal
variability of the unique global structure has never been observed
at other planets in our Solar System, during the periods when the
upstream IMF orientation keeps quasi-stable.

Since the dayside reconnection plays an important role in
exchanging mass, momentum and energy with the surrounding
space environment, and determines the driving mechanism of
the magnetospheric dynamics, here we propose that dayside
reconnection regions should be included as one of the potential
scientific targets for the future mission to Uranus and/or
Neptune. The particle and field instruments (e.g., ion and
electron analyzers, magnetometer and electric field instrument)
on board are suggested to measure the plasma acceleration and
the field topology where the reconnections and other physical
processes are expected to occur. Such a measurement can return
us significant science merits for comparatively studying the
driving process of planetary magnetospheres between the Earth
and Ice Giants.

Voyager 2 measured significant temporal variations of the
fields and plasma in the magnetosphere of Uranus, which might
be related to a potential substorm (Behannon et al., 1987). The
investigation of how the substorm events behave in the ice giants’
magnetospheric systems, and what differences and similarities such
a magnetospheric activity at ice giants are present, compared to
those at the Earth, Jupiter or Saturn, is of key importance to deeply
understand the drivingmechanism of themagnetospheric dynamics
in different planetary environments.

8 Conclusion

The epic space mission Voyager 2, has made exceptional
contributions to our understanding of the ice giants, via its fly-by
measurement. However, furthermore important scientific questions
have been raised and remain unanswered, as discussed above. It
is noteworthy that 1) both ice giants have distinct rotational and
magnetic geometries from those of other planets in the Solar System,
and 2) according to the observations by Kepler Telescope, the
largest population of exoplanets is close to Uranus and Neptune’s
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size. Unlike the traditional viewpoint of usually taking the Earth
and other planets as a template to study exoplanets, these facts
inspire us to think, perhaps what we have seen on Uranus and
Neptune is just the more general norm for planets in the Universe
instead: very unique magnetospheres with highly obliquities and
less-aligned magnetic fields. Understanding how these complex
magnetospheres shield exoplanets from energetic stellar wind is
of key importance for studying the habitability of these newly
discovered worlds.Therefore, it is essential to utilize an orbital probe
to comprehensively investigate ice giants’ complicated and unique
magnetospheric systems in the next decades, with high-accuracy
instruments on board, throughout the space regions of interest as
discussed in the previous sections. The science return of detecting
the ice giants’ magnetospheric systems will reward us for deeply
understanding the space environment and habitability not only of
the ice giants themselves but also of the analogous exoplanets which
are widely distributed in the Universe.
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