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Introduction:Galaxy cluster lensing is a powerful tool for measuring themass of
galaxy clusters, but accurate shear measurement and calibration are critical to
obtaining reliable results. This study focuses on themeasurement and calibration
of weak lensing shears to improvemass estimates in cluster lensing. To deal with
the problem, we first developed an image simulation pipeline, jedisim, which
utilizes galaxy images extracted from the Hubble Space Telescope (HST) Ultra
Deep Field (UDF) and the Cosmic Assembly Near-infrared Deep Extragalactic
Legacy Survey (CANDELS).

Methods: The simulations represent realistic galaxy distributions
and morphologies as input sources. The foreground halo with a
Navarro–Frenk–White (NFW) profile is constructed such that the lensing signals
of background galaxies can be measured by the Vera C. Rubin Observatory’s
Legacy Survey of Space and Time (LSST) Science Pipelines. By comparing the
measured reduced shear gmeas and the true reduced shear gtrue, we observe
non-linearity up to g ≲ 0.6. We fit polynomials to the data with quadratic
correction adequate to g ≲ 0.4. Meanwhile, we conduct mass estimates using
the pzmassfitter code on four different clusters.

Results: The mass estimate results are significantly improved after applying the
shear calibration derived from the present work—from 4.954±0.504× 1014M⊙
to 10.507±0.498× 1014M⊙ after calibration for a simulated cluster with the mass
of 10× 1014M⊙. In multiple cases of validation, the estimated results are all
consistent with true cluster mass.

Discussion: This study yields the first relationship between reality and shape
measurement of the LSST Science Pipelines and serves as the first step toward
the overall goal of mass calibration in cluster lensing. By addressing the
challenges in shear measurement and calibration, we aim to enhance the
accuracy and reliability of mass estimates in galaxy cluster lensing studies.
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galaxy clusters, gravitational lensing, image processing, observational cosmology,
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1 Introduction

Although the ΛCDM cosmological model shows
phenomenological success, the nature of its two main components,
dark matter and dark energy, is unknown. Therefore, physicists
consider understanding these components as the major scientific
driver in high-energy experiments and cosmological surveys.
As an upcoming cosmological survey, the Vera C. Rubin
Observatory Legacy Survey of Space and Time (LSST)1 will
provide an opportunity to understand the nature of dark matter
and dark energy through its survey of the southern-hemisphere
sky area (LSST Science Collaboration, 2009). Together with
other space- and ground-based telescopes (e.g., the Nancy
Grace Roman Space Telescope (Spergel et al., 2015) and the
Euclid mission (Laureijs et al., 2011)), we will be able to acquire
abundant high-resolution observational data in a wide sky area.

In LSST and another stage IV dark energy surveys, gravitational
lensing plays a critical role, which describes the phenomenon
that light from distant objects is bent by the gravitational field of
intermediate-mass before arriving at the observers (Albrecht et al.,
2006). Gravitational lensing provides a direct probe to determine
the mass distribution in the Universe based solely on the
gravitational effects of baryonic matter and dark matter. This probe
is impartial and unbiased regarding the details of how the mass
interacts (Van Waerbeke and Mellier, 2003).

Galaxy clusters, as the largest virialized structure, are formed
in the relatively recent epoch of the cosmological age. Based
on the observations and measurements from galaxy clusters, we
can study the late-time evolution of the Universe and constrain
cosmological parameters if the masses of the clusters are measured
accurately. Among the analysis methods, weak gravitational lensing
is an important and effective probe to estimate the masses
(Joudaki et al., 2009). The most common measurement in weak
lensing is the shape distortion (or shear) of galaxies, which describes
the lensing effect. Therefore, to estimate the mass with high
accuracy, we need to map the shapes of source galaxies to the
mass of lenses. Before mapping, it is important to understand and
restrict the systematics of shear measurements. To evaluate and
improve the impacts of systematic bias, several data challenges,
such as the Shear Testing Program (STEP) (Heymans et al., 2006;
Massey et al., 2007) and the Gravitational Lensing Accuracy Testing
(GREAT) (Bridle et al., 2009; 2010), have been conducted. In these
data challenges, shear measurement biases are investigated and
discussed in terms of the presence of realistic galaxy morphology,
finite galaxy postage stamps, and galaxy types, among other
factors, via different measurement methods (Mandelbaum et al.,
2015). These data challenges have resulted in estimates for
the calibration of shear measurements. These calibrations have
been adopted for some recently completed and ongoing surveys
(Heymans et al., 2006; Bridle et al., 2010; Mandelbaum et al., 2015).
In general, the next-generation surveys are designed to measure
the properties of dark energy at an order of magnitude of one
percent accuracy, which can be considered the motivation of shear
calibration (Bridle et al., 2009).

1 https://www.lsst.org

Taking the Hyper Suprime-Cam Subaru Strategic Program
(HSC-SSP)2 as an example, a set of simulations for shear calibration
was analyzed by Mandelbaum et al. (2017), where realistic galaxy
morphologies and nearby galaxies were taken into account with an
effective source number density of 21.8 arcmin−2. As an upcoming
wide-area sky survey, LSST is capable of providing the largest and
most uniform cluster sample with shape measurements to date. In
the case of cluster weak lensing, the observational data will include
weak lensing measurements for ∼40 galaxies arcmin−2 behind
low redshift clusters (LSST Science Collaboration, 2009). Here, we
evaluate the performance of the LSST Science Pipelines (LSP)3

in terms of both shear measurement and follow-up cluster mass
reconstruction.

In this paper, we produce image simulations of cluster lensing.
Real galaxy postage stamps are generated from Hubble Ultra Deep
Field (HUDF) (Beckwith et al., 2006) and CANDELS (Grogin et al.,
2011; Koekemoer et al., 2011) data release at the pixel scale of HST.
These postage stamps are used to construct the background galaxies.
A model foreground cluster is placed at a redshift between the
observer and background galaxies. A ray-tracing algorithm is then
adopted to apply the shear from the cluster to the background
galaxies and simulate the lensed images. This simulation pipeline,
known as jedisim4, is designed to output images under the
observational conditions of LSSTwith the corresponding resolution.

The simulated images are processed and analyzed using the LSST
Science Pipelines. Reduced shear is measured using the shapeHSM
algorithm (Hirata and Seljak, 2003; Mandelbaum et al., 2017), and
shear calibration biases can be derived by comparing the measured
shear and true shear.

Before jedisim, there were already several well-developed image
simulation pipelines for strong lensing effects, such as Pipeline for
Images of Cosmological Strong (PICS) lensing, (Li et al., 2016) and
SkyLens (Meneghetti et al., 2016; Plazas et al., 2019), as well as for
weak lensing, such as GalSim (Rowe et al., 2015). Each of these
simulation pipelines has its own advantages and is developed based
on the necessary assumptions to optimize computational efficiency
on a specific physics topic.

Our approach necessarily differs from the traditional simulation
approach for weak lensing or strong lensing because massive galaxy
clusters considerably distort galaxies located behind their central
regions. Consequently, galaxies are not only more elliptical but
also exhibit higher-order distortions (e.g., flexion), causing them to
deform into rings or multiple images. One of our primary objectives
is to investigate the impact of neglecting these higher-order
distortions on cluster mass estimates, necessitating simulations
that accurately reproduce the distortions. Because higher-order
distortions can result in significant magnification of faint galaxies
and noise features, we require that the template galaxies be free from
noise. At the same time, we require that the galaxies have sufficient
structures so that sub-imagemagnification can be handled correctly.
Therefore, we developed our own image simulation pipeline.

Jedisim aims to simulate both strong and weak lensing effects
in observations of a cluster field, where the galaxies retain the

2 http://hsc.mtk.nao.ac.jp

3 http://dm.lsst.org

4 https://github.com/rbliu/jedisim
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morphologies and properties of HUDF and CANDELS images. In
addition, we apply the observational conditions of LSST to the
simulation procedure and process the data with the entire analysis
pipeline developed for LSST. Hence, the results are compatible
with LSST and enlighten us to understand the output of the data
analysis pipeline.

The remainder of this paper is organized as follows: in Section 2,
we provide a brief review of the calculations and approximations
in weak gravitational lensing, which are the fundamentals of the
image simulation. The image simulation pipeline is described in
Section 3. The methodology of the analysis pipeline is presented in
Section 4. We summarize our results and conclusions in Sections 5,
6, respectively. Finally, we discuss systematics in Section 7 and
present our conclusions in Section 8. Throughout this paper, we
adopt the ΛCDM cosmology and assume Ωm = 0.315, Ωλ = 0.685,
and H0 = 67.8km s−1Mpc−1 (Collaboration et al., 2020).

2 Gravitational lensing and the NFW
profile

In this section, we provide a concise review of the calculations
and approximations fundamental to weak gravitational lensing,
which form the basis of our image simulation. Understanding
these concepts is crucial for accurately modeling the lensing effects
observed in galaxy clusters. We will discuss the equations and
assumptions involved in weak lensing, highlighting their relevance
to our simulation methodology.

2.1 Basic formalism of gravitational lensing

In the weak gravitational field limit, the gravitational lensing
effect is described by the lens equation or ray-tracing equation
denoted by Eq. 1 (Narayan and Bartelmann, 1996):

β (θ) = θ − α (θ) , (1)

where β is the true angular position, θ is the observed angular
position, andα is the deflection angle. It is usually assumed that these
two-component angles are small enough that the curvilinear nature
of this coordinate system can be neglected.

Based on the thin lens approximation, where all the mass is in a
single plane P orthogonal to the direction of light and between the
source and observer, we can treat space as Euclidean. In addition,
because the deflection occurs in a small region compared to the
path length, we can approximate the light path as a single deflection.
Suppose that the projected mass density distribution on P is given
by Σ(ξ), where ξ is a vector in P.

Often, the mass distribution will not be planar but will be
concentrated near the plane P. More precisely, let z be a coordinate
parallel to the path of the light. Then, the mass distribution is given
by ρ(ξ,z) where ρ = 0 for |z| ≥ ε, where ε is some distance which is
smaller than the distance between the mass and the observer. This
holds in almost all astronomical situations. In this case, Σ is given by
integrating ρ over the line-of-sight:

Σ (ξ) ≡ ∫
∞

−∞
ρ (ξ,z) , dz, (2)

and M(r), the mass enclosed within radius r, can be calculated by
Σ(ξ). In our simulations and observations, the distances involved are
large enough that thin plane approximation is reasonable.

The angular diameter distances from the observer to the lens,
observer to the source, and lens to the source are given by
Dℓ, Ds, and Dℓs, respectively. For a two-dimensional gravitational
lensing potential ψ, the deflection angle can be written as α(θ) =

∆ψ. The dimensionless surface mass density is represented as the
convergence κ denoted by Eq. 3:

κ = 1
2
(ψ11 +ψ22) =

Σ
Σcrit
, (3)

where ψij = ∂
2ψ/∂θi∂θj, and the critical surface mass density is

given by Eq. 4

Σcrit =
c2s
4πG

Ds

DℓDℓs
, (4)

where cs is the speed of light.
The shear γ represents the tidal gravitational field of the lens

and can be written as a complex notion γ = γ1 + iγ2. These two
components can be derived from the second derivatives of the
lensing potential shown in Eqs 5, 6:

γ1 =
1
2
(ψ11 −ψ22) , (5)

γ2 = ψ12 = ψ21, (6)

and the complex reduced shear is introduced as g = γ/(1− κ).
Without a measurement of the intrinsic size or magnification of a
galaxy, we are only able to measure g but not γ (Schneider et al.,
2000). Considering the weak lensing regime where κ≪ 1 and
γ≪ 1, the image distortion due to the lensing cluster is usually
much smaller than the intrinsic shapes of background sources. The
convergence can be recovered by the shear γ of background images
through the inverse two-dimensional Laplacian to the potential ψ
(Fahlman et al., 1994; Kaiser et al., 1995; Fischer and Tyson, 1997).
The distortion of the background image can be calculated by a
Jacobian matrix denoted by Eq. 7 (Kaiser and Squires, 1993):

𝔸 = (1− κ)(
1− g1 −g2
−g2 1+ g1

). (7)

Therefore, the distorted shape is a function of reduced shear
g rather than κ or γ separately. To describe the shapes of
lensed galaxies, measuring their reduced shear along the tangential
direction, gtan, is more physically motivated than measuring
g1 and g2, and gtan can be computed by the ellipticities of
lensed sources (Schneider et al., 2000).

Themeasured ellipticity of a galaxy can be decomposed into two
components: e1 = e cos (2θ) along x and y axes and e2 = e sin (2θ)
along y = ± x directions, where θ is the position angle of the galaxy
measured counter-clockwise from the x axis. Furthermore, the shear
of a galaxy can be quantified by its E-mode component, tangential
ellipticity:

etan = −(e1 cos (2ϕ) + e2 sin (2ϕ)) , (8)

where ϕ is the azimuthal angle measured from the lens center and
the factors of cos (2ϕ) and sin (2ϕ) project e1 and e2 to the tangential
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direction, respectively. The weak lensing effect on the background
sources produces a curl-free stretching in the tangential direction
to the line-of-sight. An image should have no systematic B-mode
shear in background galaxies. If we omit the lens plane and assume
the absence of intrinsic alignment of the background galaxies, the
average tangential ellipticity should equal zero as a statistical result.
Therefore, we can use ⟨etan⟩ as an unbiasedmeasurement of reduced
shear. It is feasible to recover the convergence of a foreground galaxy
cluster by calculating the non-zero average tangential ellipticity with
a given sample of lensed background galaxies (Jarvis et al., 2003).

2.2 NFW profile

The Navarro–Frenk–White (NFW) profile is frequently used in
mass distributions, as it is a good approximation to the average
profile of clusters in N-body simulations and fits observations well.
The profile has several dependent parameters, any two of which are
sufficient (Navarro et al., 1996; 1997).

The NFW profile at redshift z is defined as

ρ (r) ≡
δcρc (z)

(r/rs)(1+ r/rs)
2 , (9)

where δc, ρc, and rs are parameters.The dimensionless characteristic
density δc is given by

δc ≡
200
3

c3

ln (1+ c) − c
1+c

, (10)

where c is the concentration parameter. ρc is the critical density for
closure of the Universe at redshift z with units of mass density. It is
given by Eq. 11

ρc ≡
3H2 (z)
8πG
, (11)

where H(z) is the Hubble parameter at redshift z. Furthermore, rs
is a scale radius for the profile, with units of length and is given by
rs ≡

r200
c
, where r200 is the radius within which the mean density of

the halo is 200 times the critical density ρc. The mass enclosed by
this radius is given by

M200 ≡M(r200) =
800π
3

ρcr
3
200. (12)

The NFW profile is given in three spatial dimensions; however,
to use it with the thin lens approximation, we can compress it
along the line-of-sight. Let P be some plane through the origin and
z be the perpendicular direction through its origin. Let R be the
radial distance on the plane from the origin. Then, Σ(R), the surface
mass density, is given by Eq. 2, except with R instead of ξ because
of radial symmetry. To perform the integration, it is necessary to
introduce the dimensionless distance variable x ≡ R/rs. This integral
is performed by Wright and Brainerd (2000), giving a complex but
analytic expression:

ΣNFW (x) = 2rsδcρc

×

{{{{{{{{
{{{{{{{{
{

1
x2 − 1
(1− 2
√1− x2

arctanh√ 1− x
1+ x
) 0 ≤ x < 1

1
3

x = 1

1
x2 − 1
(1− 2
√x2 − 1

arctan√ x− 1
1+ x
) 0 ≤ x < 1

,

(13)

where the constant 1
3
is chosen to ensure continuity at x = 1.

M200 and c are used to determine the deflection due to this profile
since any two parameters are sufficient to describe the profile.Hence,
ΣNFW is integrated to calculate the enclosed mass. Since R = rsx, the
enclosed mass is is derived as Eqs 14, 15

MNFW (x) = 2π∫
x

0
ΣNFW (x)R dR

= 2πr2s∫
x

0
ΣNFW (x

′)x′ dx′

= 2πr2s 2rsδcρc∫
x

0
dx′ x′

×

{{{{{{{{{{
{{{{{{{{{{
{

1
x′2 − 1
(1− 2
√1− x′2

arctanh√ 1− x
′

1+ x′
) 0 ≤ x′ < 1

1
3

x′ = 1

1
x′2 − 1
(1− 2
√x′2 − 1

arctan√ x
′ − 1
1+ x′
) x′ > 1

= 4πr3s δcρc𝕏NFW

=
M200

ln (c+ 1) − c
c+1

𝕏NFW,

(14)

where

𝕏NFW = ln
x
2
+

{{{{{{{{
{{{{{{{{
{

2
√1− x2

arctanh√1− x
1+ x

0 ≤ x < 1

1 x = 1

2
√x2 − 1

arctan√x− 1
1+ x

x > 1

, (15)

with the first and third piecewise parts giving the entire expression,
except at x = 1. Due to the logarithm term, the enclosed mass
diverges as x→∞, albeit quite slowly. Usually, the distribution is
truncated to account for this, orM200 =MNFW(c) is used to describe
the mass of clusters.

3 Simulations

The simulation pipeline, jedisim, was used to generate simulated
cluster lensing images for Analysis of Realistic Cluster Lensing
through Extensive Training Simulations (ARCLETS5). Simulated
sheared galaxies and clusters are constructed to test for mass
bias due to non-linearities in shear calibration. More details on
implementation are included in Supplementary Appendix-1.

Any simulation is only as accurate as the model and parameters
used to create it. Systemic biases are inevitably introduced by
whatever differences exist between the simulation and actual galaxy
clusters, as well as the errors in the galaxy properties of source
galaxies.The best way to counteract this and reduce biases is tomake
the model and its parameters as physically accurate as possible. In
practice, this is limited by the computational power available and the
precision of the parameters used to calibrate the model. Judicious
selection of what approximations and simplifications are used is
required to make the model.

5 http://www.het.brown.edu/people/ian/ClustersChallenge
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The jedisim pipeline models the effect of a foreground galaxy
cluster on the shapes of background galaxies. Broadly, there are three
main components of the simulation:

1. Making the field of supersampled background galaxies
(Section 3.1);

2. Each galaxy image is then sub-pixel sampled, and the subpixels
are separately ray-traced to model the process of distorting
the light from the background galaxies in accordance with a
specified mass distribution (Section 3.2);

3. The individual distorted galaxies are assembled into an image
and then resampled onto an appropriate pixel scale, also
accounting for the blurring and distortion due to the point
spread function (PSF) and noise (Section 3.3).

The three steps are performed as independently as possible so
that the model can be improved in a modular fashion. To enable
strong lensing in practice, we have devised an efficient reverse-
tracing technique that links the output sub-pixels to the input
image, thereby allowing multiple imaging. Galaxies are simulated
individually and combined into a single image at a late stage so that
redshift-dependent effects can be included.

Furthermore, the simulation is generated across a wide sky
area of 1200× 1200 arcsec2, which is large enough that no lensing
signal will be artificially removed by the image boundaries but small
enough that the coordinates can be treated as flat. In the final step of
the simulation, images are created with the observational conditions
of LSST (see Section 3.3). To ensure that there are no pixelization
effects when generating the galaxy light profiles, the first two steps
are carried out atHSTUDF resolution.The image is rescaled to LSST
resolution in a subsequent step.

3.1 Background inputs

Thebackground galaxy field is simulated one galaxy at a time. To
create realistic lensed shapes, individual galaxies in the HDF/UDF
and GOODS sky areas of CANDELS are identified by SExtractor.
They are extracted and converted to 600× 600 pixel2 postage stamps.
The stamps are applied with a mask thresholded at 5σ (per pixel),
which is calculated based on the standard deviation in the sampled
background sky area. This procedure aims to make sure that each
postage stamp is noise-free and that the morphology feature of the
galaxy is not artificially altered. In addition, distant sources and
bright pixels that do not belong to the target galaxy are also masked
out. Hence, each cleaned stamp has one isolated galaxy on a blank
background, as shown in Figure 1.

In this paper, we present simulation results only in r-band
(552–691 nm) images for LSST. However, the database of jedisim
contains postage stamps from HST WFPC2 (Wide Field and
Planetary Camera 2) F450W, ACS (Advanced Camera for Surveys)
F606W, and ACS F814W bands, which enable the potential of
multi-band simulation (we discuss the simulation for the next step
in Section 8). All the postage stamps are at an HST resolution
of 0.03 arcsec per pixel. The sample repository contains 738
extracted galaxies, which can provide a fairly diverse set of galaxy
shapes and orientations. More galaxy samples are planned to be
included to increase the diversity in morphology, as discussed
in Section 8.

FIGURE 1
Sample 600×600 pixel postage stamps cut out and cleaned from HST
UDF with a pixel scale of 0.03 arcsec per pixel.

The simulation aims to generate galaxies at the coadded depth
with an r-band magnitude from 22 to 28.5, which is 1 mag deeper
than the final coadded survey depth given by the LSST Science Book
(LSST Science Collaboration, 2009).We calculate the ABmagnitude
for each galaxy postage stamp and convert them to magnitudes
in LSST bands. When the sky is observed, a significant number
of galaxies of high magnitude will be relatively faint. The noise
level will then render them indistinguishable from the background.
Because we generate simulations for both LSST 1-year and 10-year
survey depths, they have different corresponding noise levels (see
Section 3.3). So, we include the faint galaxies with amagnitude up to
28.5 tomake sure the simulated sky hasmore realistic features. Based
on the LSST Science Book (LSST Science Collaboration, 2009),
∼40 galaxies per arcmin2 behind the clusters are expected to be
observed and measured. With this approximation of galaxy number
density, ∼6000 sources should be measured within a ∼150 arcmin2

simulation output, which is in good accordance with the results, as
discussed in Section 6.

By using real galaxies as thematerials of simulation,we retain the
most morphological details in the galaxies. We have a finite dataset
of the galaxy postage stamps with a sufficiently high signal-to-noise
ratio from theHSTfield. Hence, it is necessary to increase the variety
of samples in the simulation. Based on the originally extracted galaxy
postage stamps, we create varied galaxies with realistic features. Each
simulated galaxy is specified by six parameters detailed below:

• Magnitude: The magnitude of each galaxy is selected in the
range of 22 ≤M ≤ 28.5 with the distribution given by the power
law denoted by Eq. 16:

P (M+ dM) ∝ 10BM, (16)

whereM is the r-band magnitude and B = 0.33 ln 10 is an empirical
constant (Benitez et al., 2004).

• Half-light radius: For each galaxy, the effective radius or half-
light radius, r50, is selected from the database of galaxy radii
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described by Kubo and Dell’Antonio (2008). This database
is generated based on the galaxy magnitude-size distribution
from HST UDF (Coe et al., 2006). Specifically, for statistical
convenience, the database is binned by the integer part of the
magnitude, and a list of radii is generated for each magnitude
(the database is included in the source code of jedisim). Since
each postage stamp is already assigned a magnitude, it has a
corresponding bin, and an r50 radius is chosen randomly from
that bin.Then, the galaxy postage stamp is scaled to the new size
using an interpolation routine.

• Image: A postage stamp image is chosen at random from those
postage stamps whose r50 value is larger than r50 assigned to
the galaxy. Hence, the images are always sized down to avoid
interpolation errors.

• Redshift: The database of galaxy redshift from the zCOSMOS
redshift survey is used and binned by magnitude (Iovino et al.,
2010). For each galaxy, a redshift is selected from the
corresponding magnitude bin. Alternatively, a single redshift
(i.e., z = 1.5) can be chosen for all galaxies. This parameter can
be controlled in the configuration file of jedisim. When z = 1.5
is selected for the source galaxies, their luminosities and pixels
are rescaled according to their intrinsic redshifts.

• Position: The center of the postage stamp is selected as a pair
of uniformly distributed floating points (for x and y positions
in pixel). The range of position is restricted to ensure that
the entire galaxy postage stamp lies completely within the
simulated image.

• Orientation: Each galaxy is randomly oriented by choosing
an angle uniformly from the range [0,2π). The orientation
of galaxies has at least three degrees of freedom, but since
we are dealing with two-dimensional projections of galaxies,
we can only make the orientation random in one degree of
freedom, with some additional variability coming from the
diverse orientations of the postage stamps.

Once these parameters are chosen for each galaxy, an image
is made that satisfies those parameters. The postage stamp is
rotated at the assigned angle, scaled down to the correct r50 radius
(using bilinear interpolation), and its flux is adjusted to the correct
magnitude. The galaxy is then appropriately cropped so that the
image consists of the smallest rectangle that contains all non-
zero pixels of the galaxy. Each transformed postage stamp galaxy
is saved as a FITS image, along with the six parameters that
characterize it.

Therefore, we have all the information on the background
simulation image: a catalog of galaxies whose sizes, magnitudes,
orientations, positions, and (optionally) redshifts are distributed in
accordance with observations.

3.2 Lensing model

The next step in the simulation is to emulate the effects of
gravitational lensing caused by a galaxy cluster. As mentioned in
Section 2.1, the lens equation can be written as Eq. 17

β (θ) = θ − α (θ) = θ −
Dℓs

Ds
α̂ (θ) , (17)

where the deflection term α̂ is a vector quantity in a radially
symmetric mass distribution as in Eq. 18.

α̂ (θ) = α (r) ̂r, (18)

where α(r) is the radial deflection which depends on the mass
distribution, r is the distance from the center of themass distribution
to θ, and ̂r is the unit vector from the center of the mass distribution
to θ. Both r and α(r) have units of pixels.

We implement the density distribution profile as a separate
module in the code, which enables jedisim to simulate different
types of galaxy clusters. In this work, we use the NFW profile
(Navarro et al., 1996; 1997) to generate the images, as it provides a
well-established model for the mass distribution of galaxy clusters.
Additionally, the specific cluster field we are studying is not
significantly affected by the potential issues associated with the
central density divergence of the NFW profile.

For an NFW profile cluster, given Eqs 9, 10, 12, its virial mass
can be written in terms of the concentration cshown in Eq. 19:

M200 = 4πρcδcr
3
s [ln (1+ c) −

c
1+ c
] . (19)

Then, the density is expressed as ρ(r;M200,c). The deflection in
pixels by the NFW profile is given by Eq. 20

α(r;M200,c)
r

=
4GM200δ

′
c

9× 105Dℓ r
×𝕏NFW, (20)

where r is the radius in pixels, Dℓ is the angular diameter distance
of the cluster for a given cosmology, and δ′c is a modification of the
density parameter, which is given by Eq. 21

δ′c =
1

ln (1+ c) − c
1+c

, (21)

and x, as defined in Eq. 13, is calculated by Eq. 22

x =
ScDℓ

10.0
( G
H2

0
)
−1/3

r, (22)

where H0 is the Hubble constant at the present time and S is the
conversion factor between pixels and radians given by Eq. 23

S = π
180 (degree)

3600 (arcsec/degree)
resolution (arcsec/pixel)

. (23)

An arbitrary number of lenses can be present simultaneously,
whose center positions, redshifts, and profile parameters are all
specified by a configuration file. In this work, we use a single
symmetric lens to produce simulations. In the future, however, we
plan to enable the potential probability to simulate substructures of
clusters or the light cone ofmultiple lensing planes.The lenses can be
distributed at any redshift, as described in the configuration file. To
simplify the mass reconstruction process at this first stage, all lenses
share the same redshift in the current simulation.Thedeflection then
becomes the superposition of the deflections from each of the lenses:
if there areN lenses with deflection functions αi for i = 1,…,N, then
the deflection term becomes Eq. 24

α̂ (θ) =
N

∑
i=1

αi (ri) ̂ri, (24)

where ri is the distance from the center of the ith mass distribution
to θ and ̂ri is the corresponding unit vector.

The lensed image is calculated by applying Equation (17) to
the subsampled background image produced in Section 3.1. This
is done as follows. For now, assume that all background galaxies

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2024.1411810
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Liu et al. 10.3389/fspas.2024.1411810

lie at a single redshift. Then, we can consider the Universe as
consisting of three parallel planes: the source plane, where the
background galaxies lie; the lens plane, where the mass distribution
lies; and the observation plane, which is near Earth but above the
atmosphere.

Any light traveling from the source plane to the observation
plane will pass through the lens plane and be deflected,
forming a distorted image of the source plane on the
observation plane. A straightforward way to determine
what this distorted image will be is to trace the path of
individual photons from the source image to the observation
image. Unfortunately, this is non-deterministic because of
the phenomenon of multiple images and is thus extremely
inefficient. However, it is possible to go backward. Concretely,
let I and J be the scalar-valued intensity function on the
source and observation planes, respectively, and let α̂ be the
vector-valued deflection function on the lens plane. Then,
with θ = (x,y),

J (x,y) = I (β (x,y)) = I((x,y) −
Dℓs

Ds
α̂ (x,y)) . (25)

This Eq. 25 contains the assumption from above that all
background objects have a single redshift. In a more realistic case
where there are background galaxies at multiple redshifts, there
is a separate source plane for each redshift, and a corresponding
observation plane can be calculated for each one. Hence, the total
observation intensity is the sum of all these planes.

3.3 PSF and noise

To emulate the actual atmospheric and telescopic effects
in observation, we make a non-varying point spread function
using PhoSim6 with a δ-function input (Peterson et al.,
2015). The distorted, denoised galaxy postage stamps are
assembled into the final sky area and then convolved with this
PSF kernel.

By modifying the parameters of PhoSim, the PSF kernel is
generated at the HST resolution with the observational conditions
of LSST.The resulting PSF is normalized to a total intensity of unity,
as illustrated in Figure 2.

To ensure that the final simulation image at the LSST resolution
has a smooth and realistic PSF, the PSF image we generate at
the HST resolution has a size of 1024× 1024 pixels, so it is
computationally impractical to convolve straight from the double-
sum two-dimensional discrete convolution. At a small loss of
precision, it is more efficient to utilize the convolution theorem.
A strip with a width of 1024 pixels is added to each image
so that no information is lost. Using the FFTW3 library, each
image is Fourier transformed, multiplied with the transform of
the PSF, and transformed back. The image is then trimmed
by 1024 pixels to recover the original dimension. Because this
image is still at HST resolution (0.03 arcsec per pixel), it is
resampled to the LSST resolution of 0.2 arcsec per pixel by block
averaging.

6 https://www.lsst.org/scientists/simulations/phosim

FIGURE 2
Normalized PSF convolution kernel at the HST resolution, generated
by PhoSim and displayed in the log-scale.

In this process of generating PSF, the size of
seeing is set at 0.7 arcsec based on the observational
condition of LSST (LSST Science Collaboration, 2009). The
PSF ellipticity is e1 = − 0.0020 and e2 = − 0.0050 (measured by
SExtractor). In a later step, we simulate stars based on this
PSF kernel.

In addition, we add Poisson noise to each pixel. To acquire
an empirical estimate of the noise level, we measure the variance
of background noise from random samples of the sky area
in the Dark Energy Camera (DECam) r-band images of Abell
3128 with 1-year depth (McCleary et al., 2015). By calculating
the average value, we use this variance λ as the parameter in
our simulation images with 1-year depth and downscale the
parameter for images with 10-year depth accordingly. The size of
the sampled sky area is varied according to the local distribution
of detectable objects to make sure that no distinguishable galaxy
or star is included and is not significantly contaminated by
undetected objects.

For validation, the simulations have an average number density
of ∼39.8 arcmin−2 for detectable background sources in 10-year
coadded depth as measured by the LSST Science Pipelines, which
is consistent with our expected value for LSST. More measurement
parameters are described in Section 4.3.

3.4 Cluster simulations

On the basis of NFW-profile galaxy clusters, as
discussed in Section 3.2, we generate four groups of cluster
simulations with a size of 12.2× 12.2 arcmin2 (24576× 24576 pixels
at the HST resolution). The foreground cluster in each group has a
virial mass of 5,10,15,20× 1014M⊙, respectively. The concentration
of all clusters is set to 4.0.

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2024.1411810
https://www.lsst.org/scientists/simulations/phosim
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Liu et al. 10.3389/fspas.2024.1411810

FIGURE 3
One cluster simulation with M200 = 20× 1014M⊙ in 10-year depth. Left: the full 12.2′ × 12.2′ field of view of the cluster (z = 0.3) and background galaxies
(z = 1.5) at an LSST resolution (0.2″/pixel). Right: zoomed-in view of the central 2.3′ ×2.3′ area, which shows strong lensing arcs. The image is displayed
in the z-scale.

The clusters are placed at z = 0.3 with only dark matter halo
such that no extra bias is introduced due to foreground–background
blending. The background galaxies are sampled from our HST
ACS F606W postage stamp database. The background source plane
is set at z = 1.5 with 30,000 galaxies as raw input, whose r-band
magnitudes range from 22 to 28. The galaxy number count is
extrapolated from ACS observations by Benitez et al. (2004), where
799,663 galaxies per square degree are detected in the F606W filter
with a magnitude up to 27.29.

After lensing, the output is down-scaled fromHST resolution to
LSST resolution by interpolation. All images are convolved with the
LSST PSF kernel and have background noise added, as introduced in
Section 3.3. For each simulation, images for both 1-year and 10-year
survey depths are generated. An example is shown in Figure 3 with
cluster virial massM200 = 20× 1014M⊙.

To diminish the intrinsic shape bias of the background galaxy
sample and increase computational efficiency, we generate variant
simulations where each selected background galaxy is rotated by 90°
before lensing and assemble a separate simulated image with other
parameters unchanged.

3.5 Grid simulations

The cluster simulations described in Section 3.4 are capable of
simulating lensing distortion from weak to strong lensing regimes.
However, similar to realistic cluster fields, there are blendings
between background galaxies in these simulations. Hence, we also
generate simulated images in a grid layout in addition to the cluster
simulations to study the mapping between measured tangential
ellipticity and true reduced shear.

In the grid-layout simulations, every single galaxy is assigned a
known true reduced shear gtrue. To achieve this, each background

galaxy is generated via the same ray-tracing simulation pipeline,
as introduced in Section 3.4. Then, postage stamps of the lensed
galaxies are cut out and assembled into a grid layout. The
range of gtrue is designed from 0.02 to 0.60, which covers
from weak lensing to strong lensing regime. After lensing,
the distorted galaxies are rescaled to the LSST resolution and
arranged in a grid layout with the size of 1900× 1900 pixels.
Similarly, the images are convolved with the LSST PSF kernel.
For a higher signal-to-noise ratio in detection, we only add sky
noise at the level of the 10-year survey depth. An example is
illustrated in Figure 4.

As discussed in Section 3.4, a parallel set of grid simulations
is produced with each galaxy postage stamp rotated by 90° before
lensing to suppress intrinsic shape noise. Furthermore, to reduce
bias in the intrinsic orientation of the galaxy sample, postage stamps
are placed at different azimuthal angles (i.e., 0°, 60°, 120°, 180°,
240°, and 300°) with respect to the cluster center. A total of 410
grid simulations in the F606W band are generated, including 60
sets of simulations per azimuthal angle plus 50 sets for null tests.
Each simulated image contains 300 to 1,000 individual galaxies,
depending on their actual sizes and separations. To make it possible
to be processed by the analysis pipeline, normalized PSF stars are
added in the gaps between separate galaxies, such that they can
be detected and measured by the LSST Science Pipelines. We will
demonstrate in the next section how to measure the calibration
biases from the simulations.

4 Methods of analysis

To analyze the simulations,we process the images using the LSST
Science Pipelines with appropriate configurations. By processing the
images through LSP, we obtain shape measurement outputs, which
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FIGURE 4
Grid simulation generated with g = 0.4 in 10-year depth. Left: the full 1,900× 1900 pixel image at an LSST resolution (0.2″/pixel). Right: the
corresponding parallel image with each galaxy rotated by 90° before lensing. In both images, the individual galaxies are placed at an azimuthal angle of
60° relative to the cluster center. Because the given reduced shear is relatively strong, it is noticeable that the lensed galaxies share the same trend of
distortion. Images are displayed in the z-scale.

enable us to conduct a series of analyses. These analyses allow us to
estimate the reduced shear and derive themass of the galaxy clusters.

4.1 LSST Science Pipelines

The LSST Science Pipelines are developed to satisfy the rapid
cadence and scale of the LSST observing program for image and data
processing. A prototype of the LSST Science Pipelines is also used
as the fundamental codebase of the HSC Pipeline to reduce HSC
Subaru Strategic Program (SSP) data. Details about the software
architecture, algorithms, and processing tasks are described by
Jurić et al. (2015) and Bosch et al. (2017).

In the analysis of our simulations, we use an LSP installation
of the v17.0 release, together with the obs_file7 package as an
interface to ingest and process the simulation images. The obs_
file package was developed explicitly for the work presented
in this paper. Because we have perfect knowledge of the PSF
kernel and background noise, several tasks in the LSST Science
Pipelines can be simplified. Specifically, the CCD processing step
consists of instrumental signal removal (ISR), source detection,
PSF measurement, aperture correction, deblending, and source
measurement.

In the context of the LSST Science Pipelines, a sky area
with all pixels above the detection threshold is defined as a
footprint.One footprint can include one ormultiple peaks.Although
foreground–background blending situations are eliminated in
our cluster simulations, blending instances between background
galaxies still occur. In this case, a footprint with multiple peaks
is considered a “parent” source, while the deblended sources and
single-peak footprints are “children” sources.

7 https://github.com/SimonKrughoff/obs_file

The images are generated to simulate the coadded exposures in
1-year and 10-year depths, so they do not require joint calibration
through the pipeline. Therefore, the tasks invoked in this pipeline
are equivalent to single-frame processing subtasks, followed by
coaddition detection and measurement. In the simulation images,
each FITS file only includes the image extension but not the mask
or variance extensions. Hence, the primary parameter as an input
is the estimated background noise given in analog-to-digital unit
(ADU), which is an estimate of the background field required by
ISR such that some isolated noise pixels are not detected as cosmic
rays. According to the original average noise used to generate the
simulations and themeasured background variance in the simulated
images, we set this input sky noise level as isr.noise = 5.0
for 10-year depth and isr.noise = 15.0 for 1-year depth. Since
these noise values are used as initial estimates that the pipeline
can update afterward, there is a slight tolerance in them, but the
estimates still should be made reasonably. Theoretically, there is
no cosmic ray added when generating the simulated images. As
a result, the pipeline identifies 0 cosmic rays in CCD processing
as expected.

4.2 Astrometry and PSF modeling

The simulations are originally produced with no World
Coordinate System (WCS) coordinates because, with the obs_file
package, images are processed and measured at pixel level without
R.A./Dec. information. Accordingly, themeasured x/y positions and
second-order moments are in pixel coordinates.

However, in the later steps of mass estimation, the
pipeline requires WCS information in R.A. and Dec. Given
the relatively small dimensions of the simulated images, we
add flat WCS coordinates to the image headers with a pixel
scale of 0.2″.
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In addition, the LSST Science Pipelines require a PSF model for
shapemeasurement.We add 200 PSF stars randomly into the 12.2′ ×
12.2′ field of view of cluster simulations. The stars are generated, as
described in Section 3.3. For the PSF measurement, a maximum-
likelihood detection algorithm is adopted with a 50σ threshold and
1″ full width at half maximum (FWHM)Gaussian as the smoothing
filter (Bosch et al., 2017). Two iterations of the PSF star selector are
implemented with updatedmedian background values to determine
the sources used as PSF. Consequently, only enough bright stars are
selected for PSF modeling and fed into PSFEx based on analysis of
the measured sizes (Bertin, 2013). To confirm the accuracy of the
PSF measurement, we compare the positions and the size of the
detected PSF stars with their ground truth inputs.

4.3 Image processing

Once the data are ingested appropriately, each CCD is processed
independently, producing a calibrated image and its corresponding
source catalog. A long series of semi-iterative subtasks are included
in this task. To process the simulations, we invoke ISR, source
detection, aperture correction, background subtraction, deblending,
and source measurement. Due to a relatively simple instrument
signature, no brighter-fatter or crosstalk corrections are employed
in ISR. A 5σ threshold is applied for detected positive sources, which
are recorded as footprints.

The deblender algorithm is applied if a footprint contains more
than one peak. The flux of the footprint is apportioned such that
one “child” image is created for each peak as a distinct source.
Both “parent” and “children” sources are measured and stored:
each “parent” together with its “children” sources is assigned a
unique parent ID, while the number of “children” sources in each
deblended “parent” source is recorded as deblend_nChild. Some
important parameters and features of the LSST Science Pipelines
are listed in Table 1.

The primary data outputs of CCD processing are calexp
(calibrated exposures) and src (source catalogs). The calexp files are
the output FITS images withmulti-extensions after CCDprocessing.
They contain calibration and correction information, as well as
objects for PSF modeling. The src files are in the format of the FITS
table, where each source is stored as one entry. The columns in
the catalogs represent characterizations and measurements of the
objects. The catalogs also contain an array of flags, in which a flag
of calib_psfCandidate indicates whether the source is selected as a
PSF candidate. To obtain a clean catalog that has only distinct galaxy
sources, we apply a filter with criteria deblend_nChild = 0 and
calib_psfCandidate = False on the src catalogs.

4.4 Shape measurements

This version of the LSST Science Pipelines employs the
shapeHSM algorithm (HsmMoments) to measure the adaptive
Gaussian moments, where the Gaussian elliptical weight functions
are iteratively calculated and matched to the measured moments
(Bosch et al., 2017). The adaptive moments 𝕄 are calculated
with the least-squares deviation from the image pixels. Hence,

TABLE 1 Parameters in process CCD.

Parameter Value

charImage.doApCorr True

charImage.doMeasurePsf True

charImage.detection.thresholdType Standard deviation

charImage.detection.thresholdValue 5.0

charImage.detection.includeThresholdMultiplier 10.0

charImage.detection.thresholdPolarity Positive

charImage.deblend.edgeHandling Ramp

charImage.deblend.maxFootprintArea 1,000,000

charImage.deblend.strayFluxRule Trim

starSelector [‘objectSize’].widthStdAllowed 0.15

starSelector [‘objectSize’].kernelSize 21

starSelector [‘objectSize’].fluxMin 12,500.0

psfDeterminer.name pca

psfDeterminer [‘pca’].kernelSizeMax 45

psfDeterminer [‘pca’].kernelSizeMin 25

psfDeterminer [‘pca’].nIterForPsf 3

the ellipticity tensor (e+,e×) can be determined by the second
moments as shown in Eqs 26–28.

e+ =
Mxx −Myy

T
, (26)

e× =
2Mxy

T
, (27)

where T is the trace,

T = (Mxx +Myy) , (28)

and ellipticity e used in this paper is the same as
χ in Schneider (2006).

The HsmMoments output is implemented from the HSM
measurement in GalSim (Rowe et al., 2015). In this algorithm, the
PSF-corrected ellipticities are estimated in addition to adaptive
moments so that the PSF-corrected shears can be calculated
as output. Explicitly, ext_shapeHSM_HsmShapeRegauss_e1
and ext_shapeHSM_HsmShapeRegauss_e2 are the results
using the re-Gaussianization method, as described in Hirata and
Seljak (2003).

The HSMmeasurement has the following advantages:

• Robustness and validation: The HSM measurement has been
rigorously tested and validated across various datasets and
surveys (Miller et al., 2013; Mandelbaum et al., 2018). Its
performance and reliability are well-documented, making it a
dependable choice for shear measurement in our study.
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• Simplicity and efficiency: Compared to forward modeling
and machine learning methods, re-Gaussianization is
computationally less intensive and easier to implement,
allowing for efficient processing of large datasets.

• Baseline comparability: Using a well-established method like
HSM measurement provides a baseline for comparison with
other studies in the field, facilitating the validation and
interpretation of our results within the broader context of weak
lensing research.

We realize and consider other shape measurement methods.
Forward modeling techniques involve generating model images of
galaxies and fitting thesemodels to the observed data to extract shear
estimates. This method is advantageous as it allows for the direct
incorporation of complex PSF models and galaxy morphologies,
potentially leading tomore accurate shearmeasurements (Bernstein
and Jarvis, 2002a; Miller et al., 2007; Voigt and Bridle, 2010).
Machine learning approaches, such as convolutional neural
networks (CNNs), have been increasingly explored for shear
measurement. These methods can learn complex, non-linear
relationships between observed galaxy images and shear, potentially
outperforming traditional methods, especially in cases with
significant noise and PSF distortions (Ribli et al., 2019; Tewes et al.,
2019; Zhang et al., 2024). MetaCalibration is a recent method that
calibrates shear measurements by applying artificial shear to the
galaxy images and measuring the response. This technique corrects
for multiplicative bias without requiring simulations, making
it highly efficient and accurate for shear calibration (Huff and
Mandelbaum, 2017; Sheldon and Huff, 2017; Sheldon et al., 2023).

Although we chose HSM measurement for the reasons
mentioned above, we recognize the potential advantages of other
methodologies. In future work, we plan to explore these advanced
methods to assess their performance and potential benefits for
shear measurement in galaxy cluster studies. Incorporating these
techniques could provide additional insights and improve the
accuracy and robustness of our shear calibration.

4.5 Mass estimate

Based on the shear measurements, we also utilize the LSST
Science Pipelines src catalogs obtained from the cluster simulations
to reconstruct and estimate the cluster mass. This is accomplished
using the pzmassfitter code8 specifically developed to perform
the various stages of individual cluster mass reconstruction, starting
with the LSST Science Pipelines outputs. This code includes
magnitude correction from Galactic extinction, estimation of the
photometric redshifts (photo-z), and corresponding probability
density function P(z) of each galaxy, background galaxy selection,
and finally, mass map and cluster mass reconstruction. Given that
this work involves simulations where all galaxies are background
galaxies located at known redshifts, most of these steps are bypassed.
A detailed description of software will be given elsewhere, but
for the purpose of this work, it is only relevant to mention the
following:

8 https://github.com/nicolaschotard/Clusters

• For the cluster simulations, we plot the convergence map as
a quality and validation test. It could also be useful to study
the bias in the shear estimate due to the presence of detailed
substructures.

• The mass estimate relies on the pzmassfitter code developed
for the Weighing the Giants project (e.g., Applegate et al.,
2014). The algorithm is based on a Bayesian statistical model
using a likelihood function built from individual galaxy
shapes (output by the LSST Science Pipelines), a photometric
redshift P(z), and a shear scatter parameterized by a Voigt
profile (refer toApplegate et al., 2014 for a detailed description).
The posterior distributions of the model parameters (cluster
mass, concentration, and shear scatter parameters) are sampled
using a Markov Chain Monte Carlo (MCMC) algorithm.

• This method has been demonstrated to accurately recover
the mass of the cluster sample given good photo-z posterior
probability distributions, as shown by Applegate et al. (2014).
In our simulations, the redshift information is already
known. Therefore, the pzmassfitter code can provide excellent
performance on cluster mass estimation.

The pzmassfitter code requires WCS information
inherited from the original image to process the datasets. To simplify
this process, we add flat WCS coordinates in the headers with the
LSST pixel scale, as described in Section 4.2.

5 Grid simulation results

The grid-layout simulations yield shear calibration
measurements across weak to moderately strong lensing regimes,
free from systematics such as deblending. We utilize these
simulations to establish the relationship between the measured and
true reduced shear of field galaxies.

5.1 Shape measurements in grid
simulations

Throughout one grid simulation, all the galaxies share
the same reduced shear g, which is a known value. When
generated, the projected distance (i.e., grid_radius) and
azimuthal angle (i.e., grid_angle) between the background
galaxy and cluster center are already determined. Hence, it is
straightforward to calculate the tangential ellipticity etan from
the measured (e1,e2), similar to the case in cluster simulations.
Again, to eliminate some irregular measurements, we apply a
filter of|ext_shapeHSM_HsmShapeRegauss_e1| < 1.5 and
|ext_shapeHSM_HsmShapeRegauss_e2| < 1.5.

Analogously, PSF stars are required for CCD processing in
grid simulations. Given the size of each single simulation (1900×
1900 pixels), we add 50 PSF stars on the background and avoid
any blending with galaxies such that no extra measurement bias is
introduced by the deblender.

To diminish statistical uncertainties, multiple simulations with
the same reduced shear are measured and combined at the
catalog level. In addition, each galaxy is rotated by 90° to form a
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parallel simulation such that the intrinsic shape uncertainty can
be reduced (Massey et al., 2007).

For each set of the grid simulations generated with the same g,
we plot the measured reduced shear against the corresponding true
reduced shear and analyze the trend as shear increases. Furthermore,
we can compare the plot with the empirical equations derived from
the shape measurement challenges mentioned in Section 1.

5.2 Shear calibration

A key assumption in weak lensing is that the distortions
of the galaxies caused by the mass distributions are small. In
this limit, the information on the lensing is entirely encoded in
the ellipticity-shaped moments of the galaxies. This approach is
effective for measuring large-scale shear correlations, where the
typical distortions are less than 12%, as demonstrated by the
STEP (Massey et al., 2007) and the GREAT (Mandelbaum et al.,
2015) simulations. However, the assumption becomes invalid as the
dark matter surface density increases toward the center of galaxy
clusters, where the images are more distorted. In individual cluster
studies, this is managed by including higher-order shape moments,
such as octopole moments, or separately fitting the strong lensing
signal. However, recalculating higher-order moments for billions of
galaxies is computationally infeasible for surveys like LSST. Instead,
we investigate the calibration of the elliptical shear signal beyond the
low-shear regime to derive a nonlinear normalization of the shear
signal as an alternative.

To understand how the measured shear varies from a weak
to a strong lensing regime and evaluate the performance of shear
measurement in the LSST Science Pipelines, we measure and
calculate tangential shear signals in the grid simulations. Given
the absence of blending phenomena in these simulation images,
we can eliminate biases due to the deblender. As mentioned in
Section 4.4, 410 simulations (with 300–1000 galaxies in each) are
included to constrain the error bars and reduce the “shape noise.”
Each simulation has a known true tangential reduced shear when
generated as well as a measured tangential reduced shear that is
derived from the shear measurements. Therefore, the comparison
between the measured tangential reduced shear gmeas

tan and the true
tangential reduced shear gtruetan is shown in Figure 5.

The true tangential reduced shear values are set as 30 discrete
values between 0.02 and 0.60, and the measured reduced shear is
expected to accordwith gtruetan in theweak lensing regime. As the shear
increases, the shear measurement is impacted by the strong lensing
signals, and there is evident bias in gmeas

tan . Shear calibration biases
are measured as two components: a multiplicative calibration bias
mi and an additive residual shear offset ci, such that the function
relating γmeas to γtrue is expressed as Eq. 29

⟨γmeas⟩ = (1+mi)γtrue + ci. (29)

In Shear Testing Program 2 (STEP2), the HSM algorithm is
implemented as an approach to shearmeasurement. It has the results
of multiplicative and additive biases as mi = − 0.019± 0.01 and ci =
0.002± 0.0 (Massey et al., 2007). Therefore, we can plot gmeas

tan as a
linear function of gtruetan (represented by the dashed line in Figure 5,
with a linear extrapolation to cover larger shear) denoted by Eq. 30:

gmeas
tan,HSM = (1− 0.019± 0.010)g

true
tan + 0.002, (30)

as a reference for our shearmeasurements. As indicated in the figure,
the true value of g is within the error bar of our normalization up to
gtruetan ≲ 0.05, which means that the shear measurement in the LSST
Science Pipelines shows high fidelity on sources with reduced shear
smaller than 0.05.

For small shears, we recover a linear relationship between the
input distortion and measured shear, which is expected because
the non-linear effects are minimized at low shears. Because the
reduced shear values included in STEP2 are typically smaller
than 0.05 and the results of multiplicative and additive biases
are derived from these data, it can explain the phenomenon
that our normalization behaves differently with the STEP2 HSM
implementation in the range where gtan ≳ 0.05. However, even at
gtruetan = 0.1, there is a noticeable deviation from linearity. However,
there exists a monotonic relationship between the distortion and the
measured shear that can be characterized up to relatively high shear
values. If the tangential reduced shear increases to 0.2, it is possible
to have a measurement error up to ∼25% and even more significant
for a higher shear.

We fit the values of gmeas
tan up to gtruetan = 0.4 with a second-order

polynomial given by Eq. 31

gmeas
tan = −1.046(g

true
tan )

2 + 0.9474gtruetan + 0.0008445, (31)

and a third-order polynomial

gmeas
tan = 0.007023(g

true
tan )

3 − 1.089(gtruetan )
2 + 0.9548gtruetan + 0.0005537.

(32)

To evaluate the goodness of fitting, we calculate the chi-square
per degree of freedom χ2 in both cases.The quadratic fitting has χ2 =
1.365, and the cubic fitting has χ2 = 0.913.

The normalization of the shear measurements allows us
to obtain calibrated mass estimates for the innermost region
of a cluster. These results demonstrate that the LSST Science
Pipelines can be used to probe the lensing signal in clusters
into r ∼ 200kpc from the center, increasing the sample of
clusters for which individual lensing signals can be measured
dramatically.

6 Cluster simulation results

While the grid simulations are utilized to determine the
normalization of shear measurements, we also generate more
realistic cluster simulations. These cluster simulations demonstrate
how applying this normalization enhances shape measurements in
the complex environment of galaxy clusters, thereby improving the
accuracy of mass estimates.

6.1 Shape measurements in cluster
simulations

The strongest cosmological constraint on dark energy that
will emerge from LSST’s study of galaxy clusters comes from
the evolution of the cluster mass function. To investigate the
mass dependence of the mass bias in the reconstruction, we use
our cluster simulations to measure the mass and mass profile
of the simulated galaxy clusters.
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FIGURE 5
Left: measured tangential reduced shear plot against the true tangential reduced shear with data points from 410 grid simulations with no deblending.
The value of gtrue

tan ranges from 0.02 to 0.60 as input of the simulations. The dashed line shows the empirical results of multiplicative and additive biases
using the HSM algorithm in STEP2. The solid curve is the quadratic fitting up to gtrue

tan = 0.40. Right: close-up view of the fitting within gtrue
tan < 0.10.

Asdiscussed inSection 3.4 andSection 4.1, the cluster simulations
can be considered deeply coadded r-band images of LSST. To retain
only thebackgroundgalaxieswith reasonablemeasurements,weapply
a filter with criteria |ext_shapeHSM_HsmShapeRegauss_

e1| < 1.5 and|ext_shapeHSM_HsmShapeRegauss_e2| <
1.5. In a cluster simulation, the center of the foreground cluster is
located at the center of the output image (xc,yc). As introduced in
Section 2.1, from Eq. 8, we can calculate the tangential ellipticity for
each galaxy as Eqs 33, 34

etan = −e1 cos (2ϕ) − e2 sin (2ϕ) (33)

= −e1 cos(2tan−1(
y− yc
x− xc
))− e2 sin(2tan−1(

y− yc
x− xc
)),

(34)

where (x,y) is the HSM centroid position of each galaxy in pixel
coordinates (i.e., ext_shapeHSM_HsmSourceMoments_x

and ext_shapeHSM_HsmSourceMoments_y).The notation
of ellipticity tensor (e1,e2) is equivalent to (χ+,χ×) or (e+,e×) in
coordinates with object pairs.

With the calculated tangential ellipticities, the shear profile is
plotted for each cluster simulation. Furthermore, we consider a fixed
aperture in each simulation image with different cluster mass values
and check the proportionality of mean tangential ellipticity ⟨etan⟩.

The final image of each cluster simulation has the size of 3,542×
3542 pixels at the LSST resolution, which corresponds to 3.25×
3.25 Mpc2 on the lens plane. The cluster mass values are M200 =
5,10,15,and20× 1014M⊙, respectively. We calculate the azimuthally
averaged tangential shear values for background galaxies in eight
annular bins around the center of the cluster and plot against the
radii of annulus up to 1.0 Mpc, as shown in Figure 6. For a randomly
oriented population of background galaxies, an estimate of reduced
shear can be related to the average ellipticity ⟨e⟩ denoted by Eq. 35:

⟨g⟩ ≃
⟨χ⟩
2
=
⟨e⟩
2
, (35)

and further details on shear and ellipticity can be found in Schneider
(2006) and Bernstein and Jarvis (2002b). Therefore, in the analysis

FIGURE 6
Azimuthally averaged tangential shear in different annular bins (eight
bins ranging from 0 to 1.0 Mpc). Shear is descending following the
corresponding NFW profile. At a given radius of the annulus, a higher
cluster virial mass produces a larger tangential shear.

of the cluster simulations, we convert the measured tangential
ellipticities to tangential shears by ⟨gtan⟩ ≃ ⟨etan⟩/2, if not specified.
We expect to observe a distribution of gtan in a similar shape as the
shear plot from the corresponding NFWprofile.The figure confirms
a general descending trend as the radius increases and a larger ⟨gtan⟩
value for a higher virial mass.

If we take the average tangential ellipticity within a fixed
aperture, the value of ⟨etan⟩ is expected to be approximately
proportional to the cluster virial mass at the weak lensing
limit. Hence, we plot ⟨etan⟩ measured within apertures of
0.25 Mpc, 0.5 Mpc, and 1.0 Mpc for different cluster mass values,
as shown in Figure 7. The 1.0-Mpc aperture plot presents a
linear relation between ⟨etan⟩ and all four mass values, while for
0.25 and 0.5 Mpc apertures the linearity breaks for larger M200
(15 and 20× 1014M⊙). The figure is consistent with the expectation
that the shape measurement is biased by strong lensing signals at
a small aperture that covers the central sky area of the foreground
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FIGURE 7
Average tangential ellipticities measured within given apertures (0.25,
0.5, and 1.0 Mpc) for different cluster masses. The linearity between
⟨etan⟩ and M200 is true for the largest aperture but unavailable in
smaller apertures with larger cluster mass. The solid lines are linearly
fitting for data points corresponding to each aperture. The shaded
bands represent the uncertainties.

galaxy cluster. In a realistic host dark matter halo, a larger mass can
cause more distorted arcs due to strong lensing around the cluster
center, which is also a factor affecting shear measurements. In the
shear calibration using grid simulations, this factor contributes
to the non-linearity and needs to be taken into account when
calibrating the measured tangential reduced shear.

The shear at the innermost radius shows the characteristic
saturation of the ellipticity demonstrated in Figure 5, whereas at
larger radii, the average shear scales linearly withmass.This suggests
a strategy in which cluster masses are calibrated using the signal
outside of 250 kpc, corresponding to reduced shear gtan = 0.3, which
is very similar to the conclusion from the grid simulations.

From the cluster simulations, the shear measurement in the
LSST Science Pipelines provides a promising trend in the weak
lensing regime, taking deblending and PSF modeling into account.
On the other hand, if the sky area being used for measurement
contains strong lensing signals, the measured shear can be biased
because the strong lensed galaxies can be measured as a more
circular source with a much lower tangential ellipticity than the
true values. Other possible uncertainty sources in processing and
analyzing procedures are discussed in Section 7.

6.2 Mass estimates

Using the pzmassfitter code, we reconstruct the convergence map
and estimate the mass for the cluster, as introduced in Section 4.5.
Figure 8 displays the reconstructed convergence maps of the cluster
simulation shown in Figure 3. No a priori fiducial position of the
foreground cluster is required. In the E-mode signal-to-noise (S/N)
map shown in the left panel, the primary peak saturates at (x,y) =
(1786,1786). Given that the full field of view has 3,542× 3,542 pixels,
the primary peak is in good agreement with the actual cluster center,
which is located at (x,y) = (1771,1771). Because the weak lensing
distortion is always in the tangential direction with respect to the
galaxy cluster center, theoretically, it creates no net B-mode signal in
the environment setup of our simulations.TheB-modemap, shown in
the right panel, may therefore be used as a null test to track potential

systematic errors. Some minor clumps present in the northeast and
southwest corners are likely due to measurement fluctuations and
random noise. In practice, these signals are too far from the cluster
center to affect the measurements.

In the design of the cluster simulations, foreground galaxy
clusters are placed at z = 0.3, and all the background galaxies share
the same redshift at z = 1.5. To estimate the cluster mass, we first
generate a Dirac-like P(z) for each galaxy in the catalog. Coupled
with the individual shapes measured by the LSST Science Pipelines
and the known location and redshift of the cluster, the output
measurement data are processed by pzmassfitter. To reduce
the shape noise, the galaxy postage stamps are rotated by 90°
individually at the beginning of the simulation to generate a parallel
set of images. The measurements of the “original images” and “90-
degree images” are combined at the level of src catalog as a separate
input sample. For each group of an inputM200 value, we generate 10
cluster simulations together with their 90-degree pairs. We take the
average of the mass estimates from the simulations in each group.

To illustrate the improvements from our shear calibration
results, as shown in Section 5, we apply the third-order
calibration (Eq. 32) to the shape measurement results and compare
mass estimates with and without shear calibration.

Results are summarized in Table 2 and shown in Figure 9, for 5×
1014 M⊙ (first row), 10× 1014 M⊙ (second row), 15× 1014 M⊙ (third
row), and 20× 1014 M⊙ (last row) cluster simulations. Histograms
correspond to the dispersion of the posterior distribution of the
reconstructed cluster massM200. The ground truth of cluster mass is
represented by the gray vertical line, while the red vertical line gives
the average of the maximum-likelihood mass estimates over the 10
simulations. The left column shows mass estimates in the absence
of shear calibration, while the right column indicates results with
calibrated shape measurements.

Since the fitted calibration relation covers up to g = 0.4, which
approximately corresponds to a radius of 200 to 1000 kpc in
our simulations, a radial cutoff of 250 kpc is applied to all mass
estimations. Discussions regarding the radial cut can be found in
Section 7 and Applegate et al. (2014).

As shown in Table 2 and the right four panels of Figure 9, the
true mass values after calibration in all cases are close to the average
maximum-likelihood mass estimates. The probability distributions
also show good concentration for the true mass values. Given the
fact that each cluster simulation has a finite number of background
galaxies, it ispossible toobservesomeoutliers inthemassdistributions.
Hence, there may be some fluctuations in the peaks of the probability
distributions, which is acceptable and reasonable.

The results in the left four panels of Figure 9 have significant
underestimates in cluster mass. As a reference, the average
maximum-likelihoodmass estimate from 10 simulation realizations
is compared with the corresponding true mass value in each panel.
We notice that the difference between these two values increases
with the true mass. The explanation is that, given a radial cutoff
of 250 kpc, a stronger gravitational lensing signal is included as the
cluster mass goes up to 20× 1014 M⊙. Therefore, the measured shear
is underestimated in the simulations with a more massive cluster,
as shown in Figure 5. These probability distributions show good
agreement with our results from Section 5, and the underestimates
are remarkably improved by shear calibration.
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FIGURE 8
Reconstructed gravitational lensing convergence maps for one cluster simulation with M200 = 20× 1014M⊙ in 10-year depth. Left: E-mode S/N map of
the full 12.2′ × 12.2′ field of view, with a zoomed-in 2.3′ ×2.3′ area. The map peaks at the center of the image, which is consistent with the actual
cluster center. The red dashed and dotted circles represent the inner and outer radii of the effective region for choosing galaxies, respectively. Right:
B-mode S/N map of the same sky area.

TABLE 2 Comparison between true virial masses of cluster simulations and average mass estimates with maximum-likelihood. The third column is the
mass estimate after applying calibration on the shape measurement, while the fourth column is before calibration.

Simulation group Mtrue
200/10

14M⊙ ⟨MML,Calibrated
200 ⟩/1014M⊙ ⟨MML,Uncalibrated

200 ⟩/1014M⊙

Group 1 5.0 5.192± 0.123 2.776± 0.336

Group 2 10.0 10.507± 0.498 4.954± 0.504

Group 3 15.0 14.689± 0.390 7.678± 0.564

Group 4 20.0 19.636± 0.637 9.496± 0.650

Based on these comparisons of results before and after shear
calibration, we claim that the third-order calibration proves
the expected improvements in the mass estimate results. More
discussion regarding the uncertainties is included in Section 7.

7 Discussions on systematics

During the process of generating simulations and measuring
shapes, we aim to recover factors close to realistic situations (e.g.,
galaxy postage stamps, lensing algorithm, PSF, and sky noise).
However, there are different types of systematics introduced that we
expect to understand:

• Sample size: In jedisim, for now, we have 738 galaxy postage
stamps as the input database.We select these galaxies fromHST
UDF and CANDELS by visual inspection to ensure a variety of
shapes. In the simulation procedure, the galaxy postage stamps
are assigned different parameters. In addition, the shape noise
is suppressed by incorporating the 90°-rotated pairs. However,
it is still necessary and helpful to add more galaxy postage
stamps to the database.

• PSF: The simulated images are convolved with a uniform PSF
kernel which is produced by PhoSim and characterized with
parameters of LSST. In this way, the measurement biases due
to PSF anisotropy and varying seeing are artificially removed.
Ideally, the LSST Science Pipelines can conduct PSF correction
accurately so that the shape measurements are effectively

similar to our simulations. It is practical to make the PSF more
realistic by feeding the simulated images into PhoSim directly
instead of convolution.

• Deblending: The procedure of deblending is also simplified,
given the fact that an NFW halo of pure dark matter is
employed as the foreground cluster. On one hand, the absence
of blending in grid simulations eliminates the systematics
caused by the deblender in the LSST Science Pipelines. On
the other hand, although the shape measurement in cluster
simulations shows the expected trend, it is not realistic to exclude
foreground–background blendings. We are making efforts to
interpret the bias due to blending on lensed background sources.

• Sample characteristics: The simulations place the lens and
source planes at fixed redshifts of z = 0.3 and 1.5, respectively.
In practice, jedisim is capable of assigning and producing
planes at different redshifts, which enables us to evaluate the
same pipeline with amore realistic galaxy redshift distribution.
In addition, the images are in a single band for now such
that the LSST Science Pipelines is not able to determine the
photometric redshift for each source. An improvement can
be implemented in the near future by generating multi-band
simulations.

In our simulations, the magnitude obeys a single power-
law function for simplification, which is not the most accurate
description of the magnitude according to the shear calibration
results from the Kilo-Degree Survey (KiDS) (Conti et al., 2016).
Although this factor does not have a dramatic impact on the shape
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FIGURE 9
Likelihood distributions of mass estimates for cluster simulations, whose true virial mass values are 5,10,15,and20× 1014M⊙, respectively. These true
mass values are indicated by the gray vertical solid lines. Each histogram (with a y-axis unit of counts) shows the dispersion of the maximum-likelihood
over samples of 90° pair combined at the catalog level. The red vertical solid lines are the average of maximum-likelihood mass estimates of all samples
within each panel. The left column shows results without shear calibration. The right column indicates the mass estimates after shear calibration.

measurement, it is reasonable to adopt more accurate functions to
describe the magnitude distribution in the future.

The accuracy of the concentration parameter in the NFWprofile
is crucial for precise modeling of the mass distribution in galaxy
clusters. The concentration parameter in this work is simplified
when constructing the simulations. Systematic errors, such as
PSF distortions, noise, and intrinsic shape noise, can propagate
into shear calibration and subsequently affect the accuracy of the
concentration parameter. We acknowledge that inaccuracies in
shape measurements can introduce biases in the estimation of the
concentration parameter. To mitigate these effects, more advanced
shape measurement algorithms and rigorous shear calibration
should be studied and employed in the future.

• Single-lens-plane assumption: In this work, we adopt the
single-lens-plane assumption for our lensing simulations.

This simplification allows us to focus on the lensing effects of
the primary galaxy cluster while maintaining computational
efficiency. However, it is important to acknowledge that
this assumption does not account for the impact of
additional structures along the line of sight, where these
line-of-sight structures can boost the lensing cross-section
(Li et al., 2019, 2021). Consequently, our results may
underestimate the true lensing effects, particularly in scenarios
where significantmass is distributed along the line of sight.This
limitation should be considered when interpreting the results
presented in this paper.

In future work, we plan to address the limitations of the
single-lens-plane assumption by incorporating the effects of line-
of-sight structures into our lensing simulations. This will involve
the development of multi-plane lensing models that account for
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additional mass distributions along the line of sight. By doing so, we
aim to achieve a more accurate representation of the lensing cross-
section and improve the precision of our shear calibration and shape
measurement results. These efforts will enhance our understanding
of the mass distribution in galaxy clusters and the contribution of
line-of-sight structures to the overall lensing signal.

• Mass estimate: Parameters in the pzmassfitter code are set to
default, where an inner radial cut is applied on the catalogs to
exclude strong lensing signals around the cluster center. We set
the radial cutoff to 250 kpc, and more discussions can be found
in the Weighing the Giants project (Applegate et al., 2014). It is
necessary to adjust and optimize these configurations as the
next step. Meanwhile, the convergence map in Figure 8 shows
fluctuations in the simulated images, which are unavoidable.
As the virial mass drops to 5× 1014M⊙, the signal-to-noise
can be lower and rendered by the noise level. Given the fact
that each sub-panel in Figure 9 is based on one pair of cluster
simulations, it is logical to observe a skewness to low mass for
the smallest cluster and high accuracy for the most massive
cluster. A promising solution is to stack measurement catalogs
for multiple simulations with the same cluster mass so that
a larger sample can be analyzed by the MCMC algorithm to
obtain more concentrated mass estimate distributions.

8 Conclusion and future work

We introduce the image simulation pipeline jedisim and
generate simulation images of gravitational lensing at the scale
of galaxy clusters. jedisim uses galaxy postage stamps extracted
and cleaned from HDF/UDF and GOODS in CANDELS. The
postage stamps are scaled to the assigned magnitude and half-
light radius of each one, matching observations in HDF/GOODS,
and rotated randomly before being traced through a mass
distribution to construct full distortion, including both weak and
strong lensing instances. Then, the lensed galaxies are convolved
with a PSF kernel characterized by LSST parameters generated
by PhoSim.

Cluster simulations with a size of 12.2′ × 12.2′ (3,542× 3,542
pixels at the LSST resolution) are created and rendered with
noise in both 1-year and 10-year survey depths. The virial mass
of each cluster is 5,10,15,and20× 1014M⊙, respectively, and the
concentration is 4.0. In addition, 410 grid-layout simulations are
generated, each of which has a given reduced shear g throughout all
galaxies in it. The value of g ranges from 0.02 to 0.60.

Both the cluster and grid simulations are processed and
measured using LSP software stack with the obs_file package. After
processing the images, the adaptive moments and ellipticities are
measured for background sources using the HSM algorithm. Given
the fiducial position of the cluster center, the tangential reduced
shear can be calculated for background galaxies.

In the grid simulations, biases due to PSF correction and
deblender of the LSST Science Pipelines are artificially constrained
so that shape measurements are relatively purified. We compare and
plot themeasured reduced shear gmeas

tan against the true reduced shear
gtruetan in Figure 5. Therefore, we derive the shear calibration from the
second-order and third-order polynomial fitting. The multiplicative

and additive shear calibration biases of the HSM algorithm in
STEP2 are adopted to construct an empirical formula as a reference.
The results are consistent with the empirical formula up to gtruetan ≲
0.06, followed by an increasing discrepancy as shear ascends. This
phenomenon can be explained by the biased shape measurement
for strong lensed galaxies. Meanwhile, the LSST Science Pipelines
provide expected performance on shape measurement for weak
lensing signals.

In the cluster simulations, by choosing differentM200 values and
varying measurement apertures, the measured reduced shear shows
proportionality with M200 for an aperture dominated by the weak
lensing signal. The linearity breaks as the aperture shrinks to the
strong lensing regime as expected.

We plot convergence maps for the cluster simulations. The E-
mode convergence map shows a reasonable mass distribution and
locates the primary peak in agreement with the actual cluster center.
The B-modemap plotsmore randomly distributed voids in the same
sky area, as expected.

The output source catalogs from the LSST Science Pipelines
are processed by the pzmassfitter code to estimate the maximum-
likelihood cluster mass. The distributions of mass estimates from
the MCMC realizations of the shear field for our simulated galaxy
clusters demonstrate how the LSST Science Pipelines measurements
can reliably recover cluster masses. The comparison between mass
estimates before and after applying the shear calibration results from
the grid simulations proves the improvement. It demonstrates that
the LSST Science Pipelines can be used to probe the lensing signal in
a cluster at 250 kpc from the center, increasing the sample of clusters
for which individual lensing signals can be measured dramatically.

In general, to produce more realistic cluster simulations, we
plan to build a larger repository of galaxy postage stamps, which
is in accordance with the morphology and magnitude distribution
of observations. Meanwhile, multi-band images are necessary for
evaluating photometric redshift calibration and forced photometry
components in the LSST Science Pipelines. In the near future, we
plan to double the current sample size of galaxy postage stamps
in the F450W, F606W, and F814W bands. The source galaxies are
supposed to be placed at different redshifts, and amore sophisticated
PSF model can be constructed by feeding the simulated images
at HST resolution directly into PhoSim instead of the current
convolution algorithm.

The cluster galaxies are also to be added so that the
corresponding effects due to deblending can be studied. As
described by Fu et al. (2019), we adopt a semi-analytic halo
model to distribute foreground galaxies. As the next step,
we plan to construct a more realistic lensing plane from the
smoothed particle hydrodynamics simulations (Aardwolf et al.,
2019) and simulate the cluster galaxies according to the CosmoDC2
extra-galactic catalogs (Korytov et al., 2019).

We hope that this work will be helpful in the shear calibration
of cluster gravitational lensing and provide feedback on relevant
component developments in the LSST Science Pipelines. The
upcoming LSST will measure strong and weak lensing signals in
the largest and most uniform sample to date of thousands of
galaxy clusters. Given the requirement of high accuracy on shear
measurements, it is important to determine a feasible scope and
calibrate the shear measurement. Furthermore, these measurements
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are combined to constrain mass profiles and mass distribution in
galaxy clusters and also provide a powerful probe of cosmology.
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