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The intensity of the equatorial electrojet (EEJ) derived from the magnetic
field measurements by the China Seismo-Electromagnetic Satellite (CSES) is
analyzed for the low solar activity period of July 2018–April 2022. The CSES
spacecraft flies in a Sun-synchronous orbit, providing the first continuous
satellite observations of the afternoon EEJ at a fixed local time at 2 p.m.
The EEJ intensities from CSES and concurrent observations from the Swarm
satellite mission show a good correlation, supporting the reliability of the
CSES EEJ data. Spectral analysis of the CSES data reveals the presence
of three distinct oscillatory components in the day-to-day variation of the
afternoon EEJ: (1) an eastward-propagating 2–3-day oscillation with zonal
wavenumber 1, (2) a westward-propagating 5–6-day oscillation with zonal
wavenumber 1, and (3) a zonally-symmetric 14–15-day oscillation. These
oscillations result from upward-propagating waves in the atmosphere. That is,
the first two can be attributed to the ultra-fast Kelvin wave and quasi-6-day
wave, respectively, while the latter is likely due to the atmospheric lunar tide. The
CSES EEJ data are also comparedwith lower thermosphericwindmeasurements
by the Michelson Interferometer for Global High-Resolution Thermospheric
Imaging (MIGHTI) onboard the Ionospheric Connection Explorer (ICON). The
results suggest that the EEJ intensity correlates negatively with the equatorial
eastward wind at 100–115 km, consistent with earlier studies. Contributions
of different tidal wind components to longitudinal structures of the EEJ
are evaluated. A four-peak structure during July–September can be largely
explained by the eastward-propagating diurnal tide with zonal wavenumber
3 (DE3), while a two- or three-peak structure during December–January is
mainly due to the combined effect of DE3 and the eastward-propagating
diurnal tide with zonal wavenumber 2 (DE2). Furthermore, the CSES EEJ data
are compared with the electron density measurements from the Langmuir
probe onboard CSES. There is a positive correlation between the EEJ
intensity and in-situ electron densities at ∼510 km from the same orbit,
reflecting the plasma fountain effect. The correlation tends to be higher in
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the summer hemisphere, which may be due to the meridional wind in the
thermosphere.

KEYWORDS

China seismo-electromagnetic satellite (CSES), equatorial electrojet (EEJ), ionospheric
currents, ionospheric dynamo, neutral winds, atmosphere-ionosphere coupling,
vertical coupling, atmospheric tides and planetary waves

1 Introduction

When geomagnetic storms are absent, daily variations of the
geomagnetic field on the ground at middle and low latitudes are
primarily due to electric currents in the E-region ionosphere (e.g.,
Campbell, 2003; Yamazaki and Maute, 2017). These ionospheric
currents are generated through the process called ionospheric wind
dynamo (e.g., Richmond, 1995; Maute, 2021), where the kinetic
energy possessed by the neutral atmosphere is partially converted
into electromagnetic energy through collisional interactions
between neutral and plasma particles. The E-region dynamo
currents are mostly confined to the dayside ionosphere, as the
electrical conductivity of the E-region ionosphere is much lower
on the night side due to low plasma density (e.g., Richmond, 2011).
On the dayside, there are usually two large-scale vortices of the
dynamo current: one counter-clockwise vortex in the Northern
Hemisphere and one clockwise vortex in the Southern Hemisphere,
which can be deduced from magnetic field measurements at the
ground (e.g., Matsushita and Maeda, 1965; Campbell et al., 1993;
Takeda, 2002a; Owolabi et al., 2022; Chen et al., 2024) and in space
(e.g., Pedatella et al., 2011; Chulliat et al., 2016; Alken et al., 2017;
Yamazaki, 2022). The intensity of the zonal current is enhanced
along the magnetic equator, where the geomagnetic field is perfectly
horizontal (e.g., Hirono, 1950; Chapman, 1951). The unique
configuration of the geomagnetic field at the magnetic equator
allows the establishment of a vertical electric field, which drives
a Hall current in the zonal direction (e.g., Sugiura and Poros,
1969; Richmond, 1973; Raghavarao and Anandarao, 1987; Du and
Stening, 1999). This additional Hall current is commonly referred
to as the equatorial electrojet (EEJ) (e.g., Forbes, 1981; Rastogi,
1989; Lühr et al., 2021a). The EEJ is confined near the magnetic
equator, within approximately ±3° latitude from the magnetic
equator, where the vertical electric field can be maintained (e.g.,
Doumouya et al., 1998; Rigoti et al., 1999; Rabiu et al., 2013). The
EEJ is usually directed eastward but occasionally turns westward,
which is sometimes referred to as counter electrojet (e.g., Mayaud,
1977; Zhou et al., 2018; Soares et al., 2019; Zhang et al., 2024).

The intensity of the EEJ is determined by various factors.
For instance, the EEJ intensity varies with local time, season,
longitude and solar activity (e.g., Doumouya et al., 2003; Alken and
Maus, 2007; Abdul Hamid et al., 2015). The local time and solar
activity dependence can be ascribed to the effect of solar extreme
ultraviolet radiation on the electrical conductivity of the E-region
ionosphere (e.g., Takeda, 2002b). The seasonal dependence of the
EEJ is primarily controlled by neutral wind forcing (Yamazaki et al.,
2014b). The change in the solar zenith angle (and hence solar
radiation ionization) plays only a secondary role for the seasonal
variation of the EEJ (Chapman and Rao, 1965). The longitude
dependence of the EEJ is partly due to the background geomagnetic

field (e.g., Rastogi, 1962; Doumbia and Grodji, 2016; Pandey et al.,
2021), which affects the E-region conductivity (Takeda and Araki,
1985), and partly due to neutral wind forcing by atmospheric tides
(e.g., England et al., 2006; Lühr et al., 2008; Soares et al., 2018).
Moreover, the EEJ intensity depends on the phase of the Moon
(e.g., Rastogi and Trivedi, 1970; Lühr et al., 2012; Yamazaki et al.,
2017), which can be understood as the effect of neutral wind
forcing associated with the atmospheric lunar tide (e.g., Vial and
Forbes, 1994; Pedatella et al., 2012b; Zhang and Forbes, 2013).
The EEJ intensity is also subject to the influence of geomagnetic
activity (e.g., Rastogi, 1977; Yamazaki and Kosch, 2015; Xiong et al.,
2016a). This is generally attributed to the prompt penetration of
the polar electric field into equatorial latitudes (e.g., Nishida, 1968;
Kikuchi et al., 2008; Manoj et al., 2008; Yizengaw et al., 2016) and
to the dynamo electric field generated by storm-time winds (e.g.,
Blanc and Richmond, 1980; Le Huy and Amory-Mazaudier, 2005;
Pandey et al., 2018). Even in the apparent absence of variability in
solar and geomagnetic activity, the EEJ intensity can exhibit large
day-to-day variability (e.g., Marriott et al., 1979; Reddy, 1989), as
neutral winds are constantly changing.

The E-region vertical electric field that drives the EEJ is closely
associated with the vertical current and zonal electric field (e.g.,
Hysell et al., 2002; Alken and Maus, 2010). The zonal electric
field at low latitudes is mapped along equipotential magnetic field
lines to the equatorial F-region ( > 150 km), where both ions and
electrons tend to move with the E×B drift (e.g., Heelis, 2004).
Observations have found a good correlation between the EEJ
intensity with the equatorial E×B vertical plasma drift velocity (e.g.,
Anderson et al., 2002; Alken et al., 2013a; Kumar et al., 2016).
Since the E×B drift is a primary transport mechanism for F-
region plasmas and thus is an important factor determining the F-
region plasma density, there is also a correlation between the EEJ
intensity and F-region plasma density (e.g., Rush and Richmond,
1973; Rastogi and Klobuchar, 1990; Chen et al., 2008; Stolle et al.,
2008; Venkatesh et al., 2015).Therefore, understanding the behavior
of the EEJ is important not only for the E-region electrodynamics
but also for the F-region dynamics and its broader impact on space
weather phenomena (e.g., Stening, 2003).

The equatorial zonal wind at altitudes of the E-region ionosphere
(90–150 km) plays an important role for determining the EEJ
intensity (e.g., Yamazaki et al., 2014a; 2021; Harding et al.,
2022). Neutral winds at these altitudes are predominantly due to
atmospheric solar tides (e.g., McLandress et al., 1996; Wu et al.,
2008a; b; Yamazaki et al., 2023). They consist of two parts: locally-
generated tides and upward-propagating tides from below. The two
parts exert a comparable influence on the EEJ (Yamazaki et al.,
2014b). Locally-generated tides are produced through in situ
absorption of solar radiation by thermospheric constituents such
as O, O2 and N2. They are primarily vertically trapped mode
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of the diurnal tide (e.g., Forbes, 1982; Hagan et al., 2001). On
the other hand, upward-propagating tides are generated mainly
in the troposphere and stratosphere (e.g., Hagan and Forbes,
2002; 2003). They propagate vertically upward and reach the
lower thermosphere before being dissipated (e.g., Oberheide et al.,
2011; Truskowski et al., 2014). Upward-propagating tides at E-
region altitudes are highly variable, as their production and vertical
propagation are dependent on the meteorological state of the lower
and middle atmosphere (e.g., Miyoshi and Fujiwara, 2003; Liu,
2014; Dhadly et al., 2018; Zhou X. et al., 2022; Oberheide et al.,
2024). Thus, upward-propagating tides, along with other upward-
propagating waves, can be an important source of the day-to-day
and longitudinal variability of the EEJ (e.g., Kawano-Sasaki and
Miyahara, 2008; Yamazaki et al., 2014a).

A mathematical expression for a tidal wave in an atmospheric
variable such as temperature, density and wind velocities is
given as follows:

Ans cos[2π(n
t
24
− s λ

360
)− Pns] , (1)

where Ans and Pns are the amplitude and phase of the tide, t is
the universal time in hours, and λ is the longitude in degrees.
n is a positive integer, with n = 1, 2, 3, 4 corresponding to the
24-h (diurnal), 12-h (semidiurnal), 8-h (terdiurnal) and 6-h tides,
respectively. |s| is the zonal wavenumber (i.e., the number of wave
cycles that can fit along the latitude circle at a given latitude). s >
0 and s < 0 correspond to eastward and westward propagating
waves, respectively, and s = 0 represents the oscillation that is
independent of longitude, which is often referred to as zonally-
symmetric oscillation (e.g., Pancheva et al., 2007; Forbes et al., 2018).
We use the conventional tidal nomenclature such as DE3, SW2 and
T0 (e.g., Forbes et al., 2003; Jones Jr et al., 2013), where the first
letter indicates the period (i.e., “D” for diurnal, “S” for semidiurnal,
and “T” for terdiurnal), the second letter represents the propagation
direction (i.e., “E” for eastward and “W” for westward), and the last
number is the zonal wavenumber (i.e., |s|). Different components
of tides can be evaluated by fitting Equation 1 to atmospheric
measurements obtained at any given height and latitude (e.g.,
Forbes et al., 2008). Lühr and Manoj (2013) applied this method
to EEJ data and examined the tidal composition of the EEJ based
on 10 years of satellite magnetic field measurements. Soares et al.
(2022), combining EEJ data from multiple satellites and ground
stations, determined the tidal composition of the EEJ for individual
years. Both studies found that migrating tides (n+s = 0) such
as DW1 and SW2 are dominant tidal components of the EEJ.
Some non-migrating tides (n+s ≠0) such as DE3 and DE2 are
also found to be significant tidal components of the EEJ. The tidal
composition of the EEJ is, however, not necessarily the same as the
tidal composition of neutral winds that drive the EEJ.This is because
the tidal composition of the EEJ is determined not only by tidal
winds but also by the E-region conductivity, which is strongly local-
time dependent. Thus, tidal wind components contributing to the
EEJ have yet to be identified.

Apart from atmospheric tides, the EEJ is also influenced by some
global-scale atmospheric waves with a period longer than a day. For
instance, the westward-propagating quasi-6-daywave (Q6DW)with
zonal wavenumber 1 is often observed in the lower thermosphere
(e.g., Lieberman et al., 2003; Gan et al., 2018; Qin et al., 2021),

and studies have reported the occurrence of ∼6-day oscillation
in the EEJ intensity during Q6DW events (e.g., Yamazaki et al.,
2018; 2020a). Similarly, the eastward-propagating ultra-fast Kelvin
wave (UFKW) with a period of 2–3 days and zonal wavenumber
1 is frequently detected in the equatorial lower thermosphere
(e.g., Forbes et al., 2009; Davis et al., 2012; Gu et al., 2014), and
corresponding 2–3-day oscillations have been observed in the EEJ
(e.g., Yamazaki et al., 2020b; Lühr et al., 2021b; Sun et al., 2024).
Other planetary waves, such as the westward-propagating quasi-
2-day wave (Q2DW) with zonal wavenumber 3 (e.g., Yue et al.,
2012; Gu et al., 2013; He et al., 2021) and quasi-16-day wave
(16DW) with zonal wavenumber 1 (e.g., Forbes et al., 1995; Day and
Mitchell, 2010; Fan et al., 2022), also seem to have some influence
on the ionospheric electrodynamics (e.g., Yamada, 2009; Elhawary
and Forbes, 2016; Jadhav et al., 2023; 2024), but their capability of
modulating the EEJ intensity is still to be established.

Characterization of the EEJ variability due to tides and other
global-scale waves mentioned above can greatly benefit from global
observations by low-Earth-orbit (LEO) satellites. When a LEO
satellite flies over the magnetic equator, the magnetic effect of
the EEJ is observed as a latitudinally localized depression in the
field strength (e.g., Cain and Sweeney, 1972; Jadhav et al., 2002;
Lühr et al., 2004; Alken et al., 2015; Stolle et al., 2021). The
intensity of the EEJ can be estimated from the magnitude of the
magnetic field depression. Since LEO satellites have orbital periods
of 90–120 min, they complete 12–16 orbits per day. In other words,
12–16 measurements of the dayside EEJ intensity can be made in
each day at different longitudes.

The EEJ data from the CHAMP (Reigber et al., 2002) and Swarm
(Friis-Christensen et al., 2006; 2008) missions have been extensively
analyzed in previous studies (e.g., Lühr et al., 2004; Alken et al.,
2015). In bothmissions, the spacecraft have been deployed in a near-
circular near-polar orbit that slowly precesses in local time at a rate
of about 5 minutes per day. Thus, for instance, the local time of the
EEJ measurement changes by more than 2 hours in a month. This
change in the local time sometimes made it difficult to accurately
interpret the day-to-day variation of the EEJ observed by CHAMP
and Swarm, because the EEJ variation associated with the local time
change and other changes (e.g., changes in geomagnetic activity
or neutral wind forcing) cannot be distinguished. The day-to-day
variation of the EEJ may be more easily captured by ground-based
magnetometer measurements. However, it is difficult to obtain good
longitudinal coverage with ground-based observations. A solution
to this problem is to use EEJ data from a Sun-synchronous orbit,
where the local time is always the same.The SAC-C satellite mission
(Colomb et al., 2004) operated in a Sun-synchronous orbit at an
altitude of ∼700 km and provided the EEJ data at a fixed local
time of 10:25 a.m. during the solar maximum period of 2001–2003
(Alken andMaus, 2007). In this study, we employ the EEJ data from
the China Seismo-Electromagnetic Satellite (CSES) (Shen et al.,
2018), which flies in a Sun-synchronous orbit at approximately 2
a.m.–2 p.m. The CSES data provide the first continuous satellite
observations of the afternoon EEJ at 2 p.m. local time.

Zhou Y. et al. (2022) presented a preliminary analysis of the
CSES magnetic field measurements for detecting the EEJ.This study
extends the analysis of the EEJ magnetic signatures derived from
CSES, and advances the characterization of its spatial and temporal
variability on day-to-day and seasonal time scales. In Section 3.1, we
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will conduct a statistical comparison between CSES and Swarm EEJ
to validate the reliability of the CSES EEJ data. In Section 3.2, we
will perform a spectral analysis of the CSES EEJ to provide insight
into the source of the day-to-day EEJ variability. In Section 3.3, we
will compare the CSES EEJ data with neutral wind measurements
by the Ionospheric Connection Explorer (ICON) satellite mission
(Immel et al., 2018) to evaluate the effect of neutral winds on the
EEJ. In Section 3.4, we will show how the seasonal and longitudinal
variations of the EEJ are related to those in neutral winds. We
will also examine the tidal components that are important for the
longitudinal structure of the EEJ. In Section 3.5, we will compare
the CSES EEJ data (evaluated at 110 km altitude) with CSES in-situ
measurements of the electron density (∼510 km altitude), providing
insight into electrodynamic coupling between the ionospheric E
and F regions.

2 Data

The intensity of the EEJ was derived using the 1 Hz scalar
magnetic field measurements by CSES (Yang et al., 2021). The data
are available from themissionwebsite (https://www.leos.ac.cn/).The
method for retrieving the EEJ intensity is the same as that developed
for the Swarm Level 2 (L2) Product of the EEJ (Alken et al., 2013b;
2015). Briefly, the method involves the following three steps. In the
first step, the core field, lithospheric field, and magnetospheric field
are evaluated and removed from the observed magnetic field. In the
second step, the residual field is further separated into the “Sq field,”
which is large-scale, and the “EEJ field,” which is localized near the
magnetic equator. In the final step, the EEJ intensity is estimated
according to the Biot-Savart law using an inversionmodel of the EEJ
that assumes line currents at an altitude of 110 km following zonally
along the magnetic equator. More detailed description of each step
can be found in the article by Alken (2020).

As mentioned, the CSES spacecraft flies in a Sun-synchronous
orbit, and the local time of the equatorial crossing is 2 a.m.
and 2 p.m. We use the measurements made at 2 p.m. during
the period July 2018–April 2022. Figure 1A shows the number of
observations in each month. In addition to the total number of
observations, the numbers of eastward and westward EEJ events
are also indicated. The occurrence rate of the westward EEJ is
approximately 20%, which is consistent with previous studies based
on ground-based observations and other satellites (e.g., Soares et al.,
2019). The absence of data during January–May 2020 and during
June 2021–January 2022 is not due to a lack of magnetic field
measurements; instead, it is because the EEJ data were still to be
processed at the time of writing this paper.

Figure 1B shows monthly values of the daily mean EEJ intensity.
Green shading indicates the magnitude of the day-to-day variability.
On each day, the CSES spacecraft completes ∼15 orbits. The
longitude of the equatorial crossing changes by 23.7° from one orbit
to the next. Thus, the CSES satellite effectively covers all longitudes
in 1 day (15× 23.7 ° = 355.5°). For this reason, the daily mean is
a good representation of the longitudinally averaged EEJ at 2 p.m.
local time. In Figure 1B, the mean EEJ intensity during the last
3 month (February–April 2022) is appreciably higher than that over
the preceding period. This is due to an increase in solar activity.
Figure 1C shows monthly mean values of the F10.7 index (Tapping,

2013), representing solar radiation activity, which controls E-region
ionization and hence the E-region conductivity. The EEJ intensity
is known to increase with increasing F10.7 (e.g., Yamazaki et al.,
2010; Matzka et al., 2017). Solar activity affects not only the mean
EEJ intensity but also the occurrence rate of the westward EEJ. It is
known that an increase in solar activity results in a decrease in the
occurrence of the westward EEJ in the afternoon (e.g.,Marriott et al.,
1979; Soares et al., 2018), which can be confirmed in Figure 1A.

We perform a validation of the CSES EEJ data through
comparisons with EEJ intensities derived from the magnetic field
measurements by Swarm. The Swarm constellation, operational
since November 2013, consists of three identical satellites, namely,
Swarm A, Swarm B and Swarm C. Swarm A and C fly side
by side at an altitude of approximately 460 km, while Swarm
B flies separately at a higher altitude of ∼510 km. As one of
the L2 products of Swarm, EEJ data from each satellite are
available at the ESA Swarm website (https://swarm-diss.eo.esa.int/).
For the present study, we use the EEJ intensities from Swarm
A and B.

We use neutral wind observations by the ICON mission.
Measurement of the horizontal wind velocity is made by
the Michelson Interferometer for Global High-Resolution
Thermospheric Imaging (MIGHTI) instrument onboard ICON
(e.g., Englert et al., 2017; Harding et al., 2017). Version 5 of
the MIGHTI wind product based on the oxygen green-line
emission at 557.7 nm wavelength is used for the evaluation of
the local wind effect on the EEJ. We use only the measurements
with the “wind quality factor” being one, corresponding to
the best quality data. Detailed description and validation of
version 5 ICON/MIGHTI data can be found in the article by
Englert et al. (2023). The Level 2.2 MIGHTI Cardinal Winds can
be downloaded from the ICON mission website (https://icon.ssl.
berkeley.edu/Data/Data-Product-Matrix) as well as from DOI in
Harding et al. (2023).

We also use the empirical wind model of Yamazaki et al.
(2023), which is based on the ICON/MIGHTI green-line wind
measurements during April 2020–March 2022. It uses a formula
similar to Equation 1 in the introduction section with n being from
0 to 4 and s being from −4 to 4, where the [n = 0, s = 0] term
corresponds to the zonal-mean wind (ZMW), the [n = 0, s > 0]
terms correspond to stationary planetary waves (SPWs), and the
rest of the (n, s) terms are tides. Besides, the model takes into
account the dependence of each (n, s) component on month of
year. The model outputs are zonal and meridional wind velocities
for the latitude range of 12°S to 40°N and for the altitude range
of 91–112 km.

The Langmuir probe (LAP) onboard CSES (Yan et al., 2018)
provides electron density (Ne) data at the satellite location (∼510 km
altitude). We make a comparison between the CSES EEJ intensity
and Ne from the same orbital path to assess the relationship of
the two quantities. The CSES LAP data can be obtained from
the same website as the CSES magnetic field data (https://www.
leos.ac.cn/). The validation of CSES Ne data is presented by
Yan et al. (2020) through comparisons with other satellite and
ground-based observations. Yan et al. (2022) described artificial
signals found in the CSES Ne data. We have eliminated those
artificial signals before the comparison with the EEJ data is
performed.
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FIGURE 1
(A) Number of CSES equatorial electrojet (EEJ) measurements at 2 p.m. local time in each month during July 2018–April 2022. Besides the total
number of measurements, the numbers of eastward and westward EEJ events are also indicated. (B) Monthly mean values of the daily mean EEJ
intensity. Shading indicates the magnitude of the day-to-day variability (±1σ) of the daily mean EEJ intensity. (C) Monthly mean values of the daily solar
radio flux index F10.7. Shading indicates the magnitude of the day-to-day variability (±1σ) of the F10.7 index.

3 Results and discussion

3.1 Comparison with swarm EEJ

Figure 2 presents comparisons of the EEJ intensities derived
from CSES and Swarm magnetic field measurements. Only the data
during concurrentmeasurements by CSES and Swarm are used. Our
criteria for a CSES-Swarm conjunction are as follows: (1) the time
difference between the two measurements is less than 15 min, and
(2) the longitudinal separation of the two measurements is less than
15°. 497 concurrent measurements are found for the CSES-Swarm
A pair (Figure 2A), while 265 concurrent measurements are found
for the CSES-Swarm B pair (Figure 2B). In both cases, there is a
good correlation between the EEJ intensities fromCSES and Swarm,
with the correlation coefficient of R ∼0.9. The results support the
reliability of the CSES EEJ data. However, the slope of the regression
line is less than 1.0 in both cases: 0.85 [0.82–0.89] for the CSES-
Swarm A pair and 0.86 [0.79–0.91] for the CSES-Swarm B pair,
where the range in the square brackets indicates the 95% confidence
interval estimated by the bootstrap method. The results seem to
imply a systematic underestimation of the CSES EEJ compared to

the Swarm EEJ. The cause of this discrepancy is unclear. We do not
attempt to calibrate theCSES EEJwith SwarmEEJ; however, possible
underestimation of the CSES EEJ intensity by ∼15% should be kept
in mind while interpreting the results presented in this paper. The
intersect of the regression line is small in both cases (1–2 mA/m),
and thus the direction of the CSES EEJ (i.e., eastward or westward)
is considered to be accurate.

3.2 Spectral analysis of day-to-day
variability

Characteristics of the day-to-day variability of the afternoon EEJ
are examined. Figure 3A displays the CSES EEJ intensity during the
selected period of 2 April–30 May 2021, as a function of time (day
of year; DoY) and longitude, highlighting the day-to-day variability
of the EEJ at 2 p.m. local time. A close inspection of the data
reveals a wave-like pattern that appears to propagate westward, as
indicated by the white dashed lines. Figure 3B depicts the amplitude
spectrum obtained by the Fourier-wavelet analysis described by
Yamazaki (2023). The horizontal axis shows the zonal wavenumber
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FIGURE 2
Comparison of the equatorial electrojet (EEJ) intensity derived from the magnetic field measurements by CSES with those from concurrent magnetic
field measurements by (A) Swarm A and (B) Swarm B.

and the vertical axis shows the period of oscillation. The Fourier-
wavelet technique involves the Fourier transform in longitude and
the wavelet transform in time, and is applicable to 2-D longitude-
time data for evaluating global-scale waves (e.g., tides and planetary
waves) with different zonal wavenumbers. The spectrum shows
an amplitude peak at a period of ∼6 days and zonal wavenumber
−1, indicating the involvement of a westward-propagating Q6DW.
Previously, Yamazaki et al. (2018) reported several events where
EEJ intensities from CHAMP and Swarm satellites show Q6DW
signatures.

Figure 3C depicts the CSES EEJ intensity during another
selected period of 2 January 2019–18 February 2019. A temporal
oscillation is seen in the EEJ intensity, as indicated by the white
dashed line. Unlike the previous example presented in Figure 3A,
the phase of the oscillation is constant with respect to longitude.The
Fourier-wavelet spectrum shown in Figure 3D reveals an amplitude
peak at a period of 14–15 days and zonal wavenumber 0. This
semimonthly oscillation can be attributed to the effect of the
atmospheric lunar tide, which appears as a 14.8 days oscillation
in the EEJ at a fixed local time (e.g., Rastogi and Trivedi, 1970;
Yamazaki et al., 2012).The dominantmode of the atmospheric lunar
tide is the semidiurnalM2 oscillation with a period of 12.42 h (e.g.,
Lindzen and Chapman, 1969). The 14.8-day oscillation is basically
an alias caused by the sampling of the M2 oscillation at a rate of
24.0 h. During January–February 2019, the new Moon occurred on
6 January (DoY = 6) and 4 February (DoY = 35), and the full Moon
occurred on 21 January (DoY = 21) and 19 February (DoY = 50).
The CSES EEJ at 2 p.m. local time is seen to be relatively weak on
the days of the new Moon and full Moon, which is consistent with
previously reported lunar tidal effect on the EEJ (e.g., Yamazaki et al.,
2012). Moreover, previous studies reported that the amplitude of
the semimonthly EEJ oscillation can be amplified during sudden
stratospheric warming events (e.g., Park et al., 2012; Yamazaki, 2013;
Siddiqui et al., 2015; 2018). In January 2019, there was an Arctic
sudden stratospheric warming event (e.g., Siddiqui et al., 2021),

which might have contributed to the semimonthly oscillation in the
EEJ during this month.

As demonstrated in Figure 3, the Fourier-wavelet spectrum of
the CSES EEJ can be obtained for any given period of time. The
average spectrum for the entire period of July 2018–May 2021 is
derived to provide a climatological picture of theCSESEEJ spectrum
under solar minimum conditions (see Figure 1C for solar activity).
Figure 4A shows the result, revealing three distinct components: (1)
an eastward-propagating oscillation with a period of 2–3 days and
zonal wavenumber 1, (2) a westward-propagating oscillation with
a period of 5–6 days and zonal wavenumber 1, and (3) a zonally-
symmetric oscillation with a period of 14–15 days.They correspond
to differentmodes of atmosphericwaves, namely, theUFKW,Q6DW
and atmospheric lunar tide, respectively. It is noted that previous
studies based on CHAMP and Swarmmagnetic field measurements
were not able to provide the climatological spectrum of the EEJ at
a fixed local time similar to Figure 4A because the local time of the
EEJ measurement by these satellites changes over time.

The day-to-day variation of the EEJ could contain signatures
of varying solar and geomagnetic activity. The wavelet spectra
presented in Figure 4B reveal the presence of 27-, 13.5- and 9-day
oscillations in the daily geomagnetic activity indexAp (Matzka et al.,
2021) and a 27-day oscillation in the solar activity index F10.7 during
July 2018–May 2021. The 27-day oscillation represents the effect of
solar rotation, and 13.5- and 9-day oscillations are its harmonics.
These oscillations donot seem tohave a significant impact on theEEJ
in our dataset. One may suspect the influence of the Ap oscillation
at 13.5 days on the EEJ oscillation at 14–15 days. However, if the
13.5-day oscillation in Ap is effective in modulating the EEJ, the 27-
and 9-day oscillations should also be visible in the EEJ spectrum
(Figure 4A), which is not the case. Besides, there is no correlation
between the occurrence of the 14–15-day EEJ oscillation and the
13.5-dayAp oscillation. For example, during 2 January–18 February
2019, when the EEJ exhibited a large semimonthly oscillation
(Figures 3C,D), the 13.5-day oscillationwas absent inAp (not shown
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FIGURE 3
(A) An example of the CSES equatorial electrojet (EEJ) data at 2 p.m. local time, plotted as a function of time (day of year) and longitude for the time
period 2 April 2021–30 May 2021, and (B) the corresponding zonal wavenumber-period spectrum as derived using the Fourier-wavelet
technique (Yamazaki, 2023). Positive and negative zonal wavenumbers correspond to eastward- and westward-propagating waves, respectively. (C, D)
Same as (A, B) but for the time period 2 January–18 February 2019.

here). Figures 4C,D are the same as Figure 4A but for different
periods of time (i.e., January–December 2019 for Figure 4B and July
2020–May 2021 for Figure 4C). The results obtained for these two
separate 1-year periods are remarkably similar, indicating that the
influences of the UFKW, Q6DW and atmospheric lunar tide on the
EEJ are robust.

It is important to note that UFKW and Q6DW signatures
in the EEJ spectrum (Figure 4) do not necessarily mean the
direct effects of these waves on the EEJ. It is known that when
measurements from a Sun-synchronous satellite are analyzed,
a spectral peak corresponding to a planetary wave cannot
be distinguished from those associated with the secondary
waves arising from the nonlinear interaction between the same
planetary wave and any migrating (i.e., Sun-synchronous)
tide (e.g., Forbes and Zhang, 2015). In the present context,
secondary waves from the nonlinear interaction between the
UFKW and a migrating tide can alias into the UFKW signature.

Similarly, secondary waves from the nonlinear interaction between
the Q6DW and a migrating tide can alias into the Q6DW
signature. Miyoshi and Yamazaki (2020) examined the strong
Q6DW signature in the noon-time EEJ during September 2019
using a numerical model, and demonstrated that the spectral
peak corresponding to the Q6DW in the noon-time EEJ was
largely due to neutral wind forcing by the secondary waves
resulting from the nonlinear interaction between the Q6DW
and migrating semidiurnal tide, rather than forcing by the
Q6DW itself. At this time, it is not clear whether the EEJ
spectral peaks corresponding to UFKW and Q6DW in Figure 4
are directly caused by these waves, or by the secondary waves
from their nonlinear interactions with migrating tides which
produce identical spectral peaks. For the lunar tide, on the
other hand, its direct effect on the E-region dynamo currents is
well established through previous research (e.g., Tarpley, 1970;
Eccles et al., 2011).
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FIGURE 4
(A) Zonal wavenumber-period spectrum of the CSES equatorial electrojet (EEJ) intensity at 2 p.m. local time, averaged over the time period July
2018–May 2021. Positive and negative zonal wavenumbers correspond to eastward- and westward-propagating waves, respectively. (B) Wavelet
amplitude spectra of the geomagnetic activity index Ap and solar activity index F10.7 during July 2018–May 2021. The amplitudes are normalized by the
corresponding maximum values. (C) Same as (A) but over the 1-year period January–December 2019. (D) Same as (A) but over the 1-year period July
2020–May 2021.

3.3 Comparison with ICON/MIGHTI winds

The influence of the neutral wind on the EEJ is examined
using concurrent measurements of the EEJ by CSES and wind
profiles by ICON/MIGHTI. The criteria for a ICON/MIGHTI-
CSES conjunction are as follows: 1) the wind measurement is
obtained within ±15 min from the time of the EEJ observation
at the magnetic equator; 2) the wind measurement is obtained
within ±5° from the magnetic equator; 3) the wind measurement
is obtained within ±10° from the longitude of the EEJ measurement.
These criteria are the same as those used by Yamazaki et al. (2021)
for a comparison of ICON/MIGHTI winds and Swarm EEJ. Also
following Yamazaki et al. (2021), only the data obtained under the
quiet geomagnetic activity conditionHp30 < 3 are used, whereHp30

(Yamazaki et al., 2022) is a geomagnetic activity index similar to
the three-hourly Kp index (Matzka et al., 2021) but with a higher
temporal resolution of 30 min. When there are more than one wind
profiles that satisfy all the criteria for the same EEJmeasurement, we
use only one wind profile that has the smallest time difference from
the EEJ measurement.

The results obtained from the analysis of the concurrent
measurements of the CSES EEJ and ICON/MIGHTI winds are
presented in Figure 5. Figure 5A compares the average magnetic
eastward wind profiles during times of the eastward and westward
EEJ. During times of the eastward EEJ, the average wind tends to be
westward at all heights with relatively small height variation, while
during times of the westward EEJ, the average wind is eastward
at 100–120 km and westward above. Such a systematic difference
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is not seen in the average magnetic northward wind profiles for
the eastward and westward EEJ, as depicted in Figure 5B. Earlier,
Yamazaki et al. (2021) also reported the difference in the magnetic
eastward wind profiles during times of the eastward and westward
EEJ based on the Swarm EEJ and ICON/MIGHTI winds, but they
were not able to completely separate the wind effect on the EEJ
from the local time variation of the EEJ, as the local time of the
Swarm EEJ measurement constantly changes. The results presented
in Figures 5A,B are in alignmentwith those byYamazaki et al. (2021)
but at a fixed local time of 2 p.m., eliminating the ambiguity due to
the local time change.

Figures 5C,D provide examples showing the relationship
between the magnetic eastward wind and EEJ. At 106 km, there
is a negative correlation (R = −0.56) between the two parameters,
while at 135 km, the correlation is positive (R = 0.54). The results
are consistent with previous observations based on the Swarm EEJ
and ICON/MIGHTI winds (Yamazaki et al., 2021). The results are
also consistent with those in the simulation study by Yamazaki et al.
(2014a), which predicted that the EEJ intensity correlates negatively
and positively with the equatorial eastward wind in the Hall region
(100–120 km) and Pedersen region (120–180 km), respectively. We
further extend the correlation analysis including other latitudes.
Figure 5E presents the distribution of the correlation coefficient
between the ICON/MIGHTI magnetic eastward wind and CSES
EEJ as a function of magnetic latitude and altitude. The magnetic
latitude is based on quasi-dipole (QD) coordinates (e.g., Laundal
and Richmond, 2017). Significant correlation (p < 0.05) is found
mostly between 100 and 115 km and between 120 and 160 km
in altitude. The region of relatively high negative correlation (R <
−0.5) is limited near themagnetic equator between 105 and 110 km,
while the region of relatively high positive correlation (R > 0.5)
is limited between 130 and 140 km. They do not extend deep into
middle latitudes, beingmostly confined below 15°magnetic latitude.
Figure 5F is similar to Figure 5E but shows the correlation coefficient
between the magnetic northward wind and EEJ. In this case,
significant correlation is found around 10–30° magnetic latitude
and between 110 and 140 km in altitude. However, the correlation
is weak everywhere (|R| < 0.5), indicating that the meridional wind
is not as effective as the equatorial zonal wind in modulating the
EEJ. The spatial patterns of the correlation coefficient depicted
in Figures 5E,F are in qualitative agreement with those predicted
by Yamazaki et al. (2014a). It is noted that Figures 5E,F mainly
focuses on the Northern Hemisphere, because ICON/MIGHTI
measurements are limited between ∼10°S and ∼40°N latitude.

3.4 Seasonal and longitudinal variability

Figure 6 depicts the seasonal and longitudinal variations of the
EEJ (Figures 6A,C,D) and eastward wind (Figure 6B), which are
all evaluated at a fixed local time of 2 p.m. Figure 6A is derived
from the CSES EEJ data during 2019 under the geomagnetically
quiet condition ofHp30 < 3. Figures 6C,D are based on the principal
component analysis of the EEJ data (Kp≤3) from Swarm A and
B satellites and several ground-based magnetometers during 2018
and 2017 as described by Soares et al. (2022). The seasonal and
longitudinal variations of the CSES EEJ for 2019 (Figure 6A) are
in fair agreement with those derived from independent data for

2018 and 2017 (Figures 6C,D) with correlation coefficients R = 0.70
for the 2018 case and R = 0.72 for the 2017 case. Differences are
expected from the year-to-year variation of the EEJ. Figure 6B shows
the eastwardwind at 2.5°N latitude and at 109 km altitude as derived
from the empirical model of Yamazaki et al. (2023), which is based
on the ICON/MIGHTI wind measurements (Hp30 < 3) during
April 2020–March 2022. The selected latitude (2.5°N) corresponds
to the model grid closest to the zonal mean of the geographic
latitude of the magnetic equator. As expected from the results
in the previous section, there are some similarities between the
seasonal-longitudinal patterns in the eastward wind and the EEJ.
The correlation coefficients between the patterns in the eastward
wind and the EEJ are R = −0.33, R = −0.37 and R = −0.39 for
the 2019, 2018 and 2017 cases, respectively. It is noted that these
comparisons are not based on simultaneous measurements of the
EEJ and wind like those presented in the previous section. Also, the
empirical model of Yamazaki et al. (2023) outputs the geographic
eastward wind, not the magnetic eastward wind that was used in the
previous section. Nevertheless, the correlations are reasonably good
and close to those presented in the previous section (Figures 5C,E).

It is known that the longitudinal variation of the EEJ is
dominated by a four-peak pattern during July–September (e.g.,
Lühr et al., 2008; Lühr and Manoj, 2013), which can also be seen in
Figures 6A,C,D. A similar four-peak pattern exists in the eastward
wind during these months (Figure 6B). Figure 7A compares the
four-peak structures in the EEJ and eastward wind. It shows that the
EEJ tends to be weak where the eastward wind at 109 km is strong,
and vice versa. Since the wind velocities in the Yamazaki et al. (2023)
model are described as a superposition of contributions by the zonal-
meanwind, tides and stationary planetary waves, which are assigned
with different combinations of n and s, it is possible to assess the
relative importance of different (n, s) components for the four-peak
structure in the zonal wind presented in Figure 7A. The table in
Figure 7B lists the five largest (n, s) components of the eastward
wind at longitudes of local maxima and minima. The components
that have the magnitude larger than 5 m/s are highlighted in red,
in consideration that the estimated 1-σ uncertainty of individual
components is typically in the range of 1.0–4.5 m/s (Yamazaki et al.,
2023). The results suggest that DE3 is largely responsible for the
four-peak structure in the eastward wind during July–September.
Previous theoretical studies also concluded that DE3 is the major
contributor to the four-peak structure of the equatorial zonal electric
field and current (e.g., Ren et al., 2010; Jin et al., 2008; Wan et al.,
2012; Pedatella et al., 2012a). The production mechanism and
seasonal variation of DE3 are discussed in detail by Zhang et al.
(2010). Apart fromDE3, migrating tides (DW1 and SW2) and other
non-migrating tides (DE2 and DE1) are relatively large, but their
individual contributions are less than half of that by DE3. It is noted
that althoughmigrating tides do not have any longitudinal structure
at a fixed local time, they can contribute to individual longitudinal
peaks of the EEJ.

It is also known that during December–January, the four-peak
pattern is largely absent from the longitudinal variation of the EEJ,
and a two- or three-peak pattern is more evident (e.g., Lühr et al.,
2008; Lühr and Manoj, 2013). Figure 8 is similar to Figure 7 but for
December–January. In Figure 8A, the EEJ has two prominent local
maxima around 45°Wand 125°E longitudes.They coincide with the
local minima of the eastward wind, underscoring the importance
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FIGURE 5
(A) Average vertical profiles of the ICON/MIGHTI magnetic eastward wind during concurrent measurements with the CSES equatorial electrojet (EEJ) at
2 p.m. local time for times of the eastward and westward EEJ. (B) Same as (A) but for the magnetic meridional wind. (C) Scatter plot for the
ICON/MIGHTI magnetic eastward wind velocity at 106 km and the CSES EEJ intensity at 2 p.m. local time from their concurrent measurements. Note
that the EEJ intensity is evaluated at an altitude of 110 km. The green line shows the linear regression. (D) Same as (C) but for the ICON/MIGHTI
magnetic eastward wind velocity at 135 km. (E) Correlation coefficient between the CSES EEJ intensity at 2 p.m. local time at 110 km altitude at the
magnetic equator and the ICON/MIGHTI magnetic eastward wind observed at the same time, plotted as a function of quasi-dipole (QD) latitude and
altitude. The shading indicates the lack of statistical significance at the 95% confidence level. (F) Same as (E) but for the ICON/MIGHTI magnetic
northward wind.
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FIGURE 6
(A) CSES equatorial electrojet (EEJ) intensity at 2 p.m. local time at 110 km altitude for the year 2019, plotted as a function of longitude and month. (B)
Eastward wind velocity at 2 p.m. local time at a latitude of 2.5°N and an altitude of 109 km, as derived from the empirical wind model of Yamazaki et al.
(2023). (C) EEJ intensity at 2 p.m. local time at 110 km altitude for the year 2018, as derived from the analysis of Soares et al. (2022). (D) Same to (C) but
for the year 2017.

of the local wind effect on the EEJ. The table in Figure 8B suggests
that there is no single dominant component that determines the
longitudinal structure of the zonal wind during December–January,
unlike the July–September case whereDE3 ismuch larger than other
components (see the table in Figure 7B). Nevertheless, eastward-
propagating diurnal tides DE2 and DE3 are the most significant
components. Westward-propagating semidiurnal tides SW2, SW3
and SW4 are also relatively large. It is interesting to note that DE3
is still important during December–January, while the amplitude of
DE3 reaches its seasonal minimum around the December solstice
(e.g., Forbes et al., 2003; Oberheide et al., 2006).

3.5 Comparison with in-situ electron
density measurements

The in-situ measurements of Ne from the LAP instrument
onboard CSES (∼510 km altitude) are analyzed along with the
CSES EEJ data. The Ne data are used only when the EEJ data
are available from the same orbit; see Figure 1A for the EEJ
data availability. Also, only the measurements made under the
geomagnetically quiet condition of Hp30 < 3 are used. Figure 9A
depicts the QD-latitude dependence of CSES/LAPNe at 2 p.m. local
time during August 2018–May 2021. The meridional structure of
Ne for a given month exhibits a single peak near the magnetic
equator within approximately ±10° QD latitude. This is somewhat

unexpected, as previous studies based on in-situmeasurements ofNe
at 2∼p.m. local time by other LEO satellites have shown a double-
peak meridional structure known as the equatorial ionization
anomaly (EIA), characterized by a density trough at the magnetic
equator and density crests at approximately ±15° QD latitudes (e.g.,
Xiong et al., 2013; 2016b). The discrepancy may be attributable to
two factors. The first is the altitude of the CSES satellite, which
is higher than those of the satellites used in Xiong et al. (2013,
2016b). The double-peak EIA structure of Ne is most evident
at the altitude of the peak plasma density (300–400 km) (e.g.,
Lin et al., 2007; Tulasi Ram et al., 2009), and thus may not be
visible at the altitude of the CSES satellite (∼510 km). The second
is solar activity, which was very low during the period of interest
(August 2018–May 2021; see Figure 1C for F10.7). The altitude of
the daytime peak plasma density over low latitudes tends to be
lower during low solar activity periods (e.g., Yue et al., 2015;
Zhao et al., 2017), which would make it difficult for the CSES
satellite at ∼510 km to observe the double-peak EIA structure of
Ne. It is noted that the meridional profile of CSES/LAP Ne from
an individual orbit sometimes shows the double-peak structure,
although it is not visible in the average meridional profiles depicted
in Figure 9A.

Figure 9A also presents the seasonal variation in CSES/LAP
Ne at 2 p.m. local time. Ne shows a semiannual variation
with equinoctial maxima around the magnetic equator between
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FIGURE 7
(A) Eastward wind velocity at 2 p.m. local time at a latitude of 2.5°N and an altitude of 109 km during July–September, as derived from the empirical
wind model of Yamazaki et al. (2023), along with the equatorial electrojet (EEJ) intensity at 2 p.m. local time at 110 km altitude at the magnetic equator
for the years 2017, 2018 and 2019. The EEJ data for 2019 are obtained from the CSES magnetic field measurements, while those for 2017 and 2018 are
based on the analysis presented by Soares et al. (2022). (B) Tidal composition of the eastward wind at longitudes of local maxima and minima. The
components with the magnitude larger than 5 m/s are highlighted in red.

approximately ±10° QD latitude. An annual variation with a
local-summer maximum becomes more prominent with increasing
latitude. The results are in agreement with the earlier study by
Zhu et al. (2023), which examined the annual and semiannual
variations in CSES/LAPNe. The seasonal dependence ofNe involves
various mechanisms. One important factor is the seasonal variation
in the solar zenith angle. The main constituent of the F-region
plasma is atomic oxygen ion O+, which is produced through
the photoionization of atomic oxygen O. The ionization by solar
radiation depends on the solar zenith angle (Chapman, 1931), which
varies semiannually at low latitudes and annually at higher latitudes
due to Earth’s geometry relative to the Sun. Another important
factor is the seasonal variation in neutral composition. The O+

density is controlled not only by the production of O+ through the
photoionization of O, but also by the loss of O+ by recombination
through ion-exchange reactions that involve N2. Thus, the O+

density (and hence Ne) varies with the density ratio [O]/(N2) (e.g.,
Rishbeth, 1998). The neutral composition of the thermosphere,
[O]/(N2), varies with the season due to the large-scale circulation

of the thermosphere (Fuller-Rowell, 1998) as well as wave forcing
from the middle atmosphere (Jones Jr et al., 2017; 2018).

Figure 9B displays the correlation coefficient between the CSES
EEJ andNe as a function ofmagnetic latitude andmonth of year.The
correlation was calculated between the EEJ at the magnetic equator
and Ne binned at every 0.5° QD latitude from the same orbit. At
low latitudes below ±20°QD latitude, the correlation is positive and
significant (p < 0.01) throughout the year but R varies considerably,
in the range of 0.10–0.73, depending on the latitude and month.
The positive correlation at low latitudes is anticipated as the effect
of the equatorial plasma fountain (e.g., Balan et al., 2018).That is, in
the presence of the eastward electric field, which is associated with
the EEJ, low-latitude plasmas move upward to F-region altitudes by
the E×B drift. Stolle et al. (2008) reported a positive correlation
between the EEJ intensity and F-region plasma density. However,
they did their analysis exclusively at the South American sector, and
did not reveal seasonal dependence. In this respect, our analysis is
an extension of previous work. Stolle et al. (2008) found that the
maximum response of the F-region plasma density to a change in
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FIGURE 8
Same as Figure 7 but for December–January.

the EEJ intensity occurs a few hours after the EEJ variation. In the
present study, we are not able to assess the delay in the Ne response
to the EEJ because CSES Ne and EEJ measurements are made at the
same local time.

At higher latitudes (above ±20°), the correlation is significant
only in the summer hemisphere. The hemispheric difference in
the Ne response to the EEJ might be due to the effect of the
meridional wind. The neutral wind at F-region altitudes blows
from the summer hemisphere to the winter hemisphere (e.g.,
Dickinson et al., 1977; Drob et al., 2015). The meridional wind
pushes the plasmas upward along the magnetic field line in the
summer hemisphere and downward in the winter hemisphere.Thus,
the meridional wind acts to help and hinder the vertical transport
of the plasmas to higher altitudes in the summer and winter
hemispheres, respectively, whichmight affect the detectability of the
Ne response to the EEJ at the CSES altitude (∼510 km).

Figure 10 compares the latitudinal structures ofNe during times
of the eastward and westward EEJ. Ne is greater during times of the
eastward EEJ regardless of the month. The difference in Ne is more
prominent in the Southern Hemisphere during October–March and
in the Northern Hemisphere during April–September, which could
be due to the meridional wind effect discussed above. Whether
the EEJ is eastward or westward, the double-peak EIA structure is

hardly visible in the average meridional profiles of CSES/LAP Ne at
∼510 km under these low solar activity conditions.

4 Summary and conclusion

The magnetic field measurements by the CSES mission provide
the first continuous satellite observations of the afternoon equatorial
electrojet (EEJ) at a fixed local time of 2 p.m. during the low solar
activity period of July 2018–April 2022. The method used for the
retrieval of the EEJ is the same as that developed for the Swarm
EEJ product (Alken et al., 2013b; 2015). The comparison between
the CSES and Swarm EEJ intensities during satellite conjunctions
reveals a good correlation between the two (Figure 2), supporting
the reliability of the CSES data in capturing the EEJ variability. The
CSES data, however, seem to underestimate the EEJ intensity by
∼15%, the reason for which is still to be investigated.

Using the CSES data, it is possible to derive the zonal
wavenumber-period spectrum of day-to-day EEJ variation for
any given time period (e.g., Figure 3). The climatological mean
spectrum of the EEJ at 2 p.m. local time is presented for the
first time (Figure 4), which reveals three distinct oscillatory
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FIGURE 9
(A) Electron density (Ne) at 2 p.m. local time at an altitude of ∼510 km observed by the Langmuir probe onboard CSES, plotted as a function of
quasi-dipole (QD) latitude and month. (B) Correlation coefficient between the CSES equatorial electrojet (EEJ) intensity at 2 p.m. local time at 110 km
altitude and CSES Ne from the same orbit. The shading indicates the lack of statistical significance at the 95% confidence level.

FIGURE 10
Electron density (Ne) at 2 p.m. local time at an altitude of ∼510 km observed by the Langmuir probe onboard CSES during times of the eastward and
westward equatorial electrojet (EEJ) at 110 km altitude.
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components with comparable amplitudes: (1) an eastward-
propagating 2–3-day oscillation with zonal wavenumber 1, (2) a
westward-propagating 5–6-day oscillation with zonal wavenumber
1, and (3) a zonally-symmetric 14–15-day oscillation. They all can
be associated with atmospheric waves that propagate from the
lower atmosphere. That is, (1), (2) and (3) can be attributed to
the ultra-fast Kelvin wave, quasi-6-day wave, and atmospheric lunar
tide, respectively. However, uncertainty remains as to whether (1)
and (2) are caused by the direct effect of those waves or by the
secondary waves resulting from their nonlinear interactions with
migrating tides.

The comparison of the CSES EEJ with the concurrent
measurements of neutral winds by ICON/MIGHTI shows that the
EEJ intensity at 2 p.m. local time at 110 km altitude is positively
and negatively correlated with the magnetic eastward wind in the
Hall region (100–115 km) and Pedersen region (120–160 km) over
the magnetic equator, respectively (Figure 5).This is consistent with
Swarm-ICON/MIGHTI observations including different local times
(Yamazaki et al., 2021). The present results exclude the possibility
that the correlation between the EEJ and magnetic eastward wind is
due to similarity in their local time variations. Also, the dependence
of the correlation on QD latitude (Figures 5E,F) is addressed. The
results are in agreement with the previous model predictions at the
local noon (Yamazaki et al., 2014a).

The longitudinal and seasonal variations of the EEJ are compared
with those in the equatorial zonal wind at 109 km as derived from
the empirical model of Yamazaki et al. (2023) (Figure 6), which
expresses wind velocities as a superposition of contributions by
the zonal-mean wind, tides and stationary planetary waves. The
longitudinal variation of the EEJ at 2 p.m. local time is dominated
by a four-peak pattern during July–September, which can be largely
explained by the non-migrating diurnal tide DE3 (Figure 7). During
December–January, a two- or three-peak pattern is more evident,
which is mainly due to the combined effect of the non-migrating
diurnal tides DE3 and DE2 (Figure 8).

The CSES EEJ data are also compared with the in-situ electron
density (Ne) measurements by the LAP instrument onboard CSES
from the same orbit. There is a positive correlation between the
EEJ intensity and Ne at low latitudes (below ±20°magnetic latitude)
regardless of the season (Figures 9, 10), which can be explained as
the effect of the equatorial plasma fountain. The magnitude of the
correlation is seasonally dependent. For example, the correlation
coefficient R is larger for April–September (0.4–0.7) than for
October–March (0.1–0.4) near the magnetic equator. The positive
correlation extends to higher latitudes but only in the summer
hemisphere. The reduced correlation in the winter hemisphere
might be due to the meridional wind, which pushes the plasmas
down along the magnetic field line, possibly preventing the plasmas
to reach the altitude of the CSES spacecraft (∼510 km).
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