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The Kelvin-Helmholtz Instability (KHI) is a large scale convective instability
which occurs anywhere the velocity shear between two fluids is large, such as
Earth’smagnetopausewhere the fast flowingmagnetosheath abuts the relatively
stagnant outer magnetosphere. The KHI was initially believed to contribute only
to energy and momentum transfer from the solar wind to the magnetosphere,
but was eventually shown to support mass transport and plasma heating. Recent
advancements in in-situ observational capabilities and high scale computer
modeling have once again shifted our understanding of the KHI from a large
scale process, to an active environment which connects the global and kinetic
scales through a variety of multi-scale processes and phenomena. In this mini-
review, we provide an update on the latest findings in Kelvin-Helmholtz (KH)
related processes at kinetic scales and the effects of the global environment on
KH development.
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1 Introduction

The solar wind must supply energy to the magnetosphere at a rate of ≥ 1010 W
to account for the energy dissipated in the auroral oval and the formation of the ring
current (Osmane et al., 2015). The processes contributing to this energy transfer were
first classified in terms of magnetic reconnection (Dungey, 1961), responsible for mass
transfer, and viscous interaction (Axford and Hines, 1961), responsible for momentum
transfer. Spacecraft observations have since verified the existence of magnetic reconnection
and its impact on geomagnetic activity (Paschmann et al., 1979; Oieroset et al., 2005;
Angelopoulos et al., 1994; Burch et al., 2016b). The primary process responsible for viscous
interaction is the velocity shear driven Kelvin-Helmholtz instability (KHI), which is
ubiquitous at Earth’s magnetopause (Kavosi and Raeder, 2015; Rice et al., 2022).

In the last few decades, it has been shown that the KHI is not only responsible for
viscous momentum transfer (Miura, 1987), but supports myriad secondary processes down
to kinetic scales including reconnection, ion and electron scale plasma waves, and plasma
turbulence.These secondary processes can further enhancemixing and heating and in some

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2024.1464010
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2024.1464010&domain=pdf&date_stamp=2024-09-12
mailto:rcrice@umd.edu
mailto:rcrice@umd.edu
https://doi.org/10.3389/fspas.2024.1464010
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2024.1464010/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1464010/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1464010/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Rice et al. 10.3389/fspas.2024.1464010

cases, interact with or drive each other. Recent observations and
simulations have also shown that the fluid scale KHI impacts and
is impacted by global scale patterns within the magnetosphere and
heliosphere. In this mini-review, we provide an overview of themost
recent findings which inform our current understanding of the KHI
as a phenomena connecting physics across multiple scale sizes.

2 The KHI and kinetic scale processes

Though initially believed to be responsible only for momentum
and energy transfer to the magnetosphere (Miura, 1987), it is
now known that the KHI is also able to drive plasma transport
and heating via kinetic scale processes such as reconnection,
diffusive transport, and kinetic scale wave modes. Recent
technological advances in in-situmeasurements (Burch et al., 2016a;
Angelopoulos, 2008; Escoubet et al., 2001) and the accessibility of
petascale kinetic simulations (Bowers et al., 2009), have enabled
numerous studies resolving the nature of kinetic scale processes
associated with the KHI. In this section we review a few of these
phenomena.

2.1 KHI induced reconnection dynamics

As magnetic reconnection requires a thin current sheet, on
the order of the ion inertial length, the inertia of the Kelvin-
Helmholtz (KH) driven vortex motion can provide a powerful
external driver for reconnection to occur. An example of one
such current sheet driven by KH vortex motion is shown in
Figure 1. KHI driven reconnection signatures have been detected
by multiple spacecraft missions at both low and high-latitudes
(Nykyri et al., 2003b; 2006b; Eriksson et al., 2016; Li et al., 2016;
Burkholder et al., 2020b; Li et al., 2013).

The importance of KHI to reconnection was first recognized
by Otto and Fairfield (2000), who compared boundary layer
signatures observed by the Geotail spacecraft (Fairfield et al., 2000)
during strongly northward interplanetarymagnetic field (IMF) with
two dimensional (2D) magnetohydrodynamic (MHD) simulations.
Those simulations showed that KHI was able to grow to non-
linear stages and twist the magnetic fields into an anti-parallel
configuration when the IMF and geomagnetic fields were initially
parallel along the shear flow direction and the Alfvén speed along
the wave vector, k, was less than the shear flow speed. This resulted
in intense current layers and magnetic reconnection within the
high-density filament of the KH vortex. Both 2D MHD (Nykyri
and Otto, 2001) and 2D Hall-MHD (Nykyri and Otto, 2004)
plasma approximations show this mechanism can provide mass
transport velocities of 1–2 km/s during strongly northward IMF,
corresponding to a diffusion coefficient of 109 2/s. At this rate,
KH activity could populate the plasma sheet with cold, dense
magnetosheath material in about two hours.

In three dimensions (3D), magnetic reconnection also occurs
above and below the shear flow plane leading to a higher transport
rate, 1010 m2/s, during strongly northward IMF (Ma et al., 2017). A
comparison of Hall-MHD and test particle simulations with hybrid
simulations demonstrated that the particle mixing rates are similar
in both cases, but “plasma is transported through a few bigmagnetic

islands […] in the fluid simulation, while magnetic islands in the
hybrid simulation are small and patchy” (Ma et al., 2019).

When magnetic fields are initially anti-parallel across the shear
flow plane, magnetic reconnection can occur in both the high
and low filaments of the vortex, which results in the mixing
and capture of low density magnetospheric material into the
magnetosheath (Nykyri et al., 2006b; Eriksson et al., 2016). In the
case of a symmetric plasma density across the shear flow layer, the
direction of plasma transport is determined by the strength of the
current density in either spine (Nykyri and Otto, 2004).

The 3D dynamics of magnetic reconnection driven by the KHI
during southward IMF have been associated with Alfvénic plasma
jets propagating perpendicular to the initial shear flow plane and
the escape of magnetospheric electrons into the magnetosheath
(Li et al., 2023). Simulations of this geometry have shown that the
KHI can increase the reconnection rate even when the Hall term is
switched off (Ma et al., 2014a; b).

Reconnection in KH vortices often leads to the mixing of
plasmas with different energies and densities which can lead to
anisotropic velocity distribution functions (Nykyri et al., 2006b;
Moore et al., 2016) and the generation of ion and electron scale
plasma waves which can in turn lead to ion and electron heating
(Moore et al., 2016; 2017; Nykyri et al., 2021b). The KHI can
also effectively drive plasma turbulence to further enhance
plasma heating (Stawarz et al., 2016; Delamere et al., 2021).
Thus, the efficiency of plasma transport due to reconnection
within KHI should not be considered in isolation with regard
to other kinetic scale processes, as will be discussed in the
following sections.

2.2 Diffusive transport within the KHI

The large-scale KHI has been found to drive secondary
instabilities like the Rayleigh-Taylor instability (Nakamura et al.,
2022a) and/or secondary KHI (Matsumoto and Hoshino, 2004;
Nakamura et al., 2004; Faganello et al., 2008) which interfere
with the large-scale evolution of KH vortices and influence the
transport of plasma. Inside fully developed vortices, turbulence
(Matsumoto and Hoshino, 2004; Stawarz et al., 2016) and magnetic
reconnection (see Sec.2.1) lead to diffusive particle transport. At
the spine region of the vortices, magnetic reconnection can strongly
influence the diffusive transport within the KHI.

Further, the multi-scale nature of the KHI has been discussed
in previous studies focusing on turbulent intermittency and
anisotropy related to the KHI (Stawarz et al., 2016), nonlinear
wave-particle interactions (Sorriso-Valvo et al., 2019) and the
distortions of the ion distribution functions due to kinetic effects
(Settino et al., 2020; 2021). More recently, Blasl et al. (2022) and
Nakamura et al. (2022a,b) reported the development of the Lower
Hybrid Drift Instability (LHDI) and a related thickening of the
spine region of KH vortices by diffusive plasma transport during
southward IMF from both kinetic simulations and MMS data.
Further, Blasl et al. (2023) identified small-scale current sheets
and ongoing electron-only reconnection related to this diffusive
process, shown in Figure 1. These results highlight the importance
of a multi-scale and multi-process approach for future studies
of the KHI.
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FIGURE 1
Kinetic scale effects of the KHI. Left, MMS1 observations of the spine region of a KH vortex with a kinetic scale current sheet (yellow shade) observed on
23 September 2017: ion (A) and electron energy spectrogram with overplotted electron temperature (B); electron density (C), magnetic field (including
|B|) (D), electric field (E), electron (F) and ion (G) velocities, and current density (H). Center bottom, MMS1-4 observations of the current sheet interval,
magnetic field components (J–L) and L-component of electron velocity (M). Center top, 3D simulation of electron density within the KHI vortex shown
in MMS observations with LHDI evident in mixing region. At right, time evolution of the kinetic scale mixing parameter for 3D (A–D), 2D (E–H), and 2D
without initial in-plane fields (I–L) simulations of the KHI event shown at left. Left and center panels (A–M) from Blasl et al. (2023). Right panels
(A–L) from Nakamura et al. (2022b).

2.3 Wave heating driven by the KHI

Theplasmamixing,magnetic field twisting, and strong gradients
of density, velocity, and pressure inherent to the KHI can support
the growth of wave modes which in turn leads to plasma heating.
Several wave modes associated with the KHI are known to drive
plasma heating across scale sizes at the magnetopause boundary.
At the ion scale the most intensely studied are Kinetic Alfvén
waves (KAWs), electromagnetic ion cyclotron (EMIC) waves, and
magnetosonic waves.

For example, velocity gradients both parallel and perpendicular
to the background magnetic field are known to drive electrostatic
and electromagnetic ion cyclotron waves (Nykyri et al., 2003a;
2006a; Peñano and Ganguli, 2002; Kim et al., 2004). Zhang et al.
(2017) demonstrated that EMIC waves may also be generated in
regions where hot anisotropic plasma overlaps with a separate cold
and dense population as is the case in well developed KH vortices
where hot magnetospheric plasma is mixed or captured into the
magnetosheath.

The strong magnetic field gradients present in the KHI also
give rise to Alfvén resonance regions, where the surface wave
speed matches the local Alfvén speed. At these regions, surface
Alfvén waves mode convert to KAWs (Chaston et al., 2007;
Johnson and Cheng, 2001). KAWs energize and demagnetize
ions, allowing cross field transport of sheath ions into the
magnetosphere where they contribute to boundary layer
formation Chaston et al. (2007); Johnson and Cheng (2001). A
portion of the KAW electric field is parallel to the background
magnetic field, allowing for field aligned electron heating
(Hasegawa, 1976; Nykyri et al., 2021b).

Kinetic magnetosonic waves, the kinetic counterpart of fast
mode MHD waves, can arise from shell distributions in the ion
population, such as those produced by reconnection within KH
vortices. Fast mode waves carry energy perpendicularly across field
lines and can be triggered by a combination of fast sheath flows and
pressure perturbations, which appear at the center of KH vortices.
Fast mode and kinetic magnetosonic waves have been shown, both
in theory and observation, to effectively heat ions (Lembege et al.,
1983; Terasawa and Nambu, 1989; Moore et al., 2016; 2017).

In recent years, advances in in-situ instrumentation have allowed
significant progress investigating the effects of KH associated
waves above the ion cyclotron frequency. Observations of ion
acoustic waves and turbulence within KH vortices were reported
shortly after MMS’s launch (Wilder et al., 2016; Stawarz et al.,
2016). Lower hybrid waves have also been observed and kinetic
simulations indicate they are effectively able to heat the cold
sheath plasma as it mixes with the magnetospheric population
(Blasl et al., 2022; Blasl et al., 2023).

3 KHI and global scale influence

The KHI is subject to influence by changes in the larger
heliospheric environment, such as IMF orientation and seasonal
variations. Consider that even though the KHI can and does occur
for all IMF orientations (Kavosi and Raeder, 2015; Rice et al., 2022),
including southward IMF (Hwang et al., 2012; Blasl et al., 2022;
Li et al., 2023), the IMF orientation can influence its occurrence
rate and location. Henry et al. (2017) found that during Parker-
Spiral IMF, the KHI occurs most frequently at the dawn sector

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2024.1464010
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Rice et al. 10.3389/fspas.2024.1464010

due to smaller magnetic tension (Nykyri, 2013); while at the dusk
sector it is detectedmostly for strongly northward IMF (Taylor et al.,
2012; Henry et al., 2017). The KHI is not restricted to the equatorial
plane, and has been detected at high-latitudes close to the exterior
cusp (Hwang et al., 2011; Ma et al., 2016; Nykyri et al., 2021a). The
KHI can also, in turn, affect global scale processes, such as the
development of the magnetospheric plasma sheet. In this section
we provide an overview of the global scale processes affecting and
affected by the KHI.

3.1 Comparison of plasma transport at the
cusps and flanks

During extended periods of northward IMF, solar wind entry
into the magnetosphere leads to the formation of a cold, dense
plasma sheet (CDPS) (Wing et al., 2014). The CDPS exhibits a
characteristic dawn-dusk asymmetry in density and temperature
(Wing et al., 2005). In general, the dawnside plasma sheet is
denser than the duskside and exhibits a broad thermal distribution
while the duskside plasma sheet comprises disjoint hot and cold
populations (Nishino et al., 2007). The two primary entry paths of
the solar wind into the magnetosphere during northward IMF are
the KHI at the low-latitude magnetospheric flanks and double cusp
reconnection at high-latitudes.

Only recently has it become feasible for global modeling to
directly study the relative importance of cusp and flank entry
to the formation of the CDPS and the development of dawn-
dusk asymmetry. Sorathia et al. (2019) used a combination of
high-resolution global MHD and test particle simulations during
a synthetic interval of northward IMF to track the entry of
solar wind plasma into the magnetosphere and its acceleration
on its way to the central plasma sheet. They found comparable
contributions from flank-entering (KHI) and cusp-entering (high-
latitude reconnection) plasma, but very different effects on the
entering plasma. Flank-entering plasma was largely cold and dawn-
dusk symmetric, while cusp-entering plasma was predominantly
deflected dawnward and accelerated through its interaction with
the dusk-dawn directed high-latitude electric field (Burke et al.,
1979). The net impact is that the dawnside plasma contains the
cold flank-entering plasma and a wide range of accelerated cusp-
entering plasma, consistent with the broad thermal distribution
observed, as shown in Figure 2. The duskside plasma consists of
cold flank-entering plasma and a high-energy subset of the dawnside
cusp-entering plasma that is able to drift to the duskside. In this
way, it is found that the observed dawn-dusk thermodynamic
asymmetries are a consequence of the combined cusp- and flank-
entering populations.

3.2 Dipole tilt effects

New results highlight KHI as an important factor in enhanced
geomagnetic activity around the equinox. Kavosi et al. (2023) used
data from THEMIS (Angelopoulos, 2008) and MMS (Burch et al.,
2016a) over a full solar cycle to investigate the impact of Earth’s
dipole orientation on the formation and occurrence of KHI and
found that the KHI exhibits seasonal variation. The KHI is more

commonly produced during the equinoxeswhenEarth’s dipole is not
tilted toward or away from the Sun, which favors the formation of
the KHI at the magnetopause. During solstices, when Earth’s dipole
is tilted at extremes toward or away from the Sun, Earth’s magnetic
field suppresses KH wave activity (Kavosi et al., 2023).

At Earth’s magnetopause the KHI is primarily driven by a
velocity shear aligned with the wave vector, k. Any magnetic field
component alignedwith k acts to stabilize theKHI.This stabilization
is facilitated by magnetic tensions in the magnetosheath and
magnetosphere, which are associated with the IMF and geomagnetic
dipole field, respectively. The orientation of Earth’s magnetic dipole
axis varies both seasonally and diurnally due to the combined
effects of Earth’s orbit around the Sun (as seen in Figure 2) and
the rotation of the magnetic dipole about Earth’s rotation axis.
These variations introduce seasonal and diurnal fluctuations in
the growth of the KHI by altering the intensity of the magnetic
tension forces.

The tilt of Earth’s dipole axis towards or away from the sun
modulates the magnetic tension due to the orientation of the
magnetospheric field relative to the shear flow in the GSM-X-Y
plane. At equinoxes, the dipole axis is aligned with the GSM-Z axis,
perpendicular to the velocity, and the magnetospheric magnetic
tension diminishes to 0. Consequently, the dipole field lines exert
no stabilizing influence on the KHI and the probability of KHI
occurrence increases. At solstices, when the dipole is at itsmaximum
angle relative to the GSM-Z axis, the magnetospheric magnetic
tension is also maximized and exerts more stabilizing force on the
KHI, which decreases the probability of KHI occurrence. These
effects have been confirmed in observations by Kavosi et al. (2023),
as shown in Figure 2.

The dominance of the shear flow in the X direction
suggests that the magnetosphere’s magnetic tension, influenced
by the dipole’s tilt towards or away from the Sun, plays a
significant role in stabilizing KHI. Consequently, the equinoctial
effect exerts a significant influence on the seasonal and daily
variations of KHI, as corroborated by KHI occurrence rate
analysis in Kavosi et al. (2023).

4 Discussion and conclusion

As recounted here, recent advancements in observational and
computational capabilities have expanded our understanding of the
KHI as an active environment which influences and is influenced
by processes across scales sizes. At kinetic scales, reconnection,
diffusive transport, andwave activity contribute to enhanced plasma
transport and heating.These small scale processes can also interrupt
the development of KH vortices from linear to non-linear and rolled
up stages. At global scales, the location and occurrence of KHI is
modulated by IMF orientation and seasonal dipole tilt effects. The
KHI contributes to the formation of the CDPS during northward
IMF and its pronounced dawn-dusk asymmetry. Overall, the results
summarized here paint a picture of the magnetopause not as a static
boundary that is merely traversed by solar wind plasma, but as an
active participant in the transfer ofmass between themagnetosphere
and solar wind, a process in which the KHI plays a significant role.

Questions still remain about the nature and development
of the KHI. What are the origins of energetic particles within
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FIGURE 2
KHI on a Global Scale. At left, from Sorathia et al. (2019), global simulations indicate KHI driven flank entry and reconnection driven cusp entry of solar
wind plasma contribute to dawn-dusk asymmetries in the magnetopshere. Energy distributions of test particles that reside in the dusk (A) and dawn (B)
flank; and equatorial projections of test particles initialized in the solar wind colored by their energy, using separate color maps based their entry either
through the cusp or flank (C). At top right, adapted from Kavosi et al. (2023), the relative orientation of Earth’s rotation axis (black arrow) to the ecliptic
plane is subject to seasonal variation. A survey of in situ observations, bottom right, from Kavosi et al. (2023), shows KHI occurrence rate (orange bars)
is maximized(minimized) at equinoxes(solstices).

the KHI? How might geomagetic storm conditions affect the
development of the KHI? What effects might heavy ion species
have on the behavior of the KHI? What influence does the
KHI exert throughout the heliosphere, such as at the edges
of coronal mass ejections, co-rotating interaction regions, or
other planetary magnetospheres? Evidence of KH activity has
been observed at Mercury (Paral and Rankin, 2013), Mars
(Ruhunusiri et al., 2016; Poh et al., 2021; Wang et al., 2022), Saturn
(Ma et al., 2015; Dialynas, 2018; Burkholder et al., 2020a), and
Jupiter (Ranquist et al., 2019; Montgomery et al., 2023), but it is not
yet known how the scale size of the planetary magnetosphere affects
the multi-scale nature of the KHI.

The above questions and our new understanding of the KHI as
a multi-scale process should inform the direction of future research.
New studies on the diffusive transport within the KH vortices
should consider the multi-scale and multi-effect nature of the KHI
rather than focusing on single effects and scales. Efforts should
be made to relate the KHI to global parameters, such as the solar
wind conditions and season, in order to obtain a global picture
of the instability, its influences, and the implications for global
solar wind transport. Simulation studies should consider the role
of more realistic solar wind IMF orientations or the role of kinetic
physics (e.g., Ma et al., 2019) in KHI development and its effects.

Space weather forecasters may incorporate dipole tilt effects on KHI
into theirmodels, resulting inmore accurate and reliable forecasting.
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