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Radiation transport methods in
star formation simulations

Richard Wünsch*

Astronomical Institute of the Czech Academy of Sciences, Prague, Czechia

Radiation transport plays a crucial role in star formation models, as certain
questions within this field cannot be accurately addressed without taking it
into account. Given the high complexity of the interstellar medium from
which stars form, numerical simulations are frequently employed to model the
star formation process. This study reviews recent methods for incorporating
radiation transport into star formation simulations, discussing them in terms
of the used algorithms, treatment of radiation frequency dependence, the
interaction of radiation with the gas, and the parallelization of methods
for deployment on supercomputers. Broadly, the algorithms fall into two
categories: i) moment-based methods, encompassing the flux-limited diffusion
approximation, M1 closure, and variable Eddington tensor methods, and ii)
methods directly solving the radiation transport equation, including forward
and reverse ray tracing, characteristics-based methods, and Monte Carlo
techniques. Beyond discussing advantages and disadvantages of thesemethods,
the review also lists recent radiation hydrodynamic codes implemented the
described methods.
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1 Introduction

Electromagnetic radiation plays a fundamental role in the process of star formation
as it regulates the dynamics, thermodynamics, and chemistry of star-forming regions.
The interstellar radiation field (ISFR) heats the interstellar dust, dissociates molecules
and affects the ionization balance, which is critical for the chemistry of the interstellar
medium and the formation of molecular clouds. During the collapse of molecular cores,
the dust absorbs the cooling radiation and once the medium becomes optically thick,
the first proto-stellar core is formed. When the first stars are formed, their radiation
exerts a profound influence on the surrounding gas and dust shaping the morphology of
molecular clouds. This set of processes is called the radiative feedback as it regulates the
rate and efficiency of star formation. Extreme ultraviolet photons from young, massive
stars can ionize the surrounding gas, creating HII regions. The ionizing radiation also
influences the chemistry of the gas, affecting the abundance of molecules necessary for the
cooling and fragmentation of the cloud. Furthermore, radiation pressure fromnewly formed
stars can counteract gravitational collapse, slow down the gas inflow and drive the winds
and outflows.

The inclusion of radiation transport in star formation simulations is
therefore desirable. However, it is also very hard due to both the high
computational costs and the complexity of the processes that have to be taken
into account. The radiation transport equation (RTE) in its general form reads
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1
c
∂Iν
∂t
+n ⋅∇Iν = −(κν,a + κν,s)ρIν + jνρ+

1
4π

κν,sρ∫
Ω
IνdΩ (1)

where the radiation field is represented by the specific intensity
Iν. It is defined through the element of the radiation energy dEν
flowing across an area element da located at position x in time
dt in the solid angle dΩ about the direction n in the frequency
interval ν+ dν as

dEν = Iν (x,n, t)cos (θ) dν da dΩ dt (2)

where θ is the angle that n makes with a normal to the area element
da. The first term on the r.h.s of Eq. 1 represents the radiation losses
due to absorption (described by the absorption opacity κν,a) and
scattering (described by the scattering opacity κν); ρ is the mass
density of the medium through which the radiation propagates. The
second term on the r.h.s of Eq. 1 represents the emission of radiation
describe by the emission coefficient jν, the last r.h.s term represents
contribution of the radiation scattered from other directions. Note
that in the above equations, the specific intensity is expressed in
the frame of coordinate system, however, emission coefficient and
opacities are defined in the comoving frame.

The structure of Eqs 1, 2 reveals that the computational costs
associated with solving them directly in their complete generality
are exceedingly high. Specifically, in the case of three-dimensional
problems, Iν becomes a function of three components of x, two
components of n, time t, and the frequency of the radiation ν
(written as a subscript, as it is often grouped into several ranges
known as wavebands)—amounting to seven independent variables.
This issue becomes particularly pronouncedwhen implementing the
radiation transport algorithm within a star formation simulation
that demands high resolution and, consequently, a substantial
number of computational points along the aforementioned
variables. To address this, various computational techniques have
been developed that solve only a portion of Eq. 1 (e.g., incorporating
only a subset of the processes it describes) or utilize diverse
approximations, including those transforming it into a different
(albeit related) equation that can be solved more computationally
efficiently.

This paper reviews the most common techniques to solve
the radiation transport equation within (magneto-)hydrodynamic
simulations of star formation. The focus of this work is primarily
on continuum radiation transport, rather than line transport
(atomic or molecular). There is an extensive amount of work on
solving radiation transport on static grids or as tools for synthetic
observations, however, covering it is beyond the scope of this
work. Additional information can be found, e.g., in classical works
on radiation hydrodynamics Mihalas and Mihalas (1984); Castor
(2004), in a review of dust radiative transfer by Steinacker et al.
(2013) and in a review of numerical methods in simulations of
star formation by Teyssier and Commerçon (2019). The paper
is organised as follows. Section §2 describes different way how
radiation transport codes can be classified. Section §3 reviews
the most common radiation transport algorithms used in star
formation, consisting of §3.1 discussing themoment-basedmethods
and §3.2 describing the methods solving Eq. 1 directly. Finally,
Section §4 summarizes this review.

2 Classifications of the radiation
transport treatments

There are several criteria based on which radiation transport
codes can be classified.

Firstly, the method can either explicitly include the first term
of Eq. 1 (partial time derivative) or assume the infinite speed of
light and solve the RTE equation implicitly. The former approach,
also known as the evolutionary method, is typically employed
by moment-based methods. In some cases, the speed of light is
artificially reduced to avoid excessively small time steps mandated
by the stability conditions of an explicit solver—a technique
demonstrated to be useful in other fields as well (e.g., Cohen et al.,
1999). The implicit approach, alternatively termed the instantaneous
method, is often utilized by codes based on the method of
characteristics, ray tracing, and Monte Carlo methods.

Secondly and related to the above, the method can either
directly solve Eq. 1 (albeit with some approximations) or transform
it into another type of equation. The former approach includes
ray tracing, long and short characteristic methods, and Monte
Carlo methods. While ray tracing and long characteristic methods
are among the most accurate, they are also computationally
expensive. The computational cost of ray tracing typically scales
with the number of discrete radiation sources, making it particularly
expensive for simulations with a high number of sources. In the
latter approach, Eq. 1 is commonly transformed into a hyperbolic
system (M1 closure methods) or a parabolic system (flux-limited
diffusion method).

Thirdly, various methods concentrate on distinct wavelengths of
radiation, incorporating different physical processes related to the
interaction between radiation and matter. In the simplest approach,
termed monochromatic, all photons are assumed to possess a single
(representative) frequency. A slightly more complex method is the
grey approximation, where a specific constant spectrum—often
the black body spectrum—is assumed for all radiation. In certain
scenarios, it becomes necessary to categorize radiation based
on its frequency into multiple groups that exhibit qualitative
differences (e.g., where only some frequencies ionize a specific
species). This approach is referred to as multi-group frequency
treatment. Lastly, certain codes have the capability to encompass full
frequency dependence by sampling the frequency with a designated
number of bins.

An essential consideration in implicit radiation transport
methods is whether the opacity at a specific location is depends
on the radiation intensity at that point. A notable instance of this
behavior is the treatment of ionizing (EUV) radiation using the
on-the-spot approximation. In this approach, ionizing photons are
effectively destroyed by case B recombinations, as they do not
result in the replication of ionizing photons. The number of case
B recombinations occurring in a given gas parcel needs to be
distributed among all the rays passing through it, particularly when
using ray tracing or the long characteristic method. Consequently,
such methods necessitate iteration, leading to an increase in
computational cost.

Finally, different methods pose varying challenges in terms of
parallelization, with particular emphasis on the parallelization using
domain decomposition suitable for distributed memory machines.
Many hydrodynamic codes opt for this type of parallelization,
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as distributed memory machines offer extensive memory and
processor core capabilities. Unfortunately, this parallelization
scheme is also the most complex from a coding perspective.
Radiation transport, being primarily a long-distance interaction
problem, presents significant difficulties in parallelization. This is
especially true for ray tracing, the long characteristics method,
and Monte Carlo, where numerous calculations over considerable
distances must be executed within a limited timeframe.

3 Radiation transport algorithms

3.1 Moment-based methods

Instead of the specific intensity Iν, the radiation field can
be described by its moments obtained by integrating Iν over
all directions. The first three moments are defined as (see,
e.g., Shu, 1991):

(

cEν
Fν
cℙν

)=∮(

1

n

n⊗n

) IνdΩ (3)

where n is a unit vector. The mean radiation energy density Eν, the
radiation flux Fν, and the radiation pressure tensorℙν are the zeroth,
first and second moments of the radiation field, respectively. The
radiation pressure is often expressed as ℙν = 𝔻Eν where𝔻 is the so
called Eddington tensor.

Moments of Eq. 1 can be obtained by multiplying it with a
certain power of n and integrating it over all directions. The
scattering is assumed to be isotropic. Then, the first two moment
equations are

∂Eν
∂t
+∇ ⋅ Fν = 4πρjν − ρκν,acEν (4)

and

1
c
∂Fν
∂t
+ c∇ ⋅ ℙν = −ρκν,aFν. (5)

In the above equations, the opacity and the emission coefficient are
expressed in the frame of reference co-moving with the fluid (where
they are typically isotropic), however, Eν, Fν and ℙν are expressed
in the coordinate system of the simulation (the laboratory frame).
This problem is usually solved by either transforming Eqs 4, 5 into
the co-moving frame (CMF) or by transforming κν,a and jν into
the laboratory frame using the first order expansion (mixed frame
formulation). The radiation moment equations in the co-moving
frame have a form (see Mihalas and Mihalas, 1984)

∂Eν
∂t
+∇ ⋅ (uEν) +∇ ⋅ Fν +ℙ:u = 4πρjν − ρκν,acEν (6)

and

1
c
∂Fν
∂t
+ 1
c
∇ ⋅ (uFν) + c∇ ⋅ ℙν = −ρκν,aFν (7)

where u is the velocity of the gas. For details on the mixed frame
formulation see e.g., Mihalas and Klein (1982). The advantage of the
mixed frame approach is that the radiation transfer equations are
significantly simpler and that it conserves the total energy, however,
it is not suitable for computing for instance line opacities in the
supersonic flow due to their rapid changes (Moens et al., 2022).

3.1.1 Flux limited diffusion (FLD)
Thesimplestmoment-basedmethodwas derived as an extension

of the radiation transport in a diffusion limit (Minerbo, 1978;
Levermore and Pomraning, 1981). If the photon free mean path is
small and the optical depth is high, the radiation is isotropic and the
Eddington tensor has form 𝔻 = 1

3
𝕀 where 𝕀 is the identity tensor.

Assuming the radiation field is stationary, i.e., neglecting the first
two terms in Eq. 7, and considering∇ ⋅ ℙν =

1
3
∇Eν, the radiation flux

is related to the radiation energy density as

Fν = −
c

3κνρ
∇Eν (8)

and the radiation transport problem reduces to the Fick’s
diffusion law.

Relation 8 is not valid if the optical depth is low, because Fν
can exceed the physical limit Fmax = cEν there. Therefore, the FLD
method introduces the so called flux limiter λ and modifies Eq. 8 in
the following way

Fν = −
λ (R)c
κνρ
∇Eν. (9)

The flux limiter λ(R) is defined as a function of the normalized
radiation energy density gradient

R =
|∇Eν|
κνρEν
, (10)

in such a way that it ensures Eq. 9 reduces to the Fick’s law in the
optically thick regime (i.e., λ = 1/3) and to the maximum allowed
flux, Fmax, in the optically thin regime (i.e., λ = 1/R). Various flux
limiters fulfilling the above requirements have been suggested in the
literature (see, e.g.,Minerbo, 1978; Levermore andPomraning, 1981;
Levermore, 1984; Turner and Stone, 2001). As an example we give
the flux limiter of Levermore and Pomraning (1981) in the form

λ (R) = 1
R
(coth (R) − 1

R
) ≃ 2+ r

6+ 3R+R2 (11)

and the corresponding approximate Eddington tensor

𝔻 = 1
2
(1− f)𝕀 + 1

2
(3 f − 1) (n⊗n) where f = λ+ λ2R2.

(12)

The FLD method then solves only the 0-th moment equation
in the form

∂Eν
∂t
+∇ ⋅ (uEν) +∇ ⋅

cλ (R)
κνρ
∇Eν +ℙ: u = 4πρjν − ρκν,acEν (13)

which is, from a mathematical point of view, a parabolic equation,
and hence the standard parabolic solvers can be used.

The above equations aremonochromatic, i.e., they are written for
a single wavelength of the radiation. However, it is often practical
to use the FLD method (and other methods as well) for radiation
with a certain range of wavelengths. Then we speak about the grey
radiation transport if there is a single range covering the broad
wavelength range important for a given problem, or about themulti-
group/multi-band radiation transport if there are several wavelength
ranges. Additionally, the grey methods often use the Planck black
body law, Bν(T), as the source function, and then the 0-th moment
equation has form

∂Er
∂t
+∇ ⋅ (uEr) +∇ ⋅

cλ
κR
∇Er +ℙ : u = κP (arT4 − cEr) (14)
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where Er ≡ ∫Eνdν is the bolometric radiation energy density, T is the
gas/dust temperature, ar = 4σB/c is the radiation constant, σB is the
Stefan-Boltzmann constant, and κP and κR are Planck and Rosseland
mean opacities defined as

κP ≡
∫κνBν (T)dν

∫Bν (T)dν
(15)

and

1
κR
≡
∫ 1

κν

∂Bν(T)
∂T

dν

∫ ∂Bν(T)
∂T

dν
. (16)

RHD codes using the FLD method are discussed below and
summarized in Table 1 giving a reference to the code paper, code
name, whether it uses co-moving or mixed frame of reference,
whether it is parallel with the domain decomposition and some
additional information. The first usage of the FLD method is
probably by Alme and Wilson (1973) for the problem of the X-ray
emission resulting from the accretion of material onto a neutron
star. In the field related to star formation, the grey FLD method was
used by Kley (1989); Bodenheimer et al. (1990); Klahr et al. (1999);
Boss (2001) for simulations of accretion discs around young low
mass stars. It yielded reasonably correct temperatures in the optically
thick andoptically thing regions, however, it showeddeviations from
the correct solution in the transition regions (Boley et al., 2007).
The treatment of radiation in such models has been significantly
improved by Kuiper et al. (2010) who developed a hybrid scheme
combining the grey FLD method with the frequency dependent ray
tracing, and implemented it to the MHD code PLUTO. They at first
calculate the stellar radiation up to the first absorption by a simple
ray tracing algorithm and subsequently, they use FLD to calculate
the radiation re-emitted by the dust. This approach turned out to
be very successful and many other authors implemented this or
similar schemes into their codes. Bitsch et al. (2013) used it with
the NIRVANA code to study the influence of opacity and stellar
irradiation on the disc structure and on the migration of planets.
Flock et al. (2013) and Kolb et al. (2013) created two independent
implementations of this hybrid method for the PLUTO code.
Klassen et al. (2014) generalized this method for multiple sources
and arbitrary geometry wrote it as a module for the MHD code
FLASH. Similarly, Ramsey and Dullemond (2015) implemented a
generalized version of this method for the AZEUS code—a ZEUS
family AMR code with a fully staggered mesh.

The simplicity of the FLD method allowed it to be implemented
intomany general purpose (magneto-) hydrodynamic codes used in
astrophysics. The widely used ZEUS2D code was originally released
with the radiation module based on the tensor variable Eddington
factor, however, the FLD method was written for it by Turner
and Stone (2001). The ORION code used for many simulations
of star formation, including the feedback from massive stars, was
developedwith FLDmethod being part of it (Krumholz et al., 2007).
Gittings et al. (2008) developed the AMR code RAGE including the
grey FLD, for which they introduce a new technique of solving the
diffusion and material energy equations, allowing larger time steps
and more robust behavior. Commerçon et al. (2011) implemented
FLD into the AMR code RAMSES, and Commerçon et al. (2014)

added adaptive time stepping and the implicit time integration. The
block AMR code CRASH (van der Holst et al., 2011) was developed
with grey FLD where electrons and ions are allowed to have
different temperatures. The grey FLD method in its mixed-frame
formulation is also part of the AMR code CASTRO (Zhang et al.,
2011), one of the first 3D RHD codes using the unsplit PPM
solver. TRHD (Sijoy and Chaturvedi, 2015) is two-dimensional
unstructured mesh Lagrangian code using the grey FLD with three
temperature approach (ions, electrons and radiation are allowed to
have different temperatures). The FLASH code (Fryxell et al., 2000),
a computational framework consisting of modules implementing
various physical processes including hydrodynamics and radiation
transport, was provided by the FLD module implemented by
Chatzopoulos and Weide (2019) and tested on 1D simulations
of supernova Ia explosions. The general fluid dynamics code
GIZMO (Hopkins and Grudić, 2019) includes several radiation
transport solvers including the one based on FLD. Recently, the grey
FLD method was implemented into the finite-volume MHD code
MPI-AMRVAC (Moens et al., 2022).

The FLD method was implemented also into the Smoothed
Particle Hydrodynamics (SPH) codes. Basic methods for calculating
radiative heat diffusion were described in seminal works on SPH
by Lucy (1977) and Brookshaw (1985). The full grey FLD method
was implemented into the SPH by Whitehouse and Bate (2004)
and Whitehouse et al. (2005). Later, this code originating from
code SPHNG (Benz, 1990) was used by Price and Bate (2009);
Bate and Keto (2015); Bate (2019) and many other works for
simulating star forming clouds, where the FLD method can be
efficiently used to follow collapsing pre-stellar cores with high
optical depths. Mayer et al. (2007) used implemented FLD into SPH
code GASOLINE and used it to study the gravitational instability
in protoplanetary discs. Fryer et al. (2006) developed code SNSPH
including the FLD radiation transport and used it for simulating
supernova explosions, where FLD can also be used efficiently due
to high optical depths. Another implementations of FLD into SPH
codes are by Viau et al. (2006) and recently by Bassett et al. (2021)
(code SPHERAL).

3.1.2 M1 closure
A more complex and accurate two-moments method is the M1

closure (Dubroca and Feugeas, 1999). It assumes that the Eddington
tensor is axially symmetric around the flux vector and hence can be
expressed as

𝔻 =
1− χ
2
𝕀 +

3χ− 1
2

n⊗n (17)

where χ is a scalar function called the Eddington factor. The
M1 closure method uses one of its simplest forms discussed in
Levermore (1984), corresponding to the Lorentz boosted isotropic
distribution of the radiation,

χ =
3+ 4|f|2

5+ 2√4− 3|f|2
(18)

where f = |Fν|/cEν is the reduced flux.Then, themethod solves Eqs 6,
7 or their equivalent in the mixed frame approach.

The advantage of the M1 closure is that it captures correctly
the two extremes of the radiation field: i) the free streaming (or
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TABLE 1 Radiation transport codes using the flux limited diffusion (FLD) approximation. The first column gives the reference to the work describing the
code or algorithm; the second column give the name of the radiation transport code or RHD code (if they exist); the third column specifies the frame of
reference in which the radiation energy equation is formulated (mixed, co-moving–CMF, or radiation energy advection terms are neglected); the fourth
column tells whether the code is parallel using the domain decomposition; and the last column gives eventually an additional information.

References Name/code Frame DD Note

Kley (1989) - CMF N 2D axisym, protoplanetary discs

Bodenheimer et al. (1990) - CMF N 2D HD code by Rozyczka (1985)

Klahr et al. (1999) TRAMP CMF N

Boss (2001) - CMF N 3D disc forming giant planet

Turner and Stone (2001) ZEUS2D CMF N

Fryer et al. (2006) SNSPH CMF Y SPH code, neutrino diffusion

Viau et al. (2006) - CMF N SPH code

Krumholz et al. (2007) ORION mixed Y

Mayer et al. (2007) GASOLINE CMF Y

Gittings et al. (2008) RAGE CMF Y rad-matter coupling→ larger dt

Kuiper et al. (2010) PLUTO negl Y + ν-dep ray tr

Commerçon et al. (2011) RAMSES CMF Y

van der Holst et al. (2011) CRASH CMF Y multiple frequency groups

Zhang et al. (2011) CASTRO mixed Y unsplit PPM solver

Bitsch et al. (2013) NIRVANA negl N + ν-dep ray tr. in rad. dir

Flock et al. (2013) PLUTO negl Y + ν-dep ray tr

Kolb et al. (2013) PLUTO negl Y + ν-dep ray tr

Klassen et al. (2014) FLASH CMF Y + ν-dep ray tr., multiple src

Bate and Keto (2015) SPHNG CMF Y + TreeCol (Clark et al., 2012)

Sijoy and Chaturvedi (2015) TRHD CMF N 3-temp, 2D unstructured-mesh

Ramsey and Dullemond (2015) AZEUS CMF N + ν-dep ray tr

Chatzopoulos and Weide (2019) FLASH mixed Y opacities from OPAL

Hopkins and Grudić (2019) GIZMO mixed/CMF Y multiple frequency groups

Bassett et al. (2021) SPHERAL CMF Y SPH code

Moens et al. (2022) MPI-AMRVAC CMF Y finite-volume MHD code

optically thin) limit with |f| = 1 and χ = 1, and ii) the diffusion (or
optically thick) limit with |f| = 0 and χ = 1/3. The ability to maintain
the original direction of the free streaming radiation is a pronounced
improvement in comparison to the FLD method leading to the
artificial diffusion of the free streaming radiation.On the other hand,
the assumed simple form of the radiation pressure tensor cannot
correctly describe more complex radiation fields as for instance
the radiation from multiple sources in which case the nonphysical
interaction would occur.

A specific feature of the M1 closure making is suitable for
the implementation into (magneto-) hydrodynamic codes is that
the system of Eqs 6, 7 is hyperbolic and hence it can be solved
with the same algorithms as the equations of the fluid dynamics.
Table 2 gives a list of star formation and related fields codes
implementing the M1 closure method. The first such code was
HERACLES (González et al., 2007) designed to study radiative
shocks (and compare the results with laboratory experiments), jets
of young stars, formation of pre-stellar cores and protoplanetary
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TABLE 2 Radiation transport codes using the M1 closure method. The meaning of columns is the same as in Table 1.

References Name/code Frame DD Note

González et al. (2007) HERACLES CMF Y

Rosdahl et al. (2013) RAMSES-RT CMF Y from ATON (Aubert and Teyssier, 2008)

Sądowski et al. (2013) KORAL covar N general relativistic MHD code

Skinner and Ostriker (2013) ATHENA mixed Y reduced speed of light approx

Hopkins and Grudić (2019) GIZMO CMF/mixed Y multiple frequency groups

Kannan et al. (2019) AREPO CMF Y higher order scheme of M1

Melon Fuksman and Mignone (2019) PLUTO mixed Y

Skinner et al. (2019) FORNAX CMF Y photon and neutrino rad. fields

Bloch et al. (2021) ARK-RT CMF Y hybrid OpenMP/MPI/GPU parallel

Chan et al. (2021) SPH-M1RT CMF Y in SPH code SWIFT

disks. This method was implemented into the cosmic reionisation
code ATON (Aubert and Teyssier, 2008), and later ported to the
general RHD code RAMSES (Rosdahl et al., 2013; Rosdahl and
Teyssier, 2015). Sądowski et al. (2013) included the M1 closure
method into the general relativistic code KORAL formulating
the RHD equations in the covariant form. Skinner and Ostriker
(2013) describe the M1 closure module for the ATHENA code,
in which they use the reduced speed of light approximation to
improve the performance. The general fluid dynamics code GIZMO
includes the M1 closure as one of its radiation transport solvers.
Kannan et al. (2019) describe the radiation transport module for the
unstructured moving mesh code AREPO, based on a new higher
order implementation of the M1 closure method. This method is
also included into code FORNAX (Skinner et al., 2019) primarily
intended for core collapse supernova simulations, general fuild
dynamics code PLUTO (Melon Fuksman and Mignone, 2019), and
hybrid OpenMP/MPI/GPU parallel code ARK-RT (Bloch et al.,
2021). Chan et al. (2021) present module SPH-M1RT for task-based
parallel SPH code SWIFT.

3.1.3 Variable Eddington Tensor methods
Another approach to solve moment Eqs 4, 5, as opposed to

the closure assuming an approximate form of the Eddington
tensor, is to calculate the Eddington tensor self consistently by
directly solving the radiation transport Eq. 1. Methods using it
(Table 3) are referred to as Variable Eddington Tensor (VET)
methods, and the Eddington tensor, 𝔻, is calculated by one
of the methods described in §3.2 (ray tracing, long or short
characteristics, or Monte Carlo). Subsequently,𝔻 is combined with
the radiation moment equations to calculate the radiation energies
and fluxes.

The VET method was developed for 1D calculations of
plane-parallel stellar atmospheres by Auer and Mihalas (1970),
however, the idea of iterating the ratio of second and zeroth

radiation moments dates back to Eddington (1926). The first
multi-dimensional astrophysical code using this method was
ZEUS2D (Stone et al., 1992), where 𝔻 was calculated by the
short characteristics. The algorithm was later updated in code
ZEUS-MP (Hayes and Norman, 2003) by adding more methods
to calculate 𝔻 and by separating the radiation and gas energy
densities. The 1D RHD code TITAN (Gehmeyr and Mihalas,
1994) uses VET and calculates 𝔻 by ray tracing. Gnedin and
Abel (2001) developed an algorithm based on the Optically Thin
Variable Eddington Tensor (OTVET) approximation where 𝔻 is
calculated in the optically thin regime. This is done by integrating
contributions of radiation sources with attenuation factor 1/r2 over
the computational domain taking advantage of the solver used
for the self-gravity. They implemented this algorithm into the
Soften Lagrangian Hydrodynamic code (SLH) following all physical
quantities on a moving deformed mesh. This algorithm was later
implemented by Petkova and Springel (2009) into the SPH code
GADGET. Sekora and Stone (2010) developed a hybrid Godunov
method based on VET with user defined 𝔻 and implemented it
into 1D RHD code NIKE. This method was later implemented
into code ATHENA by Jiang et al. (2012) where 𝔻 is calculated
by the short characteristics method described by Davis et al.
(2012). The general relativistic radiation magnetohydrodynamic
(GR-RMHD) code INAZUMA (Asahina et al., 2020) also uses
the VET based method to treat the radiation, and it calculates
𝔻 integrating the local radiation intensity over the angular
directions. Recently, the RHD code QUOKKA (Wibking and
Krumholz, 2022) implements the general two-moment radiation
transport method. The code uses the block structured adaptive
mesh refinement handled by the AmREX library and it is
parallelized for both MPI and usage on graphic processing units
(GPUs) using the CUDA library. Its radiation solver is written
to use a general Eddington tensor, the default option is the
M1 closure.
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TABLE 3 Radiation transport codes using the Variable Eddington Tensor (VET) approach. The meaning of columns is the same as in Table 1.

References Name/code Frame DD Note

Stone et al. (1992) ZEUS2D CMF N 𝔻 cmp. by short chars

Gehmeyr and Mihalas (1994) TITAN CMF N 1D code;𝔻 cmp. by ray tracing

Gnedin and Abel (2001) OTVET Lag N 𝔻 cmp. in optically thin approx

Sekora and Stone (2010) NIKE Lag N hybrid Godunov RHD,𝔻 user defined

Jiang et al. (2012) ATHENA mixed Y 𝔻 cmp. by short chars

Asahina et al. (2020) INAZUMA CMF N 𝔻 cmp. by integrating intensity

Wibking and Krumholz (2022) QUOKKA mixed Y GPU,𝔻 general, M1 by default

3.2 Methods solving RTE directly

Table 4 lists codes that employ the direct solution of the RTE:
forward and reverse ray tracing, methods of characteristics, and
Monte Carlo methods.

3.2.1 Ray tracing
The most straightforward method to solve the radiation

transport Eq. 1 is to follow the radiation from its sources along
the lines of its propagation, a technique called ray tracing. It is
widely used in many other fields, in particular in the computer
image generation. The original idea of ray tracing dates back to 16th
century to Albrecht Dürer who described multiple techniques for
projecting 3D scenes onto an image plane (Hofmann, 1990).

As previously mentioned, the primary challenge in directly
solving Eq. 1 is its high dimensionality, resulting in high
computational costs. Therefore, a key characteristic of a ray tracing
algorithm is a set of approximations designed to reduce the
complexity of problem. A crucial aspect is the method by which
the radiation field is discretized in both space and its propagation
directions. The simplest approach, employed by many early and
recent codes, involves calculating the radiation on the same grid
as the gas dynamics. This confines the direction of radiation
propagation to the coordinate axes. Examples of this approach
include Wolfire and Cassinelli (1986) in a 1D spherical grid,
Murray et al. (1994); Garcia-Segura and Franco (1996) in a 2D
spherical grid, and numerous other works, the review of which
exceeds the scope of this study. This method is particularly well-
suited for treating radiation emanating from a single source (e.g.,
a central star) located at the center of the coordinate system. It
can be effectively combined with other methods that describe
the diffuse radiation component (e.g., FLD, as mentioned in
Section 3.1.1; Table 1).

In many cases, confining the radiation propagation solely
along the hydrocode grid axes is overly restrictive. Therefore,
general radiation transport codes typically employ an independent
method to define rays, making ray tracing algorithms particularly
suitable for implementation into unstructured grid or smooth
particle hydrodynamic codes. One approach is to cast rays from
a source in spherical coordinates, associating each ray with a
spherical segment of the same size (Abel et al., 1999; Razoumov

and Scott, 1999). This method was later refined in the HEAlPix
library (Górski et al., 2005), which has become a de facto standard.
HEALPix facilitates the tessellation of the sphere surface into equal
area regions in a hierarchical manner, a feature utilized by adaptive
ray tracing algorithms that split rays in regions requiring finer
angular resolution (Abel and Wandelt, 2002). This approach has
proven highly successful and has been employed by various authors,
including Pawlik and Schaye (2008) (TRAPHIC code linked to
SPH code GADGET2), Bisbas et al. (2009) (SPH code SEREN),
Wise and Abel (2011) (MORAY code linked to AMR code ENZO),
Baczynski et al. (2015) (FERVENT code within the AMR code
FLASH), and others.

Depending on the number of cast rays, ray tracing algorithms
can achieve high accuracy, although with correspondingly higher
computational costs that typically scale with the number of radiation
sources. As a result, they are occasionally employed in conjunction
with other methods where ray tracing specifically handles radiation
from a relatively low number of discrete sources, such as massive
stars. An example is the HARM2 code (Rosen et al., 2017), which
calculates ionizing stellar radiation using adaptive ray tracing and
the diffuse component using the FLD method in the ORION code.
Similarly, the TORUS-3DPDR code (Bisbas et al., 2015a) utilizes
adaptive ray tracing for FUV radiation and theMonte Carlo method
for the ionizing and diffuse components.

A slightly different approach to spatially adaptive ray tracing was
used by Dale et al. (2007) who integrated the RTE on the line-of-
sight between the source and the target particle using evaluation
points defined by SPH particles close to the line-of-sight selected
using method by Kessel-Deynet and Burkert (2000).

Ritzerveld and Icke (2006) developed algorithm SimpleX to
solve Eq. 1 on an unstructured grid calculated from the properties of
the medium in which the radiation propagates, using the Delaunay
triangulation (Delaunay, 1934). The computational costs of this
method do not depend on the number of sources, similarly to
moment-based methods or some reverse ray tracing schemes. It
is typically less diffusive that moment based methods and it is
more suitable for parallelisation with domain decomposition than
most of the ray tracing methods. It is particularly suitable for
being used with SPH or unstructured grid codes, Clementel et al.
(2014) implemented it into an SPH code. The SimpleX algorithm
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TABLE 4 Radiation transport codes using ray tracing and methods of characteristics. The first column gives the reference to the work describing the
code or algorithm; the second column give the name of the radiation transport code or RHD code (if they exist); the third column whether the code
solves time-dependent RTE; the fourth column tells whether the code is parallel using the domain decomposition; the fifth column gives how the code
deals with the frequency dependence (grey, ion. - a single band of ionising photons, MG - multi-group approach, ν-dep - full frequency dependence);
and the last column gives eventually an additional information.

References Name/code t-dep DD MF Note

Abel and Wandelt (2002) - N N ion gen., adaptive RT with HealPix

Mellema et al. (2006) C2RAY N N ion grid, short chars

Rijkhorst et al. (2006) FLASH N Y grey grid, hybrid characteristics

Dale et al. (2007) SPHNG N Y ion SPH, adaptive RT

Altay et al. (2008) SPHRAY N N ν-dep SPH, Monte Carlo

Pawlik and Schaye (2008) TRAPHIC/GADGET2 Y Y ν-dep SPH, photon packets, cones

Bisbas et al. (2009) SEREN N N ion SPH, adaptive RT

Nayakshin et al. (2009) - Y N grey SPH, rad. pressure

Hasegawa and Umemura (2010) START N N ion SPH, reverse RT, tree accel

Wise and Abel (2011) MORAY/ENZO Y Y MG grid, adaptive RT

Okamoto et al. (2012) ARGOT N Y ion grid-based version of START

Clark et al. (2012) TREECOL N reverse RT/column densities

Davis et al. (2012) ATHENA N Y grey grid, short chars

Altay and Theuns (2013) URCHIN N N ν-dep SPH, reverse RT

Baczynski et al. (2015) FERVENT/FLASH N Y MG grid, forward RT

Bisbas et al. (2015a) TORUS-3DPDR N Y ν-dep SPH, adp. RT (FUV) + MC (ion.&diff.)

Roth and Kasen (2015) - Y N ν-dep grid, 1D Eulerian and Lagrangian

Buntemeyer et al. (2016) FLASH N Y grey grid, hybrid chars on adaptive mesh, GPU

Lomax and Whitworth (2016) SPAMCART Y N ν-dep SPH, first MCRT SF sims

Rosen et al. (2017) HARM2/ORION N + Y Y ν-dep grid, forward RT (ν-dep) + grey FLD

Frostholm et al. (2018) LAMPRAY/RAMSES N Y MG grid, long chars., coupled to KROME

Jaura et al. (2018) SPRAI/AREPO N Y ion unstruct. grid, SimpleX2 alg

Vandenbroucke and Wood (2018) CMACIONIZE N Y ν-dep unstruct. grid, Monte Carlo

Grond et al. (2019) TREVR/GASOLINE N Y ion SPH, reverse RT, tree

Harries et al. (2019) TORUS Y Y ν-dep grid, Monte Carlo

Smith et al. (2020) AREPO-MCRT Y Y grey unstruct. grid, Monte Carlo

Jiang (2021) ATHENA++ Y Y MG grid, rays + FVM, implicit

Mackey et al. (2021) PION N Y MG grid, short chars

Wünsch et al. (2021) TREERAY/FLASH N Y MG grid, reverse RT, tree
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was improved and parallelized by Paardekooper et al. (2010) and
implemented as code SPRAI integrated into code AREPO by
Jaura et al. (2018).

3.2.2 Characteristics-based methods
A specific way of ray tracing are methods of characteristics,

which solve the RTE along predefined rays (characteristics) covering
the entire computational domain rather than casting rays from
discrete sources. In this manner, characteristics-based methods can
describe the diffuse radiation component. They can be categorized
into long, short and hybrid characteristics based on the end points of
the rays. Long characteristics extend across the entire computational
domain, with their separation comparable to the size of the
computational elements and defined in specific directions. While
long characteristics are among the most accurate methods, they
are also the most expensive, depending on the number of rays.
Another disadvantage, applicable to some extent to all ray tracing
methods, is that they are difficult to get parallelizedwithin codes that
use domain decomposition on distributed memory machines. This
challenge arises because rays crossing multiple domains typically
represent a substantial amount of information that needs to be
communicated over the (relatively) slow network. An example of
a code utilizing long characteristics is LAMPRAY (Frostholm et al.,
2018), implemented into the RAMSES code. LAMPRAY calculates
both diffuse and discrete sources radiation on an adaptive oct-tree
mesh, allowing the definition of several frequency bins for both
ionizing and non-ionizing radiation. It is coupled with the non-
equilibrium chemistry code KROME (Grassi et al., 2014), providing
the chemical networks to evolve species abundances.

The short characteristics methods create rays only among
the neighbour cells (or generally computational elements) and
interpolate the radiation intensity at the cell borders. This makes
this class of methods more diffusive, but also computationally
cheaper and much easier to parallelize with domain decomposition
codes. Short characteristics are used, e.g., by code C2RAY
(Mellema et al., 2006), code ATHENA (Davis et al., 2012), or code
PION (Mackey et al., 2021). They have been also used together with
the moment-based VET method to calculate the local radiation
pressure tensor𝔻 (see §3.1.3).

Rijkhorst et al. (2006) developed the hybrid characteristics
method, combining the advantages of both long and short
characteristics, particularly in reducing the necessary parallel
communication. This method is implemented within the block-
based daptive AMR code FLASH. It divides the radiation field
into two components: i) the local component within the blocks,
calculated using the long characteristics method, and ii) the global
component, transporting radiation among blocks (and parallel sub-
domains) using interpolation similar to the short characteristics
method. This algorithm was further enhanced by Peters et al. (2010)
and later re-implemented by Buntemeyer et al. (2016) to also handle
diffuse radiation and operate on GPU-accelerated architectures.

Jiang (2021) developed an implicit radiation transport algorithm
for MHD code ATHENA++. It represents the radiation by its
specific intensities along discrete rays, and evolves them using
a conservative finite volume method. It avoids using a closure
as in moment-based methods and the related artificial diffusion.
On the other hand, it solves time-dependent radiation transport
equation, contrary to majority of ray or characteristics based

methods. The original implementation was grey, however, Jiang
(2022) extended it to include the frequency dependence using the
multi-group approach.

3.2.3 Reverse ray tracing
An alternative approach is the so-called reverse ray tracing.

In contrast to the “standard” forward ray tracing, which casts
rays from the source outward, reverse ray tracing schemes cast
rays from the target point where the radiation interacts with the
gas (e.g., grid cell or SPH particle) and transport the radiation
inward to the target point. This approach offers several advantages,
including the highest density of rays (i.e., the highest spatial
resolution) near the location where radiation interacts with the
gas. Another advantage is its suitability for handling external
diffuse radiation. Hasegawa and Umemura (2010) implemented
this algorithm into the SPH code START, incorporating tree-based
acceleration to group distant sources into oct-tree nodes. A grid-
based version of this algorithm was developed by Okamoto et al.
(2012) for the code ARGOT. Altay and Theuns (2013) created
the reverse ray tracing code URCHIN and integrated it into
an SPH code focused on cosmological simulations. Another
implementation of this approach is TREVR for the SPH code
GASOLINE by Grond et al. (2019), who introduced adaptive
refinement along rays and directionally dependent absorption
coefficients for tree nodes. Wünsch et al. (2021) developed the code
TREERAY, implementing tree-accelerated reverse ray tracing for
the AdaptiveMesh Refinement (AMR) code FLASH. It utilizes a fast
parallel tree solver described in Wünsch et al. (2018) and is coupled
with the chemical network developed by Glover and Mac Low
(2007). Later, it was extended by Klepitko et al. (2023), who added
diffuse grey infrared radiation and related radiation pressure,
and by Gaches et al. (2023), who added frequency-dependent X-
ray radiation. TREERAY has been used in the SILCC project
(Walch et al., 2015, and follow-up papers) using RMHD simulations
tomodel the full cycle ofmolecular clouds in a part of a galactic disc.

3.2.4 Monte Carlo methods
Monte Carlo Radiation Transport (MCRT) algorithms belong

to a broad category of statistical sampling methods that share this
name. They simulate the movement of individual photons through
a medium by stochastically sampling random events, including
interactions with matter. Given that tracking individual photons
is prohibitively expensive, MCRT algorithms introduce “photon
packets” that carry information about the position, direction,
frequency distribution, etc., of the group of photons they represent.
This approach closely mirrors the reality of propagating radiation,
making it highly versatile, and facilitating the inclusion of various
complex processes such as scattering.

However, the statistical nature of thismethod introduces Poisson
noise, and maintaining it below a required level often necessitates a
very large number of photon packets. Consequently, MCRT codes
have historically mostly been used for static problems (e.g., the
code MOCASSIN by Ercolano et al., 2003, the code HYPERION by
Robitaille, 2011, or the code RADMC3DbyDullemond et al., 2012).
Due to the potential long distances photon packets can travel,Monte
Carlo methods are relatively challenging to parallelize using domain
decomposition. On the other hand, thread-based parallelization on
shared memory architectures is typically straightforward.
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As this method does not rely on any grid, it is natural to
use it with SPH or unstructured grid codes. An algorithm to
incorporate MCRT into SPH codes was proposed by Lucy (1999).
A Monte Carlo-based ray-tracing algorithm was developed by
Altay et al. (2008) and implemented into the publicly available
code SPHRAY, primarily focused on cosmological simulations.
Another implementation of MCRT into an SPH code was
done by Nayakshin et al. (2009), who used it to calculate the
radiation pressure force. Roth and Kasen (2015) developed a 1D
MCRT code and coupled it with both Eulerian and Lagrangian
hydrodynamic codes. The first star formation simulations with
MCRT were performed by Lomax and Whitworth (2016), who
developed the code SPAMCART coupledwith SPHhydrodynamics.
They used it to calculate synthetic intensity maps and spectra
of an embedded protostellar multiple system. Vandenbroucke
and Wood (2018) developed the radiation hydrodynamic code
CMACIONIZE, which works on an unstructured moving grid
and is based on the Monte Carlo method calculating ν-dependent
transport of ionizing photons. The code is parallelized using a
task-based scheme and has an option to work in a distributed
memory configuration. Code TORUS, developed by Harries et al.
(2019), is an MCRT that includes native AMR grid-based
hydrodynamics and can also be coupled with the SPH code
SPHNG. It implements numerous microphysics modules, including
atomic and molecular line transport in moving media, dust
radiative equilibrium, photoionization equilibrium, and time-
dependent radiative transfer, and has been used, e.g., for modelling
massive stars feedback in turbulent clouds (Ali et al., 2018). It
is also designed for postprocessing the output of several other
(magneto-)hydrodynamic codes. Recently, MCRT has also been
implemented into the unstructured moving mesh code AREPO by
Smith et al. (2020).

3.3 Other approximations

Many studies conducting hydrodynamic simulations of star
formation further simplify the radiation transport problem. For
example, Vázquez-Semadeni et al. (2017) include stellar ionizing
radiation feedback by calculating the Strömgren sphere radius from
the EUV photon production rate of a star and the characteristic
density obtained as the geometric mean of the density at the star and
at the target cell. Subsequently, they set the gas temperature within
the sphere to 104 K.

A specific case involves non-ionizing diffuse ambient interstellar
radiation fields, crucial for the physics of molecular clouds as they
provide heating and affect molecular gas chemistry. In molecular
clouds, this radiation intensity strongly depends on shielding, i.e.,
the optical depth between a given location and the edge of the cloud.
This consideration led Clark et al. (2012) to develop the TREECOL
algorithm, implemented into the code GADGET2. It efficiently
calculates optical depths in all directions (discretized byHealPix) for
each SPHparticle using a tree, enabling the determination of heating
and dissociation rates. This algorithm was later implemented by
Valdivia and Hennebelle (2014) into RAMSES and by Wünsch et al.
(2018) into FLASH.

A different approach to solving a very similar problem was
suggested by Stamatellos et al. (2007), who estimate the mean

optical depth from local density, temperature, and gravitational
potential using a set of precalculated models of collapsing clouds.
This method provides reasonably good results for almost zero
computational costs.

The simplest treatment of radiation is tomodify the gas equation
of state to calculate the equilibrium gas temperature from local gas
density, thus accounting for the most probable result of the heating-
cooling balance. A popular choice is the barotropic equation of
state (e.g., Bonnell, 1994; Whitworth et al., 1995; Bate, 1998), a
simple analytical formula designed to mimic the thermodynamics
of spherically symmetric collapse of a single, isolated
protostar.

4 Summary

This work reviews methods to solve radiation transport
equation (RTE) in simulations of star formation and related fields.
According to the algorithm, they can be roughly divided into
two groups: moment-based methods and methods solving the
RTE directly.

Moment-based methods approximate the radiation specific
intensity by integrating it over all directions and expressing
it in terms of several moments. The order of the moments
in the sequence closure determines the level of approximation,
leading to artificial diffusion of the radiation, unphysical self-
interaction, and other artificial effects. These methods typically
include the time-dependent term of the RTE and sometimes
artificially decrease the speed of light to reduce computational
costs. Their computational expenses are independent of the
number of sources, making them well-suited for calculating diffuse
radiation. Frequency-wise, moment-based methods often use the
grey approximation or, occasionally, the multi-group frequency
approach. They are sometimes combined with ray tracing, which
calculates radiation from one or several discrete sources, while the
moment-based method addresses the diffuse radiation component.
The most commonly used methods of this type include flux-
limited diffusion, the M1 closure, and the variable Eddington
tensor method.

Methods that directly solve the RTE integrate it along specific
lines, commonly referred to as rays. These methods include forward
and reverse ray tracing, long, hybrid, and short characteristics, as
well as Monte Carlo methods. Ray tracing and characteristics-based
methods typically do not include the time-dependent RTE term,
utilizing the infinite speed of light approximation; however, there
are exceptions. Monte Carlo methods are usually time-dependent.
Depending on angular discretization, ray tracing and long/hybrid
characteristics can achieve high accuracy but at the expense of
high computational costs. Short characteristics methods tend to
be more diffusive. While Monte Carlo methods can be highly
accurate, achieving this requires a substantial number of photon
packets, leading to increased computational costs. Monte Carlo
methods are also versatile, suitable, e.g., for treating radiation
scattering. Computational costs for most of these methods scale
with the number of sources, with exceptions like reverse ray tracing
methods that group distant sources and methods combining ray
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tracing with advection schemes. Various treatments of radiation
frequency dependence are employed; generally, methods designed
for a small number of sources can incorporate detailed frequency
dependence. Forward ray tracing and long characteristics methods
are typically challenging to parallelize using domain decomposition,
whereas short characteristics are relatively straightforward.
Hybrid characteristics, reverse ray tracing, and Monte Carlo
methods fall in the middle ground regarding parallelization
difficulty.

Radiation transport has become a well-established component
of star formation simulations, with many methods and codes
available, continuously advancing in both maturity and complexity.
Consequently, it becomes imperative to not only validate these
codes against standard tests but also to benchmark them against
each other and, ideally, against realistic problems inherent in the
realm of star formation. In this regard, initiatives such as the code
comparison projects, such as those conducted by Iliev et al. (2006),
Iliev et al. (2009) for cosmological radiation transport codes and
the STARBENCH project led by Bisbas et al. (2015b) that compares
radiation transport codes for star formation, prove to be very
valuable. Moreover, there is a growing need for more comparison
projects to enhance our understanding and confidence in the
capabilities of these codes.
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