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Static axion stars revisited

Brandon Bautista and Juan Carlos Degollado*

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico

We consider static solutions to the spherically symmetric Einstein-scalar field
systems with an axion potential known as axion stars, originally described by
Guerra et al., JCAP (2019, 09 (09)). We construct numerically families of axion
stars in the ground state, for different values of the decay constant fa. It is shown
that the existence diagram becomes richer than the mini-boson star case, and
several regions of stability appear as the value of fa decreases, yielding to more
massive configurations with larger compactness. Some intrinsic properties, such
as isotropy and compactness of such stars, are also discussed. Finally, we
describe the motion of test particles around these objects.
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1 Introduction

Bosonic stars are formed when the density of bosons in a region of space becomes
high enough to allow them to gravitationally attract each other and form a self-gravitating
configuration overcoming their quantum-mechanical repulsion (Kaup, 1968; Ruffini and
Bonazzola, 1969; Mielke and Scherzer, 1981; Colpi et al., 1986; Seidel and Suen, 1990;
Mielke and Schunck, 2000; Steven, 2012). Several types of bosonic stars have been
proposed, depending on the type of boson involved. These include vector bosonic
fields known as Proca stars (Brito et al., 2016; Herdeiro et al., 2019), oscillations (Seidel
and Suen, 1991; Alcubierre et al., 2003) or Q-balls (Alexander and Shaposhnikov, 1998;
Enqvist and McDonald, 1998). One the simplest configurations are boson stars with a
complex scalar field (Jetzer, 1992). Interest in these self-gravitating objects has recently
increased due to developments in particle physics and cosmology, suggesting that in
the early stages of the universe, bosonic stars may have formed out of fundamental
scalar fields and could play a role in understanding the origin of dark matter (Matos
and Arturo Urena-Lopez, 2000; Matos et al., 2000; Matos and Arturo Urena-Lopez, 2001;
Matos and Arturo Urena-Lopez, 2002; Marsh and Ferreira, 2010; Marsh and Pop, 2015;
Marsh, 2016). Among the myriad of candidates proposed to explain this cosmic enigma,
axions have emerged as one of the leading candidates to explain the nature of dark
matter in the universe (Peccei and Quinn, 1977; Matos and Arturo Urena-Lopez, 2007;
Matos et al., 2008; Arvanitaki et al., 2010; Arvanitaki and Dubovsky, 2011; Marsh and
Silk, 2014; Porayko and Postnov, 2014; Schive et al., 2014; Sikivie, 2014; Marsh and
Pop, 2015; Marsh, 2016). Axion particles were originally proposed in the 1970s as a
possible solution to the strong CP problem in particle physics and are the best motivated
candidates because of naturally suppressed CP violation in the strong nuclear force. The
fundamental theory for the axion field is a renormalizable extension of the standard model
in which the Peccei–Quinn symmetry is broken spontaneously by the ground state of a
scalar field.

After the original proposal, axion can refer to any low-mass spin-zero particle
characterized by a periodic self-interaction potential (Graham et al., 2015; Caso et al.,
2018). String theory, for instance, provides grounds for considering the existence of
numerous axions with masses spanning several orders of magnitude, and such possibility
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has been referred as the Axiverse (Arvanitaki et al., 2010;
Di Luzio et al., 2020), and the observational consequences of these
axions on astrophysical black holes through the Penrose super-
radiance process have been explored (Arvanitaki and Dubovsky,
2011; Brito et al., 2015). Additionally, extremely light bosonic
particles, withmasses of the order of 10–22 eV, as a candidate for dark
matter, have been discussed (Arturo Ureña-López and Matos, 2000;
Matos et al., 2000; Matos and Arturo Urena-Lopez, 2007; Lam et al.,
2017). Astrophysical constraints coming from the mechanism of
cooling of stars due to the emission of axions provide a lower bound
on the axion decay constant of the order of fa ≥ 3× 109 GeV. On
the other hand, the cosmological constraint in the early universe
provides a bound of the order of fa ≤ 1012 GeV (Marsh, 2016).

Due to the bosonic nature, axions can form a Bose–Einstein
condensate (BEC),whose collective behavior can be slightly different
compared to an ideal gas of bosons. In thiswork, we focus on the case
of static axion stars, which are spherically symmetric self-gravitating
solutions for a scalar field with a periodic potential. Axion boson
stars were first studied by Guerra et al. (2019) and later generalized
to include rotation by Delgado et al. (2020) and Zeng et al. (2023).
More recently, the fermion–axion system has also been studied by
Zeng et al. (2021) and Di Giovanni et al. (2022).

We begin by describing the set up to construct self-gravitating
axion stars in Einstein theory and provide some basic definitions.We
focus on isolated axion stars and summarize some basic features of
the equations. Then, we construct families of spherically symmetric
solutions with different values of the decay constant fa and describe
some of their properties. Finally, we discuss the motion of test
particles, both null and massive, moving in the vicinity of the
central object.

2 Axion stars

2.1 Field equations

We consider a complex scalar field minimally coupled to gravity
with an action given by

S = ∫d4√−g(−R
κ
+ gμν∇μΦ∗∇νΦ+V(|Φ|2)) , (2.1)

where R represents the Ricci scalar, g = det (gμν), κ = 16π, Φ
represents the scalar field, and the star stands for the complex
conjugate. V represents the self-interacting potential. The variation
of the action 2.1 with respect to the metric tensor gμν leads to
Einstein’s equations.

Rμν −
1
2
Rgμν = κTμν, (2.2)

where the stress–energy tensor is given by

Tμν =
1
2
[∇μΦ∗∇νΦ+∇μΦ∇νΦ∗] −

1
2
gμν [∇

αΦ∗∇αΦ+V(|Φ|2)] .

(2.3)

The conservation of energy applied to the stress–energy tensor
(2.3) reduces to the equation

(□− dV
d|Φ|2
)Φ = 0 (2.4)

and its complex conjugate, where □Φ = gμν∇μ∇νΦ.

2.2 Spherical symmetry

We are interested in static spherically symmetric spacetimes, so
we assume the metric can be written as

ds2 = −α(r)2dt2 + a(r)2dr2 + r2dΩ2, (2.5)

where dΩ2 = dθ2 + sin2θdφ2 is themetric defined on the two-sphere.
In order to construct stationary configurations, we assume a scalar
field with a time harmonic dependence of the form

Φ (r, t) = ϕ (r)e−iωt. (2.6)

As described in the work of Guerra et al. (2019), axion stars are
constructed with the potential

V =
2μ2 f2a
B
[

[
1−√1− 4B sin2(

ϕ
fa
)]

]
, (2.7)

where B = 0.22 is a numerical factor that depends on the mass of the
up and down quarks and μ is identified as themass of the particles. In
the limit fa ≫ ϕ, the leading term in the power series of the potential
leads to a potential with a quartic self-interaction of the form

V (ϕ) ≈ μ2ϕ2 −
ℏμ2

f2a
(3B− 1

12
)ϕ4. (2.8)

From 2.8 we thus expect, themajor contributions of the periodic
potential appear in the limit of small fa. With the ansatz for metric
2.5 and form 2.6 of the field, the Einstein-scalar field system 2.2, 2.4,
2.7 in spherical symmetry becomes

1
α
dα
dr
= a− 1

2r
−
rκaμ2 f2a

2B
[

[
1−√1− 4B sin2(

ϕ
2 fa
)]

]

+
raϕ2ω2

2
+ r

2
(
dϕ
dr
)

2
, (2.9)

1
a
da
dr
= 1− a

r
+
rκaμ2 f2a

2B
[

[
1−√1− 4B sin2(

ϕ
2 fa
)]

]

+
raϕ2ω2

α2 + r(
dϕ
dr
)

2
, (2.10)

d2ϕ
dr2
= −

aϕω2

α2 +(
dϕ
dr
)[( 1

2a
da
dr
)− 2

r
− 1
α
dα
dr
]

+
a√4πμ2 fa

√1− 4B sin2( ϕ
2 fa
)

sin(
ϕ
fa
). (2.11)

To solve systems 2.9–2.11, one must choose appropriate
boundary conditions, which are as follows. In order to guarantee
that the spacetime is locally flat at the origin, the condition
a (0) = 1 is required. Furthermore, we ask for dϕ(0)

dr
= 0. Additionally,

for solutions that represent an isolated configuration, the scalar
field must vanish at infinity. In this limit, asymptotic flatness is
reached. These conditions reduce the system to an eigenvalue
problem for ω such that for each choice of ϕc = ϕ(0), the system
has a solution that decays exponentially at infinity. In order to
solve the system numerically, it is convenient to use dimensionless
quantities defined by

̃r = μr, ω̃ = ω
μ
, ̃ϕ = √κ

2
ϕ, ̃α =

μ
ω
α. (2.12)
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After substituting this scaling 2.12 in systems 2.9–2.11, the
rescaled system is left in units of the mass parameter μ, which fixes
the scale. Given a value of the field at the originϕc as a free parameter,
we choose a trial value of the lapse and integrate the system outward
from the origin using a fourth-order Runge–Kutta scheme with an
adaptive step size. This adaptive scheme allowed us to reach smaller
values of fa. Then, we use a shooting algorithm to find the value
of the lapse that corresponds to asymptotically flat solutions. We
construct families of axion boson stars for different values of the
parameter fa and different values of the central scalar field. We also
focus on solutions with no nodes in the scalar field corresponding to
the ground state.

2.3 Diagnostic quantities

As demonstrated by Guerra et al. (2019), in the limit of
large fa, mini-boson stars are recovered, and this happens for
values fa ∼O(10), which, in physical units, corresponds to values
of fa ∼ 1.22× 1020GeV. In bosonic stars, the scalar field decays
exponentially (since one asks for asymptotically flat spacetime),
and consequently, they do not have a well-defined boundary; thus,
it is common to describe their effective size in terms of the R99
radius, which is defined as the radius of the sphere containing 99%
of the total mass of the star. In addition, we determine the star’s
compactness as C = M

R99
.

The energy density ρ, radial pressure pr, and tangential pressure
pt are defined in terms of the stress–energy tensor 2.3 as

ρ = −Tt
t =

1
2
[ω

2

α2 ϕ
2 + 1

a2 (∂rϕ)
2]+ 1

2
V (ϕ) , (2.13)

pr = T
r
r =

1
2
[ω

2

α2 ϕ
2 + 1

a2 (∂rϕ)
2]− 1

2
V (ϕ) , (2.14)

pt = T
θ
θ = Tϕ

ϕ =
1
2
[ω

2

α2 ϕ
2 − 1

a2 (∂rϕ)
2]− 1

2
V (ϕ) . (2.15)

The total mass of the object M is given by the limit r→∞ of
the function

M (r) = 4π∫
r

0
̃r2 ρ ( ̃r)d ̃r. (2.16)

In our numerical calculations, we approach M as the value of
this function evaluated at the outer point of the numerical grid.
Alternatively, one can also find the total mass of the system by
assuming that far away, the metric reduces to the Schwarzschild
metric (Misner et al., 1973) so that

M = lim
r→∞

r
2
(1− 1

a2). (2.17)

This expression converges very rapidly as r grows due to the
exponential decay of the scalar field, and nonetheless, we checked
that the results obtainedwith both expressions 2.16, 2.17 agree in the
limit of large r.

3 Results

The periodic potential for the axion as given in Equation 2.7 is
shown in Figure 1 for some representative values of fa. Close to the

FIGURE 1
Periodic scalar field potential, as given in (2.7), for some values of the
decaying constant fa. For larger values of fa ∼ 10, the potential tends to
a quadratic behavior. We consider μ = 1; however, the potential can be
rescaled with μ2.

minimum around ϕ ≈ 0, as the value of fa increases, the quadratic
behavior of the field dominates the potential and the solutions
resemble themini-boson stars.We show some results for the families
of solutions corresponding to different values of fa in the following.

3.1 Families of solutions

It is known since the pioneer works of Kaup (1968) and Ruffini
and Bonazzola (1969) that the mass of mini-boson stars has a
maximum value MKaup = 0.633m2

Pl/μ, where mPl represents the
Planck mass. For fa = 10, the system tends to the standard mini-
boson star in which there is a local maximum at a critical value
of ϕc that separates between stable and unstable configurations.
This case is recovered for large values of fa. Figure 2 displays the
existence plots of the mass versus the central value of the field
ϕc, for different configurations with some representative values of
the decaying constant: fa = 10 log10 (fa) = −1.5, log10 (fa) = −1.7, and
log10 (fa) = −2.0.The top left panel shown in Figure 2 corresponds to
this limiting behavior. However, smaller values of the decay constant
fa lead to the formation of new branches. Furthermore, when the
numerical value of fa decreases, finding solutions becomes more
challenging from the numerical point of view, and in this work, we
found solutions for values up to log10fa = −2.7. As shown in Figure 3,
as fa decreases, the existence diagram becomes more intricate with
several localmaximaandminima.Theexistenceoftheselocalextreme
points indicate new stability branches at higher densities, giving rise
to radially stable boson stars. Furthermore, the compactness of such
solutions increases when the value of fa decreases.

For larger fa, the solutions reduce to the standard mini-
boson stars, but in the limit fa→ 0, solutions with the appropriate
boundary conditions, representing localized objects, are more
difficult to find.

We now move to the description of the stars for a fixed
value of fa. For the sake of simplicity, we show the results for
log10 (fa) = −1.7. Figure 4 shows the parametric plots of radial and
tangential pressures [pr(r),pt(r)] as given by (2.14 and 2.15. In the
figure, the dashed line corresponds to the identity pr = pt. Larger
deviations from this line, thus, correspond to larger anisotropy. The
plots correspond to configurations marked with dots in Figure 2
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FIGURE 2
Existence plots. Each point on these curves corresponds to a solution of the Einstein-scalar field system. The local maxima separate the stable and
unstable regions. The solutions with fa = 10 are consistent with the mini-boson stars described by Kaup (1968). For smaller values of the decay constant
fa, a richer structure appears with more than one maximum and more than one minimum. The value of the maximum mass configurations increases as
the value of fa decreases.

FIGURE 3
For smaller values of fa, the existence plots develop several local maxima and minima.

and labeled with letters from A–F. Configuration A, with smaller
values of ϕc, display only a small deviation from isotropy; however,
as the value of ϕc increases, the stars become more anisotropic.
For configuration E, the change of sign in the tangential pressure
becomesmore evident. However, the anisotropy is not as large as the
one presented in other boson stars (Steven, 2012; Alcubierre et al.,
2018; Alcubierre et al., 2019). The values of the radius, mass, and

compactness for configurations A–F are listed in Table 1. As one
moves to the right in the existence plot, with larger values of ϕc,
axion stars become more compact. In the last column of Table 1, the
numerical values of compactness are listed. As one moves to higher
values of ϕc, the compactness increases. This trend is also present
for the smaller values of fa used in this work. Nonetheless, it seems
that the compactness does not reach the maximum compactness
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FIGURE 4
The measure of the anisotropy of axion stars is given by the difference between radial and tangential pressure. The dashed line represents the identity
pt = pr. The configurations displayed correspond to the ones in the bottom panel of Figure 2 labeled from (A–F).

TABLE 1 Parameters of the configurations shown in Figure 2 with
log10 (fa) = −1.7: the value of the field at the origin, ϕc, the effective size as
determined by the R99 radius, the total massM, and the compactness.

Model ϕc R99 M C

A 0.05 79.070 0.38327 4.84731 × 10−3

B 0.17 49.629 0.46259 9.32078 × 10−3

C 0.30 39.740 0.39875 1.00340 × 10−2

D 0.62 24.000 0.39312 1.63804 × 10−2

E 0.80 22.640 0.46617 2.05906 × 10−2

F 1.03 21.650 0.40107 1.85255 × 10−2

limit (Buchdahl, 1966). Figure 5 displays the profiles of radial and
tangential pressure as well as the density given in 2.13 of the
configuration with the local maximum mass labeled as B and E in
Figure 2. For configuration B, the difference in terms of absolute
values between pr and pt is quite small. For configuration E, the
same trend holds, but the tangential pressure becomes negative in
the more exterior parts of the star. In both models, the maximum
density is attained in the origin as in the usual mini-boson stars.
Figure 5 shows the radial profiles of the metric coefficients α and
a. In both models, the relation a/α→ 1 holds at infinity, which
is consistent with a Schwarzschild asymptotic behavior. In the
more compact model E, a lower value of the lapse is attained at
the origin, which is related with the fact that this configuration
is more compact.

In general relativity, the maximum compactness of a self-
gravitating, isotropic and spherically symmetric object made of

a perfect fluid is M/R = 4/9, where M represents the mass of
the object and R represents its radius. However, the above
number, known as Buchdahl’s bound, relies strongly on the
hypothesis of isotropy (Buchdahl, 1966). Considerable effort has
been dedicated to model the properties of anisotropic matter,
with the hope of finding physically viable models of compact
stars. While anisotropies are generally negligible as compared
to the pressure, it has been shown that even small anisotropies
in fluid stars may induce significant changes on the mass and
compactness of the star (Raposo et al., 2019). To determine
the structure of a compact star, a widely followed path is to
specify an equation of state and then solve the field equations.
Customarily, this is carried out considering hydrodynamical
equilibrium; however, in this work, we found that moderate
anisotropic configurations exist for the potential (2.7), yielding
to highly compact objects. Nonetheless, our results indicate that
for the axion periodic potential, it is not possible to surpass
Buchdahl’s bound.

3.2 Geodesic motion of test particles

It will also be helpful in identifying some general properties
of the motion of test particles propagating in the spacetime
associated with the previously found stars and, in particular, in
determining whether the solutions admit stable circular orbits
or light rings. The interest of studying light rings in compact
objects has been renewed because of the correspondence between
the quasi-normal modes of black holes and light ring oscillations
to describe the initial part of the ringdown gravitational-wave
signal of black holes (Cardoso et al., 2009; Cardoso and Pani, 2017;
Khanna and Price, 2017).
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FIGURE 5
Top panels: energy density and radial and tangential pressure profiles for configurations B and E in Figure 2. These configurations correspond to local
maximum masses. Bottom panels display the corresponding metric coefficient a and the lapse function α.

FIGURE 6
Left: effective potential (3.6) for null geodesics. Right: function h(r) = α− rα′. The zeroes of h determine the existence of light rings. For configurations
A–F in Figure 2, there are no light rings.

In order to describe the motion of test particles in the spacetime
(2.5), let us consider the Lagrangian equation as follows:

2L = −α2 ̇t2 + a2 ̇r2 + r2 ̇θ2 + r2 sin2 θφ̇2, (3.1)

where “dot” denotes the derivative with respect to the affine
parameter τ. It is possible to consider 2L = −k so that if k = 1, it
corresponds to time-like geodesics and if k = 0, it corresponds to null
geodesics.

Since the spacetime is spherically symmetric, we focus
on particles in the plane θ = π/2 in 3.1. Associated to
the time and angular symmetry, there are two conserved
quantities during the motion of the particles, namely,
the energy at infinity E and the angular momentum
ℓ given by

E = ∂L
∂ ̇t
= −α2 ̇t, ℓ = ∂L

∂ϕ̇
= r2ϕ̇. (3.2)
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FIGURE 7
Effective potential for massive particles for the configurations A–F
shown in Figure 2 with ℓ = 1. The location of the minimum indicates
the position of the circular orbit.

Normalization of the four velocities uμuμ = −k can be written in
terms of the conserved quantities 3.2 yielding the equation

−k = −E
2

α2 + a
2 ̇r2 + ℓ

2

r2
, (3.3)

Equation 3.3 can be written as

a2α2 ̇r2 = E2 − α2(k+ ℓ
2

r2
). (3.4)

Defining a new variable z, through dz
dr
= aα, equation (3.4)

becomes

̇z2 = E2 −Veff, (3.5)

where the effective potential in 3.5 is defined as

Veff = α2(k+ ℓ
2

r2
). (3.6)

Circularmotion of particles is possiblewhen the conditions ̇r = 0
and Veff

dr
= 0 applied to 3.6 are fulfilled. In the time-like case, these

conditions completely specify the energy and angular momentum
to be

E2 = α3

α− rα′
and ℓ2 = α′r3

α− rα′
, (3.7)

where the prime denotes the derivative with respect to r. For null
geodesics, the existence of circular orbits is given by the condition
h(r) = α− rα′ = 0 for which expressions (3.7) are undetermined.
Moreover, it has been proven that regular configurations can have
two light rings, of which one is stable (Pedro et al., 2017). However,
not all configurations considered here admit light rings, and their
appearance will depend on the compactness of the star. On the other
hand, regarding massive particles, there always exist stable circular
orbits. Figure 6 shows the potential (3.6) for null geodesics (with
k = 0) for configurations A to F in Figure 2 with log10 (fa) = −1.7.
For this value of fa, configurations are not compact enough to have

light rings. Since the potential for these configurations is very alike,
themotion of null particles around them is quite similar. In the right
panel of Figure 6, the function h(r) is displayed, and the change of
behavior close the origin for configurations D–F is observed, and
there is a slight decay on the value of h(r). It can be seen in the
figure that as the configurations become more compact, h decreases
in such a way that it will cross the origin twice, giving rise to the
existence of a pair of light rings. For configurations with lower values
of log10 (fa) ≈ −2.3, this is actually the case, and a pair of light rings
appear. Figure 7 displays the effective potential for massive particles
(k = 1)with ℓ = 1 for configurations A–F. In all cases, the potential is
minimum, indicating the existence of circular orbits.

4 Final remarks

In this work, we considered solutions to the spherically
symmetric stationary Einstein-axion field system known as axion
stars, which have been previously studied by Guerra et al. (2019).
This system is characterized because the scalar field potential is
periodic on the field. We presented solutions with no nodes on
the scalar field (also known as ground state solutions) varying the
value of the axion decay constant fa. Axion stars with fa ≫ ϕ have
similar properties as mini-boson stars in the sense that they have a
local maximum of the total mass M for a finite value of the central
value of the field ϕc. As the value of the constant fa decreases,
more local maxima appear, and it is possible to find solutions
with larger values of mass with larger values of ϕc. However, as
a consequence, local minima also appear, leading to a different
region of stability. For smaller values of fa, it becomes extremely
difficult to find solutions since the system is quite sensible to the
values of ϕc. Configurations with larger values of ϕc present larger
anisotropies in the sense that the ratio between the tangential and
radial pressures pt/pr differs slightly from unity. Furthermore, for
values of ϕc beyond the first maximum in the mass, solutions
with negative tangential pressure are found. Finally, regarding the
motion of test particles, stars with small values of fa may have
high compactness that allow the existence of light rings, while for
time-like particles, the existence of circular orbits is possible. This
characteristic may be used to explore the astrophysical features of
axion stars.
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