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A study on the metallicity
gradients in the galactic disk
using open clusters

Yogesh Chandra Joshi1*, Deepak1 and Sagar Malhotra2
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We study the metallicity distribution and evolution in the galactic disk based on
the largest sample of open star clusters in the galaxy. From the catalog of 1,879
open clusters in the range of galactocentric distance (RGC) from 4 to 20 kpc, we
investigate the variation in metallicity in the galactic disk as functions of RGC,
vertical distance (Z), and ages of the clusters. In the direction perpendicular
to the galactic plane, the variation in metallicity is found to follow a stepped
linear relation.We estimate a verticalmetallicity gradient d[Fe/H]

d|Z|
of −0.545±0.046

dex kpc−1 for |Z| < 0.487 kpc and −0.075±0.093 dex kpc−1 for 0.487 < |Z| < 1.8
kpc. On average, metallicity variations above and below the galactic plane
are found to change at similar rates. The change in metallicity in the radial
direction is also found to follow a two-function linear relation. We obtain a
radial metallicity gradient d[Fe/H]

dRGC
of −0.070±0.002 dex kpc−1 for 4.0 ≲ RGC ≲ 12.8

kpc and −0.005±0.018 dex kpc−1 for 12.8 ≲ RGC ≲ 20.5 kpc, which clearly shows
a strong variation in the metallicity gradient when moving from the inner to
the outer galactic disk. The age–metallicity relation (AMR) is found to follow
a steeper negative slope of −0.031±0.006 dex Gyr−1 for clusters older than
240 Myr; however, there is some hint of positive metallicity age gradient for
younger clusters.

KEYWORDS

galaxy, open clusters, metallicity distribution, metallicity abundance gradients,
age–metallicity relation

1 Introduction

For a long time, open clusters (OCs) have been used to trace the kinematical, dynamical,
and chemical evolution of the galaxy (Allen et al., 1998; Minchev et al., 2014; Bobylev et al.,
2019). Since OCs span a wide range of ages and chemical compositions and mostly lie in the
galactic plane, they are identified as tracers of the galactic disk (Luck et al., 2011; Toyouchi
and Masashi, 2014; Joshi and Malhotra, 2023). As the ages and chemical compositions of
OCs can be determined with a higher precision in comparison to the field stars, they are
believed to be better tracers of the temporal and chemical evolution of the galactic properties
(Netopil, 2016; Magrini et al., 2017; Donor, 2018; Spina, 2021; Zhang et al., 2021; Netopil,
2022). With over 6,000 OCs discovered in the galaxy so far, we now have a much better
understanding of their properties and, as a result, of the composition of the galaxy (Joshi
and Malhotra, 2023; Magrini, 2023). In recent years, the number of OCs having metallicity
information has increased significantly, with large-scale spectroscopic surveys such as
the Gaia-ESO Public Spectroscopic Survey (Magrini et al., 2017), GALAH (Martell et al.,
2017), APOGEE (Majewski et al., 2017; Donor, 2020), and the LAMOST survey
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(Zhong et al., 2020). Furthermore, due to the availability of high-
quality photometric and astrometric data from theESAGaiamission
(Gaia Collaboration et al., 2016), significant improvement has been
made in the ability to refine the cluster membership, resulting in a
better estimate of age and distance, among other parameters (e.g.,
Cantat-Gaudin, 2018; Cantat-Gaudin et al., 2020; Dias et al., 2021).

Radial abundance gradient is one of the key constraints to
the galactic chemical evolution models. The exact nature of the
radial metallicity gradient, reported through various tracers like
planetary nebulae, HII region, OB stars, and classical Cepheids,
is still not quite conclusive and portrays a diverse picture of the
chemical evolution of the galaxy (e.g., Andrievsky, 2002; Daflon
and Cunha, 2004; Maciel et al. 2005; Lemasle, 2008; Maciel et al.
2010; Genovali et al. 2014; da Silva, 2023, and references therein).
However, having an extensive range in age, distance, and chemical
composition, OCs are regarded as a better tracer than other such
sources (Chen, 2008; Friel 2013; Magrini. 2023). Various studies
have been carried out in the last 2 decades to study the chemical
evolution of the galactic disk using OCs (e.g., Friel et al. 2002;
Chen et al. 2003; Bragaglia, 2008; Friel et al. 2010; Carrera et al.
2011; Yong et al. 2012a; Frinchaboy et al. 2013a; Reddy et al. 2016;
Netopil, 2016;Magrini et al. 2017). However, themain advancement
came after the recent release of three large-scale surveys, namely,
Gaia-ESO (Randich, 2022), GALactic Archeology with HERMES
(Martell et al. 2017), and Apache Point Observatory Galactic
Evolution Experiment (Majewski et al. 2017), which resulted in the
estimation ofmore complete and precise chemical compositions of a
large number of OCs (Carrera et al. 2019; Donor, 2020; Zhong et al,
2020; Spina, 2021; Zhang et al. 2021; Myers et al. 2022a; Netopil,
2022; Spina et al. 2022; Magrini, 2023). These studies have obtained
a single-slope radial metallicity gradient ranging from −0.051 to
−0.077 dex/kpc while employing a two-function radial metallicity
gradient, and they obtained a steeper slope in the range of −0.054
to −0.081 dex/kpc for the younger and inner region of the clusters
and a shallower slope of 0.009 to 0.044 dex/kpc for the older and
outer region of the clusters, which is also supported by the inside-
out disk formation models. The intersection point or knee point in
such two-function slopes also varies between 11 and 12 kpc among
different studies. The age–metallicity relation is another important
constraint on the theoretical models of the galactic disk and has
been studied by various authors using different stellar populations
(e.g., Friel 1995; Carraro et al. 1998; Feltzing et al., 2001). Except for
a few studies like Edvardsson et al. (1993), Chen et al. (2003), and
Zhong et al. (2020), most of the studies found no obvious AMR
for the OC population (Friel et al. 2010; Yong et al. 2012b; Netopil,
2016; Magrini et al. 2017; Zhang et al. 2021).

Considering a wide range of galactic chemical evolution
parameters among different studies, the prime motive of the
present work is to form a more extensive set of OCs having
chemical compositions available through recent photometric and
spectroscopic surveys, thus extending the sample with a wide range
in the age and galactocentric distance. Despite extracting cluster
parameters from different sources, hence making a heterogeneous
data set, we trust that a statistical analysis on a larger sample of
OCs would not lead to any systematic bias in our results. This paper
is structured as follows: we describe the data used in the present
work in Section 1. The metallicity distribution of OCs is analyzed
in Section 2. The cluster age–metallicity relation is examined in

Section 3. In Section 4, we investigate various correlations between
radial and vertical metallicity gradients with the age and positions
of the OCs. Our results are summarized in Section 5.

2 Data

To understand the chemical evolution of the galaxy, particularly
the galactic disk, over the last few billion years, a large and
homogeneous sample of OCs with measured metallicity and age
is required. For this purpose, we searched the literature for OCs
with known metallicity along with other information like position
coordinates, radial distances, and age. It may be noted here that
we have used the term metallicity for iron abundance [Fe/H]
(relative to the solar abundance) throughout this study. Most of
the OC metallicity estimates reported prior to 2018 are either
based on photometric techniques (Kharchenko, 2013) or low-
resolution spectroscopic data (e.g., Netopil, 2016, and references
therein). Additionally, over the years, many of the clusters have been
studied repeatedly, and thus, metallicity estimates for these clusters
are available based on different techniques, spectral resolutions,
and data qualities. To create a comprehensive list of OCs with
the best available metallicity estimate, we started by collecting all
the metallicity estimates along with other related information like
the method of estimation (photometric or spectroscopic), spectral
resolution, signal-to-noise ratio (SNR), number of member stars
used for average metallicity estimation, and the year of reporting
from all the major studies published in the last three decades.
This resulted in a total of 4,772 metallicity reports for known
OCs, Baratella, 2020; Bragaglia, 2008; Caetano, 2015; Carraro,
2004; Carraro G. et al., 2007; Carraro Giovanni et al., 2007; Carraro,
2008; Carrera, 2012; Carrera et al., 2015; Carrera et al., 2019;
Casamiquela et al., 2019; Casamiquela et al., 2021; Claria et al.,
1989; Clariá, 2003; Clariá, 2008; Conrad, 2014; D’Orazi et al., 2009;
De Silva et al., 2007; De Silva, 2015; Dias et al., 2021; Donati et al.,
2015a; Donor, 2018; Donor, 2020; Ford et al., 2005; Fossati, 2011;
Friel and Boesgaard, 1992; Friel et al., 2002; Frinchaboy, 2004;
Frinchaboy, 2013b; Fu et al., 2022; Geisler et al., 2012; Gonzalez
and George, 2000; Gratton et al., 1994; Hasegawa et al., 2008;
Hill et al., 1999; Jacobson et al., 2008; Jacobson and Eileen, 2013;
Krisciunas et al., 2015; Luck 1994; Magrini, 2010; Magrini et al.,
2018; Margheim, 2000; Monroe and Catherine, 2010; Myers, 2022b;
Netopil et al., 2013; Netopil, 2016; Netopil, 2022; Overbeek et al.,
2016; Pasquini et al., 2004; Paunzen et al., 2003; Paunzen, 2010;
Pereira et al., 2010; Piatti et al., 1995; Randich, 2022; Reddy et al.,
2013; Santos, 2009; Santos, 2012; Schuler, 2003; Sestito et al., 2003;
Spina, 2021; Twarog et al., 1997; Vansevicius, 1997; Villanova et al.,
2005; Warren and Cole, 2009; Yong et al., 2012a; Začs et al., 2011;
Zhong et al., 2020; and the reference therein, which also includes
multiple reporting from different studies for some clusters. To
avoid duplication of OCs in the list because of the use of
different identifiers for a cluster in different studies, we used the
astroquery.simbad package to detect and assign a common name to
all such duplicates. As a secondary measure, we manually searched
and checked all the possible duplicates with a spatial angular
distance of less than 0.1° alongwith amaximumdifference of 5 milli-
arcsec in the OC’s proper motion. This helped us in detecting and
eliminating five more duplicate OC pairs: Berkeley 85–Dolidze 41,
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COIN-Gaia23–Majaess 65, NGC 1746–NGC 1750, vdBergh-Hagen
72–UBC 491, and vdBergh-Hagen 84–Gulliver 35. Some of the
other OC pairs, like UBC 55–FSR 686 and UBC 73–Gulliver 56,
have very small separations in phase space but are confirmed as
different clusters in previous studies. For example, Piecka et al., 2021
suggested that UBC 55 and FSR 686 are a possible pair of binary
clusters, while UBC 73 and Gulliver 56 are also different clusters.

To select the best unique metallicity estimate from multiple
reporting for each of the clusters, we selected the metallicity
estimates by giving higher priority to spectroscopic studies
(compared to the photometric metallicity estimate), followed by
the highest spectral resolution, highest SNR, highest number of
member stars used to find the average metallicity for the OC,
smallest error in the reported metallicity, and latest reporting. This
resulted in a final sample of 1,879 uniqueOCs with the best available
metallicity estimates, of which 615 have metallicity estimates based
on spectroscopic data (hereafter sample OCS, where “S” stands for
spectroscopic) and the remaining 1,264 have metallicity estimates
based on the photometric data (hereafter sample OCP, where “P”
stands for photometric).

Like metallicity selection, we selected the best-quality
astrometric and age data for each cluster from multiple reporting
by prioritizing the most recent publication. During the selection,
studies that also provide measurement uncertainties were preferred.
From our final sample of 1,879 unique clusters, astrometric data
(including distance information) are available for all the clusters,
while age is available for all but one cluster. However, uncertainty
estimates in age and metallicity parameters for all the clusters could
not be found; therefore, any weighted statistical analysis cannot be
done in the present study.

Adopting the galactocentric distance of the Sun, R⊙, as 8.15 kpc
(Reid, 2019), we calculated the galactocentric distance of the cluster
using the following well-known transformation relation:

RGC = √R2
⊙ + (d cos (b))2 − 2R⊙ d cos (l) cos (b), (1)

where d, l, and b are the heliocentric distance, galactic
longitude, and galactic latitude, respectively. We also used the
rectangular coordinate system (X, Y, and Z), which is defined
as X = dcos(b)cos(l), Y = dcos(b)sin(l), and Z = dsin(b). The most
distant cluster with metallicity information is at RGC = 20.38 kpc,
and only nine OCs are seen beyond RGC = 14 kpc. This reveals
either a lack of OCs in the outer galactic disk or observational
limitations to observe such clusters due to large extinction along
the line of sight. Additionally, the number of OCs decreases
drastically as we move farther away from the heliocenter. For
example, only 22 OCs are located beyond a heliocentric distance
of 5 kpc, further suggesting that the drop in OC number with
a radial distance is primarily linked to the detection limits
(e.g., Joshi, 2016).

3 Metallicity distributions in open
clusters

The metallicity in our cluster sample ranges from approximately
−0.80 to 0.60 dex except for six OCs, namely, NGC 6204, NGC
2129, Trumpler 33, Dolidze 5, NGC 6910, and FSR 932, for which

the adopted [Fe/H] based on our selection criteria are −1.05,
−1.53, −1.54, −1.94, −1.96, and −2.17, respectively. For all the six
clusters, the adopted metallicities are based on spectroscopic data.
For NGC 6204 and Trumpler 33, metallicity estimates are adopted
fromConrad (2014), which provided themetallicity estimates based
on a spectral resolution of 7,500, while for NGC 2129, Dolidze
5, NGC 6910, and FSR 932, metallicity estimates are adopted
from Fu et al. (2022), which provided metallicity estimates based
on data from the LAMOST survey with a spectral resolution of
1,800. For NGC 2129 and NGC 6910, Zhong et al. (2020) provided
independent spectroscopic metallicity estimates of −1.426± 0.856
and −1.97, respectively, based on data from the LAMOST survey
with a spectral resolution of 1,800. For all of these six clusters,
NGC 6204, NGC 2129, Trumpler 33, Dolidze 5, NGC 6910, and
FSR 932, Dias et al. (2021) provided independent photometric
metallicity estimates of 0.096± 0.004, −0.07± 0.01, 0.145± 0.016,
−0.033± 0.033, 0.035± 0.008, and −0.142± 0.008, respectively. For
NGC 6204, Netopil (2016) and Paunzen et al. (2010) also provided
photometric metallicities of 0.02 and −0.14± 0.10, respectively. The
wrong identification of cluster member stars to estimate the cluster’s
averagemetallicity appears to be one of themain reasons for the large
differences between the available spectroscopic and photometric
metallicities for these six clusters. Finding the exact reason for this
discrepancy is beyond the scope of this study. However, considering
the unexpectedly lower metallicity and the large difference when
compared to available photometric estimates for these six clusters,
we exclude these six clusters from further analysis in this study.
The final catalog of 1,879 OCs used in this study is provided in
a machine-readable format in Table 1. Among the 1,879 clusters,
609 have metallicity estimates based on spectroscopic data (sample
OCS), and the remaining 1,264 have metallicity estimates based on
photometric data (sample OCP).

The metallicity functions for the sample OCP, OCS, and OCs
(OCP + OCS) are shown in Figure 1. For all three cases, the
Gaussian distribution fits are also drawn.TheOC sample has amean
metallicity of −0.018± 0.004 with a sample standard deviation (σ)
of 0.188. The sample of OCP has a slightly higher mean metallicity
with [Fe/H] =−0.021± 0.005 compared to the sample ofOCS, which
has a mean [Fe/H] = −0.099± 0.007. Both OCP and OCS span an
almost similar range in [Fe/H] and also have similar sample standard
deviations. The small but significant difference between the mean
metallicity of the sample OCP and OCS may be the result of two
factors: 1) systematic offsets in the photometric metallicity estimates
and 2) bias in the sample selection. Because of the unavailability of
photometric data for all the cases, it is not possible to directly check
for the systematic offsets in the estimated metallicities. However,
as sample OCP consists of photometric metallicity estimates from
many studies that provide metallicity estimates based on different
sets of photometric data along with theoretical isochrones, a
systematic offset in all or themajority of these studies is not expected.
To examinewhether bias in the sample selection is the reason behind
this offset, we draw the distribution of sample OCP and OCS in the
X–Y plane in the heliocentric frame in the bottom panel of Figure 2.
Here, the Sun is located at (X, Y) = (0, 0) where positive X points
toward the galactic center (GC) and positive Y points toward the
north galactic pole. The distribution readily suggests that the OCP
clusters are located more toward the GC than the clusters in OCS.
This is clearer from the top panel of the figure where the density
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TABLE 1 Final catalog of 1,879 OCs used in this study. The entries in the spectral resolution column (Resol.) are left blank for the studies where adopted
metallicities are based on photometric data.

S.N. Cluster
ID

RA DEC X Y Z RGC log
(age)

[Fe/H] e[Fe/H] Resol Reference

1 ASCC 10 51.807 34.945 −525.95 237.45 −185.60 8.681 7.90 −0.024 0.018 1,800 Fu et al. (2022)

2 ASCC 101 288.408 36.377 145.43 360.67 79.86 8.013 8.10 0.004 0.008 Dias et al. (2021)

3 ASCC 103 294.031 35.735 170.63 457.26 62.16 7.993 7.90 0.115 0.024 1,800 Fu et al. (2022)

4 ASCC 105 295.540 27.402 235.80 459.86 18.83 7.928 7.99 0.046 0.024 1,800 Fu et al. (2022)

5 ASCC 106 295.286 1.494 503.30 422.53 −119.95 7.659 8.06 0.029 0.005 Dias et al. (2021)

6 ASCC 107 297.164 21.994 445.92 739.48 −28.62 7.740 7.05 0.353 0.013 Dias et al. (2021)

7 ASCC 108 298.355 39.328 286.80 1,025.76 112.52 7.931 7.91 −0.106 0.067 1,800 Fu et al. (2022)

8 ASCC 11 53.029 44.877 −729.52 412.45 −135.99 8.890 8.45 −0.360 0.015 22,500 Myers (2022b)

9 ASCC 110 300.772 33.549 529.77 1,491.24 37.78 7.765 8.79 0.140 0.024 Dias et al. (2021)

10 ASCC 111 302.960 37.544 215.04 789.73 28.95 7.974 7.90 0.080 0.008 Dias et al. (2021)

. … … … … … … … … … … …

. … … … … … … … … … … …

1879 vdBergh 92 106.186 −11.333 −793.59 −780.59 −43.40 8.978 6.75 0.025 0.007 Dias et al. (2021)

The entire table is available in the online version in a machine-readable format.

distributions of the sample OCP and OCS along X are provided.
Here, the distribution for sample OCS is more negatively skewed
with a skewness of −0.23, compared to sample OCP which has a
skewness of −0.15, and it is understood to be due to the presence
of more clusters in the anti-GC direction in sample OCS than in
the sample OCP.

4 Age–metallicity relation

The age–metallicity relation (AMR) in the galactic disc is crucial
to constrain the chemical evolution models, and star clusters offer
an important advantage in the studies of the evolution of the galaxy
because they provide a time sequence for investigating the changes
that occur in our galaxy over the period of time. The large temporal
range in the age and metallicity for the OCs provides useful insights
related to the chemical evolution history of the galaxy and also
presents a useful constraint on the various theoretical models of
the disk (Friel 1995). Over the last 20 years, many studies that
focus on this relation use either nearby stars (Carraro et al. 1998;
Feltzing et al. 2001) or OCs (Netopil, 2016; Magrini et al. 2017;
Döner, 2023). As noted in many earlier studies, there is no obvious
AMR for the OC population (e.g., Friel et al. 2010; Yong et al.
2012b; Zhang et al. 2021), while some of the studies find a weak
AMR (Edvardsson et al. 1993; Chen et al. 2003; Zhong et al. 2020).
However, the large sample of OCs having metallicity measurements
in the present study is re-employed to understand this relation in
some detail.

The AMR in our sample of clusters is shown in Figure 3. The
distribution readily suggests that for clusters with log(age/yr) ⪅ 8.4,
the average metallicity of clusters is near to the solar metallicity
and does not change significantly over time. However, for
log(age/yr) ⪆ 8.4, the clusters’ average metallicity follows a slightly
decreasing trend with an increase in log(age/yr). To find the exact
age–metallicity gradients and the age turn-off point at which the
metallicity gradient changes, we fitted the data with a combination
of two linear regressions (i.e., stepped linear regression) in the
following form:

[Fe/H] =m1 × log (age/yr) + b1, log (age/yr) ≤ C, (2)

[Fe/H] =m2 × log (age/yr) + b2, log (age/yr) > C, (3)

where C is the point of intersection, b1 and b2 are the [Fe/H]-
axis intercepts, and m1 and m2 are slopes for the two functions.
The coefficients of the fitted regressions (along with the point of
intersection C and corresponding standard errors) were determined
using iterative least square estimation by treating b1, m1, C, and
m2 as variables while assuming b2 = (m1 ×C+ b1). Based on the
distribution in Figure 3, we assumed the initial values of b1, m1,
C, and m2 as 0, 0, 8.5, and −0.02, respectively. Estimated values of
coefficients from each iteration were adopted as inputs for the next
iteration. Along with minimizing the mean error, we also repeated
the iterations until the difference between the estimated coefficients
and the corresponding adopted coefficients was less than 10–5. In
addition, for each of the iterations, we also checked the distribution
of the fitted metallicity residual (i.e., the observed metallicity value
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FIGURE 1
Metallicity functions for the samples OC, OCP, and OCS are shown,
and a Gaussian fit is applied to all three subsamples with fit parameters
provided in the legends.

minus the predicted model value) as a function of log(age/yr) and
found that for the final iteration, the slope and the intercept to this
distribution were less than 10–5. The final fitted function to our OC
data is shown as the red line in Figure 3. The coefficients of the
fitted functions are also provided in the legend of Figure 3 in the
following forms: b1, m1, C, and m2. Based on the sample OC, the
two linear functions intersect at log(age/yr) = 8.378± 0.093 (i.e., an
age of approximately 240Myr), and the age–metallicity gradients are
given as follows:

d [Fe/H]
d log (age/yr)

= 0.014± 0.011,

log (age/yr) ≤ 8.378± 0.093
(4)

d [Fe/H]
d log (age/yr)

= −0.159± 0.021,

log (age/yr) > 8.378± 0.093
(5)

For log(age/yr) > 8.378± 0.093, the decrease in [Fe/H] with
an increase in log(age/yr) with a slope of d[Fe/H]

d log (age/yr)
= −0.159±

0.021 is equivalent to −0.031± 0.006 dex/Gyr. The negative slope
between age and metallicity suggests that the metallicity in the
interstellar medium of the galaxy gradually increased with time
until approximately 240 Myrs ago. In Table 2, we compare our
derived AMR slope with earlier studies that were carried out
using OCs, although with a significantly smaller sample (Pancino,
2010; Zhong et al. 2020). Our present estimate is quite consistent
with these studies. However, for log(age/yr) ≤ 8.378± 0.093, a very
slightly increasing trend in [Fe/H] is seen with the increase in
log(age/yr). Although it surprisingly suggests that the formation

FIGURE 2
Samples OCP and OCS in the X–Y plane in the heliocentric frame,
where (X, Y) = (0, 0) corresponds to the location of the Sun and the
positive X points toward the galactic center. The top panel shows the
corresponding density distributions along the X-direction.

site of the younger cluster is relatively metal-poor compared to
the intermediate age clusters, a slope of 0.014 at almost 1-σ level
is too small to make any definite conclusion. Overall, a negative
slope in AMR is in agreement with the results from previous studies
that the metallicity of old-age OCs is lower than that of young
and intermediate-age OCs at any given galactocentric distance
(e.g., Jacobson et al., 2016; Netopil, 2016; Spina, 2017). Using a
homogenous compilation of 172 clusters from the literature, Netopil
(2016) investigated the metallicity distribution and found that the
clusters younger than 500 Myrs may be characterized by lower
metallicities than the older clusters, at least in the region between
7 and 9 kpc from the GC. At the same time, they confirmed
a negative gradient for these clusters. However, their sample did
not include any clusters younger than 100 Myrs located in the
inner galaxy.

As evident from Figure 3, the sample OCS has a relatively lower
average metallicity compared to sample OCP at all the ages in the
available age span. This, as discussed previously in Section 2, is
possibly due to the sample selection bias as sample OCP has more
clusters from the GC direction, while sample OCS has more clusters
from the anti-GC direction. More interestingly, both samples have
a nearly constant spread in metallicity throughout the available age
span, suggesting that at both older and recent times, the natal gas at
the formation site of the clusters had similar mixture properties. To
understand the properties of OCs from different ages, we broadly
segregate our sample OC in three different age bins, namely, ≤20
Myrs as young open clusters (YOC), 20–700Myr as intermediate-age
clusters (IOC), and > 700 Myr as old clusters (OOC). Samples YOC,
IOC andOOChave 410, 1114 and 349 clusters.Metallicity functions
for the sample YOC, IOC, and OOC are shown across the panels in
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FIGURE 3
Age–metallicity functions for the sample clusters. Open blue circles
and filled black circles are the clusters from the sample OCP and OCS,
respectively. The red line shows the fitted stepped linear regression to
the total sample, coefficients (along with corresponding standard
errors) for which are provided in the legends in the forms b1, m1, C,
and m2, where b1 and m1 are the y-axis intercept and slope for the first
linear function, respectively; m2 is the slope for the second linear
function; and C is the point where these two functions intersect.

Figure 4. For YOC, IOC, and OOC, the mean values of the [Fe/H]
distributions are −0.000± 0.009, 0.004± 0.005, and −0.111± 0.010,
respectively, and the corresponding sample standard deviations are
0.186, 0.176, and 0.196, respectively. There is hardly any significant
difference in metallicity between YOCs and IOCs. However, slightly
higher mean metallicity for the YOC and IOC compared to OOC is
apparent, which is well-expected as the clusters belonging to YOC
and IOC are understood to have formed from gas and dust in the
thin disk of the galaxy that has already been enriched through the
earlier generation of stellar formation. Additionally, as seen from
the figure, the metallicity functions for the OCs of different age
groups are not symmetric and are slightly skewed. The skewness
values for YOC, IOC, and OOC samples are −0.175, −0.212, and
0.083, respectively. All three age group OC samples span almost
similar ranges in metallicity. The metal-poor clusters in the YOC
sample have likely formed from the fall of a metal-poor gas to the
younger thin disk along with the succeeding starburst. This in-fall
of a metal-poor gas is believed to be due to merging satellite galaxies
to the Milky Way (Wyse, 1999), resulting in diluting the metallicity
of interstellar material in the galactic thin disk and, subsequently,
triggering the formation of a large number of metal-poor clusters.
On the other hand, the super solar metallicity clusters in the OOC
group may have formed from the highly processed material from
the inner region of the galaxy. It is believed that the metal-rich
old clusters in the inner region had migrated outward the outer
disk over a period of time in order to survive the destruction
due to relatively stronger galactic potential in the inner disc
(Myers et al., 2022a; Magrini, 2023).

To further understand the reason behind the almost-similar
large spread in metallicity distribution for OCs of different
age groups, we looked into the distribution of [Fe/H] as a
function of the galactic longitude. As shown in the bottom
panel of Figure 5, clusters toward the anti-GC direction (i.e.,
with 90o < l < 270o) have relatively lower metallicity than the

TABLE 2 Comparison of the age–metallicity slope among different
studies based on open clusters. The number of clusters (N) used in each
study is provided in the second column.

Slope N Reference

(dex Gyr−1)

−0.026 57 Pancino (2010)

−0.022± 0.0008 295 Zhong et al. (2020)

−0.031± 0.006 786 This work

TABLE 3 Comparison of vertical metallicity gradient ( d[Fe/H]
d|Z|
) reported in

the previous studies with estimates in this work. The number of clusters
(N) used in each study is provided in the third column.

d[Fe/H]
d|Z|

|Z| N Reference

(dex kpc−1) (kpc)

−0.34± 0.03 <1.30 63 Piatti et al. (1995)

−0.295± 0.050 <1.40 118 Chen et al. (2003)

−0.252± 0.039 <0.90 183 Zhong et al. (2020)

−0.545± 0.046 <0.487 1814 This work

−0.075± 0.093 0.487-1.80 58 This work

cluster in the GC direction (i.e., with 270o < l < 90o). The
reason behind this asymmetry is that most of the star-forming
regions are in the GC direction where the nucleosynthesis
process is more active in comparison to fewer star-forming
regions present in the anti-GC direction. As a result, metallicity
increases as the stellar evolution progresses. The top panel
of the figure shows the cumulative distribution functions
(CDFs) for the three age groups and suggests that all three
age populations span a similar range in the galactic longitude.
We further performed the Kolmogorov–Smirnov (KS) test to
check if the three CDFs come from the same distribution.
The KS test p-value for the OOC and IOC pair is 0.98, for
the IOC and YOC pair is 0.87, and for the OOC and YOC
pair is 0.50, hence suggesting that all three CDFs follow
the same distribution at a minimum of 50% significance
level.

5 Metallicity gradients along the
vertical and radial directions

5.1 Vertical metallicity gradient

The metallicity distribution in the Milky Way and its spatial
variation is associated with the formation and evolution history
of the galaxy. The metallicity distribution at a particular point in
the disk is linked with many parameters, like the gas accretion
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FIGURE 4
Metallicity functions for the samples of YOCs, IOCs, and OOCs are
shown along with the Gaussian fit for each population.

rate, formation history, and evolution at that point of the disk.
Previous studies (Marsakov et al., 2005; Marsakov and Borkova,
2006; Soubiran, 2008) indicate that vertical metallicity distribution
profiles can provide extremely meaningful ways for separating the
thin disk from the thick disk. For our sample of OCs, metallicity
as a function of vertical distance (Z) is shown in the left-side panel
of Figure 6. The distribution readily suggests a decrease in [Fe/H]
as we move away from the galactic plane in both the Northern and
Southern hemispheres. To find the metallicity gradient in both the
hemispheres, we divide the sample about the center of the galactic
mid-plane (i.e., at Z = 0). Linear fits to cluster in the Southern (blue-
colored points) and Northern hemispheres (red-colored points)
are shown as gray and black lines, respectively, and the obtained
metallicity gradients are as follows:

d [Fe/H]
dZ
= 0.380± 0.040 dexkpc−1, −2 < Z < 0 kpc, (6)

d [Fe/H]
dZ
= −0.383± 0.035 dexkpc−1, 0 < Z < 2kpc. (7)

The magnitude of the metallicity gradient in both the Northern
and Southern hemispheres is nearly the same and indicates that in
both hemispheres, metallicity changes at almost similar rates as we
move away from the galactic mid-plane. To find the average value of
the metallicity gradient, as shown in the right-side panel of Figure 6,
we plotted [Fe/H] as a function of the absolute vertical distance
from the galactic plane. The metallicity gradient from a linear fit is
as follows:

d [Fe/H]
d|Z|
= −0.385± 0.026 dexkpc−1, |Z| < 2 kpc, (8)

FIGURE 5
Metallicity as a function of the galactic longitude for the OCs
belonging to the three different age groups. Cumulative distribution
along the galactic longitude for OCs in three different age groups is
shown in the top panel. In both panels, the clusters between the two
vertical green lines (at l = 90o and 270o) are in the anti-GC direction,
while the clusters outside these lines are in the GC direction.

where the negative slope indicates that metallicity decreases
as we move away from the galactic mid-plane. These average
vertical-metallicity gradients over a large distance are in agreement
with the previous studies. For example, Chen et al. 2003 found a
vertical metallicity gradient of −0.295 ± 0.050 dex kpc−1 using a
sample of 118 OCs. Through a sample of 40,000 stars with low-
resolution spectroscopy over 144 lines of sight, Schlesinger et al.
(2014) found a vertical metallicity gradient of −0.243+0.039−0.053 dex kpc−1

in different [α/Fe] subsamples.However, as evident fromboth panels
in Figure 6, a single linear fit is insufficient to explain the full trend in
metallicity as a function of the vertical distance. For |Z| ⪅ 1 kpc, the
metallicity decreases rapidly, while at the larger height, the change is
relatively small.

To obtain a more accurate estimate for the vertical metallicity
gradient and find the vertical distance at which the radial metallicity
gradient changes significantly, we fitted the data with a combination
of two linear regressions, and the coefficients of the fitted
functions are determined using iterative least square
estimation, following the procedure used in Section 3. Based
on the distribution in Figure 6, we assumed the initial values
of b1, m1, C, and m2 as 1.0, 0.4, 1.0, and 0.0, respectively.
The final fitted function is shown as the red line in Figure 7.
The coefficients of the fitted functions are also provided in
the legends of Figure 7 in the forms b1, m1, C, and m2,
where b1 and m1 are the y-axis intercept and slope
for the first linear function, respectively; m2 is the slope
for the second linear function; and C is the point where
these two functions intersect. From the least square fitting,
it is found that the two linear functions intersect at
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FIGURE 6
Left-side panel: OC’s metallicity as a function of their vertical distance (Z) from the galactic plane. Linear fits for Z < 0 and Z > 0 are also shown as gray
and black lines, respectively. Right-side panel: OC’s metallicity as a function of the magnitude of the vertical distance (|Z|) from the galactic plane. A
linear fit to the distribution is shown as the black straight line. The age of each cluster is also encoded in color, as shown in the color bar.

|Z| = 0.487± 0.087 kpc, and the vertical metallicity gradients are
described as follows:

d [Fe/H]
d|Z|
= −0.545± 0.046 dexkpc−1,

0 < |Z| < 0.487± 0.087 kpc
(9)

d [Fe/H]
d|Z|
= −0.075± 0.093 dexkpc−1,

0.487± 0.087 < |Z| ⪅ 1.8 kpc.
(10)

This stepped vertical-metallicity gradient is in agreement with
the currently accepted models of the galaxy having a metal-rich
disk (consisting of the thin and thick disk with scale heights of
approximately 300 pc and 900 pc, respectively) and a metal-poor
stellar halo (e.g., Just et al., 2010; Rix et al., 2013; Matteucci, 2021;
and references therein). In Figure 7 (and also in the right-hand
panel of Figure 6), cluster ages are also provided in the color of
the data point. The figure suggests that the clusters at relatively
larger vertical distances are comparatively old apart from being
metal-poor. The lower metallicity in these clusters may be explained
by their formation in the outer region of the galactic disk at a
relatively older time when the interstellar medium was relatively
less enriched than the inner region of the galactic disk. In Table 3,
we summarize our results along with previous reporting of vertical
metallicity gradients.

5.2 Radial metallicity gradient

The radial metallicity gradient is another important piece of
information to understand the chemical evolution of the galactic
disk, and in turn, the evolution of the galaxy as the distribution
of metallicity is not homogeneous across the galaxy. It has been
found that metallicity in the cluster population shows a decreasing
trend with increasing distance from the GC (Wu, 2009; Pancino,
2010; Yong et al., 2012b; Donati et al., 2015b; Magrini et al., 2015;
Carrera et al., 2019; Donor, 2020; Zhong et al., 2020; Zhang et al.,
2021; Myers et al., 2022a; Netopil, 2022; Spina et al., 2022; Magrini,
2023). The radial metallicity gradient and its evolution with age are
among the most critical empirical constraints that one can put on

FIGURE 7
Vertical metallicity distribution for sample clusters. The stepped linear
fit to the data is shown as the blue line.

the galactic chemical evolution models. Most of these models show
that the formation of clusters strongly influences the appearance
and development of radial metallicity gradients (Chiappini et al.,
2001), and the precise value of the metallicity gradient in the
galactic disk is an important parameter to constrain the chemical
evolution models. The existence of such a gradient across the Milky
Way disk is well-established through the observations of the HII
regions, disk stars, hot stars, star clusters, planetary nebula, Cepheid
variables, field stars (Chen et al., 2003; Maciel et al., 2010), and OCs
(Carrera et al., 2019; Donor, 2020; Zhong et al., 2020; Zhang et al.,
2021; Myers et al., 2022a; Netopil, 2022; Spina et al., 2022; Magrini,
2023). An average gradient of approximately −0.06 dex kpc−1 is
observed in the Milky Way disk for most of the elements, e.g., O, S,
Ne, Ar, and Fe. This magnitude of the observed gradients constrains
the various parameters in the chemical evolution model, such as
the time scales of star formation and in-fall (Prantzos et al., 1995)
or any variations in the stellar initial mass function properties with
metallicities (Chiappini et al., 2001).

Star clusters are considered one of the most important celestial
sources for investigating the metallicity gradient along the galactic
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FIGURE 8
Metallicity as a function of the radial distance from the galactic center
(RGC) for the sample of clusters. Open blue circles and filled black
circles are the clusters from the samples OCP and OCS, respectively.
The red line shows the fitted stepped linear regression to the total
sample, coefficients (along with corresponding standard errors) for
which are provided in the legends in the forms b1, m1, C, and m2,
where b1 and m1 are the y-axis intercept and slope for the first linear
function, respectively; m2 is the slope for the second linear function;
and C is the point where these two functions intersect.

disk as their distance and age are derived very precisely and are
available in a wide range. Metallicity as a function of the radial
distance from the GC (RGC) for our sample OC is shown in Figure 8.
On average, as expected, the figure suggests a decreasing trend in
[Fe/H] with an increase in distance from the GC. Additionally, the
figure also suggests that the decrease in [Fe/H] with an increase in
RGC is not a simple linear function but at least a combination of two
linear functions.

To find radial metallicity gradients and the radial distance at
which the radial metallicity gradient changes, we fitted the data
with a combination of two linear functions, and the coefficients
of the fitted functions are determined using iterative least square
estimation adopting the procedure followed in Section 3. Based on
the distribution in Figure 8, we assumed the initial values of b1, m1,
C, and m2 as 1.0, −0.05, 12.0, and −0.03, respectively. The final fitted
function is shown as the red line in the figure. The coefficients of
the fitted functions are also provided in the legends of the figure
in the forms b1, m1, C, and m2, where b1 and m1 are the y-axis
intercept and slope for the first linear function, respectively;m2 is the
slope for the second linear function; and C is the point where these
two functions intersect. The two linear functions intersect at RGC of
12.763± 0.515 kpc, and gradients inRGC metallicity distributions are
found as follows:

d [Fe/H]
dRGC
= −0.070± 0.002 dexkpc−1,

4.0 ≲ RGC ≤ 12.763± 0.515 kpc,
(11)

d [Fe/H]
dRGC
= −0.005± 0.018 dexkpc−1,

12.763± 0.515 < RGC ≲ 20.5 kpc.
(12)

The existence of the two-step linear distribution canbe explained
in most evolution models by assuming different in-fall and star
formation rates for the inner and outer disks. A similar two-step

distribution was also noticed by Lépine (2011), Gozha et al. (2012),
Myers et al. (2022a), Magrini (2023), and others. All these studies
have found a discontinuity in the radial metallicity gradient at
RGC ∼ 10–12 kpc, with a steeper gradient in the inner disk region
and a flatter gradient or a plateau in the outer disk region. However,
some other studies have not seen such a two-step distribution,
although they found a decreasing trend inmetallicitywith increasing
RGC, e.g., Friel et al., 2002; Chen et al., 2003; Magrini, 2009; and
Gaia Collaboration et al., 2023.

Our estimated radial metallicity gradients are in close agreement
with someof the recentdeterminationsofmetallicitygradientsderived
using samples of OCs. A comparison of radial metallicity gradients
fromsomeof the recent studies basedonOCsalongwithour estimates
is provided inTable 4.Most of these studies suggest a radialmetallicity
gradient of approximately −0.06 dex kpc−1. The radial metallicity
gradientprovidesvital informationonradialmigration,whichplaysan
important role in the redistribution of stellar populations, particularly
the older populations, in our galaxy. It is believed that radialmigration
in OCs may be the reason for the flattening of the radial metallicity
gradient over a period of time (Zhang et al., 2021; Viscasillas Vázquez,
2022). It is believed that there is a deficiency of low-metallicity clusters
in the inner disk migrating from the outer disk as the chance of
survival in the high galactic potential of the inner disk is low. On
the other hand, clusters from the more metal-rich inner galactic disk
canmigrate farther into theouterdiskwhere thepotentials of the spiral
arm and bar are weaker, resulting in the enhancement of the mean
metallicity of the outer disk. As a consequence, the radial metallicity
gradient is steeper inthe innerdiskwhileflatteningout towardthe large
galactocentric distance. Various earlier studies using different tracers
such as planetary nebulae, classical Cepheids, and globular clusters
also suggested that the radial metallicity gradient becomes slightly
flatter with time (e.g., Friel et al., 2002; Chen et al., 2003; Maciel et al.,
2009; Luck et al., 2011; Genovali et al., 2014; da Silva et al., 2023). It
was contemplated by Toyouchi and Masashi (2014) that the radial
metallicity gradient was positive at the time of formation of the thick
disk, which subsequently became negative during the transition phase
of disk formation from the thick to thin disk. It became flatter by the
time of the formation of the thin disk. They credited this evolution
of the disk to the gas in-fall history having a shorter time scale in the
inner disk and a relatively longer time scale in the outer disk, which is
often called the ‘inside-out’ scenario in disk formation.

5.3 Age dependence of radial and vertical
metallicity gradients

One of the crucial questions in the chemical evolution of the
galaxy is how the metallicity gradients have evolved over the last
few Gyrs. As the overall metallicity gradient may introduce a bias
due to the mix of different aged OCs, we may need to restrict the
sample to OCs in different age bins in order to understand the
evolution in the metallicity gradients along the radial and vertical
directions with time. The age dependence of the metallicity gradient
has been investigated in the past using a variety of sources (e.g.,
Vickers et al., 2021, and references therein). We, therefore, split our
sample broadly into three age bins, including the very young-age
bin (< 20 Myr), the young-to-intermediate-age bin (20 Myr–700
Myr), and the old-age bin (> 700 Myr). Since we have less than
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TABLE 4 Comparison of radial metallicity gradient ( d[Fe/H]
dRGC
) among

different studies based on the sample of open clusters. The number of
clusters (N) used in each of the studies is provided in the third column.

d[Fe/H]
dRGC

RGC N Reference

(dex kpc−1) (kpc)

−0.059± 0.010 7-16 39 Friel et al. (2002)

−0.063± 0.008 <17 118 Chen et al. (2003)

−0.056± 0.007 <17 488 Wu (2009)

−0.051± 0.003 5-15 127 Genovali et al. (2014)

−0.061± 0.004 7-13 19 Donor (2018)

−0.052± 0.003 6-13 46 Carrera et al. (2019)

−0.077± 0.007 6-14.5 90 Carrera et al. (2019)

−0.068± 0.001 6-13.9 71 Donor (2020)

−0.053± 0.004 7-15 295 Zhong et al. (2020)

−0.074± 0.007 6-20 225 Zhang et al. (2021)

−0.066± 0.006 6-15.5 157 Zhang et al. (2021)

−0.076± 0.009 6-16.5 134 Spina (2021)

−0.073± 0.002 6-11.5 94 Myers et al. (2022a)

−0.032± 0.002 11.5-16.0 56 Myers et al. (2022a)

−0.054± 0.008 5-12 503 Gaia Collaboration et al. (2023)

−0.064± 0.007 5-24 175 Spina et al. (2022)

−0.058 6-21 136 Netopil (2022)

−0.054± 0.004 6-21 62 Magrini (2023)

−0.081± 0.008 6-11.2 42 Magrini (2023)

−0.044± 0.014 11.2-21 20 Magrini (2023)

−0.070± 0.002 4.0-12.8 1837 This work

−0.005± 0.018 12.8-20.5 35 This work

10% of the OCs older than 1 Gyr, we have not split the bins in the
older age regime. Table 5 shows the slopes for the graphs in various
age bins. Along the radial direction, the three age populations have
almost similarmetallicity gradients, except for the youngest clusters,
which have a slightly shallower gradient than the intermediate-age
clusters. The lower (or flatter) gradient in the case of the older
population is in agreement with previous studies and models
and could be explained by the chemical evolution in the galactic
disk (Chang et al., 2002; Jacobson et al., 2016; Zhong et al., 2020)
and radial migration (Netopil, 2016; Anders, 2017). For example,
in the MCM model, radial migration is expected to flatten the
radial metallicity gradient for clusters older than one Gyr (Minchev
et al., 2014).

TABLE 5 Radial and vertical metallicity gradients for OCs of different
age groups. The number of clusters (N) in each of the age bin is
provided in the fourth column.

Age d[Fe/H]
dRGC

d[Fe/H]
dZ

N

(Myr) (dex kpc−1) (dex kpc−1)

<20 −0.063 ± 0.005 −0.427 ± 0.148 410

20–700 −0.071 ± 0.003 −0.459 ± 0.061 1,114

>700 −0.058 ± 0.004 −0.245 ± 0.032 349

For the three age distributions, we also examined the vertical
metallicity gradient, i.e., the change in the metallicity as a function
of galactic disk thickness. We found a steeper slope for the young
and intermediate-age OCs, while it is shallower for the old OCs. The
estimated slope values are given in the third column of Table 5. This
behavior of OCs is well-expected because most of the young and
intermediate-age OCs lie closer to the metal-rich thin galactic disk,
while older OCs are located farther away in the metal-poor outer
disk. Carrera et al. (2019), however, do not find any evidence of the
presence of a vertical metallicity gradient, at least above the 1-σ level.
A further examination of the vertical evolution of the metallicity
gradient is performed in the next section.

5.4 Vertical evolution of the radial
metallicity gradient

Thestudy of the relation between themetallicity and the location
of the cluster on the galactic disk is an important tool for the
study of the structure formation and evolution of the galaxy (e.g.,
Zhong et al., 2020). We also investigated the evolution of radial
metallicity gradients in the vertical direction of the galactic plane
as clusters are widely distributed in the vertical direction of the
galactic disk. The effect of the scale height on the rate of change
in metallicity variation with the RGC has been analyzed by plotting
the slope of the radial metallicity gradients as a function of the
absolute value of Z, which is shown in Figure 9. |Z| for our sample
ranges from 0 to approximately 1.8 kpc (excluding one lone cluster
located at approximately 2.6 kpc). Although most of the clusters
are located near the galactic plane, there are fewer clusters at larger
vertical distances. Therefore, we considered a varying bin size in
the Z scale. We considered a bin width of 50 pc for |Z| < 200, 100
pc for 200 < |Z| < 400, and 500 pc for |Z| > 400 by making sure
that there are enough clusters in the selected bins to get a proper
estimate of the radial metallicity gradient. As shown in Figure 9, the
variation in d[Fe/H]

dRGC
as a function of the absolute vertical distance |Z|

for our sample of OCs follows an increasing trend with an increase
in |Z|. The estimated standard errors in d[Fe/H]

dRGC
and mean |Z| are

shown as black colored cross bars. At larger vertical distances, the
estimated errors are larger because of the smaller sample size in the
corresponding vertical distance bins. A linear fit to the distribution
is shown as a thick red line, and the corresponding coefficients are
shown in the legends. The radial metallicity gradient ( d[Fe/H]

dRGC
), as a

function of the vertical distance from the galactic plan, is found to
vary at a rate of 0.068± 0.016 dex kpc−1 kpc−1, suggesting a higher
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FIGURE 9
Variation in d[Fe/H]

dRGC
as a function of the absolute vertical distance (|Z|)

for the sample of OCs. Uncertainties are shown as black cross bars.
The linear fit to the data is shown as a red color line.

rate of change of metallicity with RGC at a larger vertical distance
from the galactic plane. The radial metallicity gradient at the center
of the galactic plane is estimated as −0.073± 0.008 dex kpc−1, which
is in agreement with our previous estimate shown in Section 4.2.

6 Discussion and conclusion

In this study, we used the largest sample of 1,879 open clusters to
understand the distribution and evolution ofmetallicity in the galactic
disk.Thecluster samplewascompiled fromthe literaturewithavailable
metallicity informationalongwithother information like age, position
coordinates, distances, and radial and vertical distances. About 90%of
the OCs in our sample are younger than 1 Gyr, with the oldest being
about 10 Gyr old. Radially and vertically, about 90% of the clusters
in our sample are within a heliocentric distance of 3 kpc, while about
97% of the clusters are within a vertical distance of 500 pc, practically
restricting our study to the galactic disk.

The age–metallicity relation provides an important constraint
on the theoretical models of the disk and, thus, has been studied
multiple times in the past. The study of metallicity evolution for
our sample of OCs did not find a strict age–metallicity relation,
but a stepped linear evolution of metallicity in the galaxy was
observed with a discontinuity at log(age/year) = 8.378± 0.093 at the
age of approximately 240 Myr. OCs older than 240 Myr follow
a decreasing trend in metallicity with an increase in age, with
an age–metallicity gradient of −0.031± 0.006 dex/Gyr, which is in
agreement with some of the recent studies as well as the galactic
evolutionary models. The slightly higher average metallicity in the
intermediate age clusters compared to the average metallicity in the
young ones agrees with findings in earlier studies (Pancino, 2010;
Zhong et al., 2020). Interestingly, the sample of OCs younger than
about 240 Myr follows a slightly increasing trend in metallicity
with an increase in age. The radial and vertical migration of young
OCs in the disk is suspected to be one of the main reasons for
this weak correlation between log(age) and [Fe/H] for younger
clusters. However, no strong correlation has been found to draw any
meaningful conclusion. Despite a large scatter in the age–metallicity
relation in our study, it is crucial to observe the slightly different

age–metallicity relation for two different samples of clusters, which
possibly applied distinct formation constraints on the galactic thin
and thick disc in modeling the Milky Way.

It is well-understood that the metallicity in the inner region
of the galactic disk is increasing with time (e.g., Reddy, 2003;
Haywood et al., 2013, and references therein). Hence, the younger
clusters with lower metallicity must have either formed away from
the galactic plane or in the anti-GC direction. To see whether the
latter is the reason behind lower metallicity in younger clusters,
we investigated the distribution of metallicity in the galactic plane
by plotting metallicity as a function of the galactic longitude. The
OCs in the anti-GC direction do have lower metallicity compared
to the OCs in the GC direction, possibly owing to the differences in
timelines of gas in-falls and formation of clusters in the GC and anti-
GC directions. Our samples of YOCs, IOCs, and OOCs are found to
equally populate both the GC and anti-GC directions, hence leaving
vertical migration as one of the likely reasons for slightly lower
metallicity in younger clusters.

Using our sample of clusters, we further explored the
vertical and radial metallicity gradients in the galactic disk.
Metallicity was found to follow a stepped variation with vertical
distance from the galactic plane. Near the galactic plane, with
|Z| < 0.487± 0.087 kpc, we estimated the vertical metallicity
gradient of −0.545± 0.046 dex kpc−1, while for a large vertical
distance having 0.487± 0.087 < |Z| ≲ 1.8 kpc, we found a lower
vertical metallicity gradient of −0.075± 0.093 dex kpc−1. The lower
metallicity gradient at large vertical distances compared to the one at
smaller vertical distances agrees with the galactic chemical evolution
models. We found that most of the OCs at large vertical distances
are older compared to the majority of the clusters located near the
galactic plane. This difference in the ages of clusters from the two
vertical regions is believed to be the main reason for the flatter
vertical metallicity gradient at large vertical distances compared to
the steep vertical metallicity gradient at smaller vertical distances.

Similar to the vertical direction, the change in metallicity in the
radial direction is also found to follow a stepped linear relation.
For a radial distance between approximately 4.0 and 12.8 kpc,
we found a radial metallicity gradient ( d[Fe/H]

dRGC
) of −0.070± 0.002

dex kpc−1, while for a radial distance between approximately 12.8
and 20.5 kpc, we found a much smaller radial metallicity gradient
of −0.005± 0.018 dex kpc−1. Thus, the OCs in the outer galactic disc
are generally more metal-poor than the OCs in the inner galactic
disc and in the solar neighborhood. Although a shallowermetallicity
gradient in the region 12.8–20.5 kpc may be biased due to the
relatively smaller number ofOCs at larger galactocentric distances, it
could also be the result of radial migration of clusters in the galactic
disk (Zhang et al., 2021). Using a smaller sample of 295 OCs within
a galactocentric distance of 7–15 kpc, Zhong et al. (2020) reported a
steeper slope of −0.252 ± 0.039 dex kpc−1. It should also be noted
that a significant variation in the slope and the turn-off point in
the radial metallicity gradient among different studies comes from
the choice of the cluster sample, selected range of RGC, and unequal
vertical heights. Overall, our radial metallicity gradient estimates
agree with most of the recent studies (Reddy et al. 2020; Zhang et al.
2021; Myers et al. 2022a).

One of the key questions in the galactic chemical evolution
models is the evolution of the radial metallicity gradients over time,
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and the answer is not determined yet. We, therefore, examined
the time evolution of the metallicity gradients, both in radial and
vertical directions, with age, by dividing the clusters into three
age bins of < 20 Myr, 20–700 Myr, and > 700 Myr. We observed
that these gradients are shallower for the oldest age bin, while not
much difference was noticeable in the young and intermediate-
age clusters. The time evolution of abundance gradients has also
been examined in the past, but an unequivocal result has not been
found so far. Although Vincenzo et al. (2018) and Minchev et al.
(2018) suggested a flatter metallicity gradient with time, there are
a few studies like Chiappini et al. (2001) and Mott et al. (2013),
which suggested a steepening in gradient over time. However, the
variation is only prominent over a longer time scale, and the limited
temporal coverage of the present cluster sample, where only a small
number of OCs are available beyond the 1 Gyr period, in no way
sheds any more light on this discussion. We refer Magrini (2023)
for a more detailed discussion on the temporal evolution of the
metallicity gradients.

We further studied the variation in the radialmetallicity gradient
with distance from the galactic plane and found that the radial
metallicity gradient linearly increases with an increase in the vertical
distance and obtained a radial metallicity gradient slope of d[Fe/H]

dRGC
=

0.068± 0.016 dex kpc−1 kpc−1 as a function of vertical distance from
the galactic plane.This agrees with the galactic evolutionarymodels,
for example, see Toyouchi and Masashi (2014) and references
therein. In the case of a thin disk, which has a scale height of
approximately 300 pc, the radial metallicity gradient is highly
negative even though it linearly increases with the vertical distance
from the galactic plane. However, for the thick disk (having a
typical scale height of approximately 900 pc), the radial metallicity
gradient is slightly high and approaches zero at approximately 1 kpc.
Toyouchi and Masashi (2014) suggested that the radial metallicity
gradient was positive at the time of formation of the thick disk but
subsequently becamenegative during the transition phase of the disk
formation from the thick to thin disk. The gradient became flatter
by the time of the formation of the thin disk. This change in the
radial metallicity gradient with a vertical distance is believed to be
related to the gas in-fall history in the galaxy. A large negative radial
metallicity gradient near the galactic plane (i.e., in the thin disk) but
a higher gradient in the case of the thick disk (i.e., large vertical
distance) can be explained by the shorter and longer time scales,
respectively, for the gas in-fall.
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