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This paper considers a method for estimating bounce-averaged quasi-linear
diffusion coefficients due to whistler-mode waves for a specified ratio of
plasma frequency to gyrofrequency, ωp/Ωe, using values precomputed for a
different value of that ratio. This approach was recently introduced to facilitate
calculations associated with the “POES technique,” generalized to infer both
wave intensity and cold plasma density from measurements of particle fluxes
near the loss cone. The original derivation was justified on the basis of parallel-
propagating waves but applied to calculations with much more general models
of the waves. Here, we justify the estimates, which are based on equating
resonant frequencies for differing values of ωp/Ωe and energy, for wide ranges
of wave normal angle, resonance number, energy, and equatorial pitch angle.
Refinements of the original estimates are obtained and tested numerically
against full calculations of the diffusion coefficients for representative wave
models. The estimated diffusion coefficients can be calculated rapidly and
generally give useful estimates for energies in the 30-keV–300-keV range,
especially when both relevant values of the ratio ωp/Ωe are large.
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1 Introduction

Cyclotron-resonant wave–particle interactions are a crucial aspect in magnetospheric
dynamics, especially in radiation belts, and there is a vast tradition of simulating the
process as quasi-linear diffusion of phase space density by a broad-band spectrum
of small, incoherent waves, following the pioneering work of Kennel and Engelmann
(1966) and Lerche (1968), with further development by Lyons et al. (1971) and Lyons
(1974a). Modern formulations were given by Horne et al. (2005), Glauert and Horne
(2005), and Albert (2005).

Known wave parameters can be used to calculate quasi-linear diffusion coefficients,
which help determine decay lifetimes and levels of trapped and precipitating particle fluxes.
Conversely, measurements of particle flux can be used to estimate the wave intensity, using
a process often referred to as the “POES technique” (Li et al., 2013; Ni et al., 2014), which
exploits the ability of low-altitude POES satellites to resolve the loss cone. Essentially,
diffusion coefficients are calculated and used to estimate the ratio of trapped to precipitating
flux, using assumed values for parameters including the wave amplitude, wave frequency,
wave normal angle distributions, and cold plasma density; this is repeated for different
wave amplitudes until an agreement with measurements is obtained. The wave amplitude
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is a specifically convenient, as well as important, parameter to vary
because the diffusion coefficients simply scale with B2

wave.
Longley et al. (2022) recently generalized this procedure to

treat cold plasma density as an additional free parameter, using
the additional constraint that the wave amplitude calculated from
two POES energy channels remains the same. In principle, this
requires extensive, time-consuming recalculations of diffusion
coefficients for different values of the ratio of electron plasma
frequency to gyrofrequency, R = ωp/Ωe, referred to here as the
density ratio. Repeated, rapid evaluation or approximation of
diffusion coefficients is also required in many other settings,
such as diffusion simulations using event-specific wave parameters
(Watt et al., 2021; Yu et al., 2022) or when used to modify
test particle trajectories to account for subscale wave–particle
interactions in the evolving conditions of global MHD simulations
(Chan et al., 2023; Michael et al., 2024).

One expedient for rapidly estimating diffusion coefficients is
the “mean value approximation,” which replaces integration over
the wave normal angle with evaluations at a few carefully chosen
values (Albert, 2007b; 2008). Another approach, introduced by
Longley et al. (2022), estimates diffusion coefficients for particle
energy E and pitch angle α and a chosen value of R from a table
of values at a reference density valueR0, for which the calculations
are already done. This was done by finding adjusted values ̃E and ̃α
that equate an approximate expression for the resonant frequency
for the two sets of parameters, so that

ωres (E,α,R) ≈ ωres ( ̃E, ̃α,R0) . (1)

In Section 2, we consider the approximations underlying
Equation 1. Longley et al. (2022) only considered parallel-
propagating waves (for which only the primary resonance
contributes to diffusion) and characterized the validity of Equation 1
in terms of particle energy. In this study, constraints are developed
in terms of wave frequency, justifying its use for a wide range of wave
normal angle, particle energy, and resonant harmonic number. In
Section 3, Equation 1 is used to estimate the diffusion coefficients,
e.g.,

D (E,α,R) ≈ D( ̃E, ̃α,R0) , (2)

obtaining differing relativistic modifications for Dαα, Dαp, and Dpp
and depending on whether n ≠ 0 or n = 0. Finally, in Section 4, we
numerically compare calculated and estimated diffusion coefficients,
using two very simple choruswavemodels, for several representative
combinations ofR andR0.

2 Resonant frequencies

The condition for resonance between a gyrating charged particle
and a plane wave is

ω− k‖v‖ =Ωn, Ωn ≡ snΩc/γ, (3)

where the particle has parallel velocity v‖, relativistic factor γ,
and gyrofrequency sΩc/γ (here, s = ± 1 is the sign of the particle
charge, with all frequencies unsigned), and the wave has a frequency
ω and parallel wave number k‖. The “harmonic number” n can

be any integer; n = 0 indicates Landau resonance. After squaring,
Equation 3 becomes

ω2

k2c2
= v

2

c2
ω2

(ω−Ωn)
2 cos

2 αcos2 θ. (4)

The left-hand side is the inverse-squared index of refraction of the
wave, and the particle pitch angle α and wave normal angle θ are
given by cos α = v‖/v and cos θ = k‖/k, respectively. Albert (1999,
2004, 2005, 2007a) noted the usefulness of this form for both analysis
and approximation.

2.1 Full cold plasma refractive index

For completeness, we formulate the full cold plasma refractive
index for R-mode (whistler) waves as

ω2

k2c2
= [(RL− PS) ⁢sin2 θ+ 2PS

−σPD ⁢√(RL− PS)2 sin4 θ+ 4P2D2 cos2 θ]/2PRL, (5)

where σPD is the sign of PD (typically negative), and the standard
plasma quantities R, L, and P for a single-component plasma (Stix,
1992) can be written as

{R
L
} = 1±

ω2
p (1+M)

Ω2
e

Ωe/ω
1−M∓ (ω/Ωe −MΩe/ω)

,

P = 1−
ω2
p (1+M)

Ω2
e

Ω2
e

ω2 , S = R+ L
2
, D = R− L

2
.

(6)

Here, ωp is the electron plasma frequency (4πne2/me)
1/2, and the

mass ratioM isme/mp ≈ 1/1836.
To determine the resonant frequency ω as a function of θ,

Horne et al. (2005) and Glauert and Horne (2005) expanded these
expressions into a 10th order polynomial in ω (or 3rd order in
ω2 if n = 0) and retained only the valid real roots. Ions heavier
than H+ are ignored here, although treated by Albert (2003)
for electromagnetic ion cyclotron (EMIC) waves. Albert (2005)
and references therein developed criteria to isolate the roots of
Equation 4 within restricted intervals of ω, allowing the efficient
use of real-valued, one-dimensional root finding and frequently
reducing or even eliminating the consideration of irrelevant ranges
of θ and n. Figure 1 shows the quantities on both sides of Equation 4
as functions ofω at fixed θ, as well as various approximations of each,
as discussed below.

2.2 Quasi-longitudinal approximation

FromEquation 5, the quasi-longitudinal approximationneglects
the termsproportional toM and sin2 θ, and further considersωp ≫ ω
and ω2

p(Ωe cos θ−ω) ≫ ω(Ω2
e −ω

2). The well-known result is

k2c2

ω2 ≈
RL

S−D cos θ
≈ 1+

ω2
p

ω(Ωe cos θ−ω)
, (7)

which is illustrated in Figure 1. With θ = 0, Equation 7 is the same
as Equation A13 of Longley et al. (2022). Using this in the resonance
condition, Equation 4, gives a cubic equation in ω, namely,

c3(ω/Ωe)
3 − c2(ω/Ωe)

2 + c1 (ω/Ωe) − c0 = 0, (8)

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2024.1470742
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Albert et al. 10.3389/fspas.2024.1470742

FIGURE 1
Versions of expressions constituting the resonance condition, for the parameter values shown in the plot. The inverted-U-shaped curves are the
inverse-squared refractive index, given by Equation 5 (black), 7 (green), 11 (red), or 12 (blue). The upward-sloping (or horizontal) cyan curves show the
corresponding term of the resonance condition (right-hand side of Equation 4) for several values of the harmonic number n. The upward-sloping
magenta curves approximate the cyan curves according to Equation 14.

FIGURE 2
Values of ̃E, according to Equation 19, used to estimate diffusion coefficients for Eand R from values calculated for R0. Values for n ≠ 0 are shown in
black, and values for n = 0 are shown in magenta, for two different choices of R and R0.

with

c3 = (γ2 − 1)(1− cos2αcos2 θ) + 1,

c2 = [(γ2 − 1)(1− cos2αcos2 θ) + 1]cos θ− 2nγ,

c1 = (ω2
p/Ω2

e)(γ2 − 1)cos2αcos2 θ− 2nγ cos θ+ n2,

c0 = n
2 cos θ.

(9)

With θ = 0 (for which only n = − 1 contributes to diffusion), these
coefficients reduce to Equation 17 of Longley et al. (2022), who
noted that ωp/Ωe entered only in the expression for c1, which
would be left unchanged by compensating changes in γ2 − 1. Indeed,
changing γ also affects c2 and c3, but this effect was declared minor
in the “weakly relativistic limit” such that 2nγ is approximately
unchanged. By implication, γ2 − 1 is also approximately unchanged,

and further justification is provided by small values of α. To this
extent, the resonant value of ω depends on ωp mainly through
the combination (ω2

p/Ω2
e)(γ2 − 1)cos2 α, or the square of (p‖/mc)R,

whereR = ωp/Ωe.
With n = 0, Equations 8, 9 reduce to the quadratic equation

ω2

Ω2
e
− ω
Ωe

cos θ+
ω2
p

Ω2
e
[
(v2/c2)cos2αcos2 θ

1− (v2/c2)cos2αcos2 θ
] = 0. (10)

If cos α cos θ ≈ 1, the bracketed expression in Equation 10 is
B ≈ (p/mc)2 cos2αcos2 θ, regardless of energy, which suggests
holding (p‖/mc)R constant, as in the case n ≠ 0. Alternatively, the
approximation B ≈ (v/c)2 cos2αcos2 θ applies if either cos α cos θ
is small or v/c is small (of course neither can exceed 1), which
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FIGURE 3
Calculated and estimated values of Dα0α0 vs. energy, at a fixed equatorial pitch angle, for a simple model of near-equatorial chorus waves. Black
represents n ≠ 0, and magenta represents n = 0. Top: calculated values for R0 = 5.0 and R = 1.5 are shown by dashed and solid curves, respectively, and
estimated values for R using R0 are shown by symbols. Factors of ̃γ/γ are included for D(R;R0) but omitted for D∗(R;R0). Bottom: ratio of the
estimated and calculated values. The crosses at the bottom (top) of the plot indicate that the estimated value is zero, but the calculated value is
nonzero (or the reverse).

motivates considering (v‖/c)R constant. The two prescriptions
coincide if both cos α cos θ ≈ 1 and v/c are small (since then p‖/mc
and v‖/c are approximately equal). Thus, holding (p‖/mc)R constant
rather than (v‖/c)R constant is favored only if both cos α cos θ ≈ 1
and v/c ∼ 1. Since the resonance condition for n = 0 is cos α cos θ =
1/[(kc/ω)(v/c)], this case implies kc/ω ≈ 1, which is an atypically
low value, as illustrated in Figure 1.

2.3 High-density approximation

Lyons (1974b) and Albert (1999) used “high-density
approximation,” which amounts to neglecting the leading term 1
relative to the terms proportional to ω2

p/Ω2
e in the definitions of R,

L, and P. Then, Equation 5 reduces to

ω2

k2c2
=
Ω2

e

ω2
p
⁢ 1
1+M
⁢ [M (1− sin

2 θ
2
)− ω

2

Ω2
e

+√M
2 sin4 θ
4
+ ω

2

Ω2
e
(1−M)2 cos2 θ ], (11)

which is illustrated in Figure 1. A similar form applies to L-mode
EMIC waves. Equation 11 should be accurate for a wider range of
ω and θ than Equation 7, although for a narrower range of ωp/Ωe.
Indeed, it was introduced by Lyons and Thorne (1970) to study
the magnetospheric reflection of whistler waves, which involves θ

passing through 90°. The full, quasi-longitudinal (QL), and high-
density (HD) versions of the refractive index μ were compared for
several combinations of ωp/Ωe and θ in Figure 4 of Albert (2005),
where it was also shown analytically (in Appendix A) that μ2HD <
μ2full < μ

2
QL. Combining μ2HD with the resonance condition gives a 6th

order polynomial in ω, but Albert (1999) showed that it yields at
most three roots in the whistler range.

Setting M = 0 in Equation 11 (which requires ω to be large
compared to the lower hybrid frequency, ωLH ≈ √MΩe) yields

k2c2

ω2 =
ω2
p

ω(Ωe cos θ−ω)
, (12)

which was used by Albert (2017) in a treatment of highly oblique
whistler waves. It can also be regarded as a simplified version of
quasi-longitudinal approximation. Combining it with the resonance
condition yields a cubic equation of the form of Equation 8 with

c3 = γ
2,

c2 = γ2 cos θ− 2nγ,

c1 = (ω2
p/Ω2

e)(γ2 − 1)cos2αcos2 θ− 2nγ cos θ+ n2,

c0 = n2 cos θ.

(13)

This set of coefficients agrees exactly with Equation 9 for c0 and c1,
and approximately for c2 and c3 if cos α cos θ≪ 1. Changing ωp/Ωe
and adjusting γ to maintain the value of c1 again modifies c2 and c3.
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FIGURE 4
Calculated and estimated values of Dα0α0 vs. energy for a simple model of near-equatorial chorus waves, in the same format as Figure 3, showing
values for R = 5.0 calculated and estimated from values for R0 = 1.5.

FIGURE 5
Calculated and estimated values of Dα0α0 vs. energy for a simple model of mid-latitude chorus waves, in the same format as Figure 3, showing values
for R = 1.5 calculated and estimated from values for R0 = 5.0.
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FIGURE 6
Calculated and estimated values of Dα0α0 vs. energy for a simple model of mid-latitude chorus waves, in the same format as Figure 3, showing values
for R = 5.0 calculated and estimated from values for R0 = 1.5.

2.4 Approximate resonance condition

Lyons et al. (1972) and Albert (1994) consideredω≪ |Ωn| in the
resonance condition (Equation 4) for n ≠ 0 to obtain

ω2

k2c2
=
v2γ2

c2
ω2

n2Ω2
e
cos2 αcos2 θ (14)

and further approximated the refractive index (Equation 12) as

k2c2

ω2 =
ω2
p

ωΩe cos θ
. (15)

Both of these approximations are illustrated in Figure 1. At the
risk of discarding two potential “anomalous” resonances with ω >
|n|Ωe/γ (Albert, 2005), they lead to the explicit expressions

ω
Ωe
=
{
{
{

(Ω2
e/ω2

p)(mc/p‖)
2n2 sec θ, n ≠ 0,

(ω2
p/Ω2

e)(v2‖/c
2)cos θ, n = 0.

(16)

However, combining Equation 14 with Equation 11, instead of
the cruder approximation Equation 15, replaces Equation 16
with a quadratic equation for ω2 (for n ≠ 0), whose coefficients
still depend on R = ωp/Ωe only through the combination
(p‖/mc)R. For n = 0, Equation 11 combined with the full resonance
condition (Equation 4) gives a quadratic equation for ω2 whose
coefficients depend onR only through the combinationR(v‖/c).

2.5 Compensating changes in R and energy

The various expressions in the preceding sections all suggest
that the resonant frequency ω(E,α,R) can be approximated as
ω( ̃E, ̃α,R0), without restrictions on (E,α,n), if ̃E and ̃α are
chosen such that

̃p‖ = (R/R0)p‖, n ≠ 0,

̃v‖ = (R/R0)v‖, n = 0.
(17)

The scaling for n ≠ 0 is consistent with Equations 23,
25 (although not the reversed notation in Equations 24,
26) of Longley et al. (2022).

Equation 17might further suggest that both the local pitch angle
̃α and ̃p (or ̃v) be considered free variables that are chosen to satisfy

Equation 1. However, this would introduce undesirable dependence
on latitude λ in the relationship between the corresponding values
of the equatorial pitch angle, αeq. For example, the choice ̃p =
p in Equation 17 gives cos ̃α = (R/R0)cos α or, converting from the
local pitch angle α to the equatorial pitch angle αeq,

sin2 ̃αeq =
R2

R2
0
sin2αeq +

1−R2/R2
0

B (λ)/Beq
. (18)

The dependence on λ in Equation 18 is not compatible with the use
of a table of bounce-averaged diffusion coefficients evaluated on a
grid of (E,αeq) values, as intended by Longley et al. (2022). Similarly,
the approach hinges on being able to choose ̃p or ̃v in a manner
independent of θ and n, which are also integrated or summed over
in the calculation of diffusion coefficients.
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FIGURE 7
Calculated and estimated values of Dα0α0 vs. energy and equatorial pitch angle, for a simple model of near-equatorial chorus waves. The plots on the
main diagonal (top left to bottom right) show calculated values of D(R). The remaining plots show the ratio of D(R) estimated using R0 to calculated
values of D(R). Fully saturated blue indicates values at or below the given limit of the appropriate color bar, while fully saturated red indicates values at
or above the given limit; for the ratio plots, this includes a zero denominator but a nonzero numerator. Gray is used where D = 0 for both calculated
and estimated values.
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FIGURE 8
Same as Figure 7 but for mid-latitude chorus waves.
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Thus, with ̃α = α and using the relations γ = 1/√1− v2/c2 =
√1+ (p/mc)2 = 1+E/Er, where Er is the rest energy
mc2, Equation 17 yields

̃E =
{{{{
{{{{
{

√E2r +E(E+ 2Er)(R2/R2
0) −Er, n ≠ 0,

Er/√1−
E(E+ 2Er)

(E+Er)
2 (R

2/R2
0) −Er, n = 0.

(19)

Longley et al. (2022) used this expression with n = − 1 to estimate

Dαα

p2
(E,α,R) ≈

Dαα

̃p2
( ̃E,α,R0) . (20)

For n = 0, the implicit restriction in Equation 19 thatR/R0 cannot
be too large for a given value of E just reflects the requirement in
Equation 17 that ̃v < c. Figure 2 shows ̃E as a function of E for two
different choices of R and R0. It is evident that with R <R0, the
value ̃E is less thanE andmay require the table based onR0 to extend
to lower energy than the actual range of interest. Similarly, ifR >R0,
the table may be required to extend to quite high energy, and, for n =
0, Equation 19 for ̃Emay become singular.

3 Diffusion coefficients

Even when E can be adjusted to yield the same resonant
frequency for two different values of R = ωp/Ωe, it does not
follow that the quasi-linear coefficients are the same since they
are not functions of ω alone. However, approximate values of the
corresponding values ofD can be related simply, as explained herein.

Using the expressions and notation of Albert (2005) and Albert
(2007b) (which are exactly equivalent to those in Glauert andHorne
(2005)), the local pitch angle diffusion coefficient is

Dαα

p2
=
Ωc

γ2
B2
wave

B2
o

∞

∑
n=−∞
∑
ωn

∫
θmax

θmin

sin θdθΔnG1G2, (21)

where Dαα/p2 has dimensions of 1/t, and

Δn =
π
2

sec θ
|v‖/c|3

Φ2
n
(−sin2α+Ωn/ω)

2

|1− (∂ω/∂k‖)θ/v‖|
,

G1 (ω) =
ΩcB

2 (ω)

∫
ωUC

ωLC

B2 (ω′) dω′
, G2 (ω,θ) =

gω (θ)
N (ω)
,

N (ω) = ∫
θmax

θmin

dθ′ sinθ′Γgω (θ
′) , Γ = μ2 |μ+ω

∂μ
∂ω
| , μ = kc

ω
.

(22)

Furthermore, from Lyons (1974a),

Dαp

Dαα
= sin α cos α
−sin2α+Ωn/ω

,
Dpp

Dαα
= (

Dαp

Dαα
)
2

. (23)

Note that G1 in Equation 22 does not depend on R, E, or α,
but G2 depends on R through Γ. Using Equation 12 gives Γ =
(ωΩe cos θ/2ω2

p)μ5 (Albert, 2017), so G2 ∼ 1/Γ ∼R2/μ5 ∼ 1/R3 in
this approximation.

To characterize Δn, substituting Equation 12 in
Equation 6 of Albert (2005) yields

1
v‖
( ∂ω
∂k‖
)
θ
= 2ω
ω−Ωn

Ωe cos θ−ω
Ωe cos θ

≈ {
−2ω/Ωn, n ≠ 0,
2, n = 0,

(24)

so the factor of Δn involving (∂ω/∂k‖)θ is typically ≈1. Similarly,

−sin2α+
Ωn

ω
≈ {

Ωn/ω ∼ 1/γ, n ≠ 0,
−sin2α, n = 0.

(25)

The factor Φ2
n is given in Equation 9 of Lyons (1974b). Using

Equation 12, the only dependence on ωp is through the
argument of the Bessel functions, expressed by Albert (1999) as
tan α tan θ(sωγ/Ωe − n). This is zero for parallel-propagating waves,
and the dependence on γ is otherwise neglected for both n ≠ 0 and
n = 0. Thus, Δn ∼ 1/(γ2v

3
‖) ∼ γ/p

3
‖ for n ≠ 0, and Δn ∼ sin4α/v

3
‖ for

n = 0.
The overall scaling of Equation 21 is therefore,

Dαα

p2
∼
{
{
{

1/(Rp‖)
3 γ, n ≠ 0,

sin4 α/(Rv‖)
3γ2, n = 0.

(26)

Thus, if ̃E and ̃α are chosen in accordance with Equation 17, the
corresponding values of Dαα will be approximately related by

Dαα

p2
(E,α,R) ≈

Dαα

̃p2
( ̃E, ̃α,R0) ×{

̃γ/γ, n ≠ 0,
( ̃γ/γ)2(sin α/ sin ̃α)4, n = 0,

(27)

which refines Equation 20. Similarly, using Equations 23, 25, taking
̃α = α, converting from local pitch angle α to equatorial pitch angle

α0, and bounce averaging (which does not change any of the
scaling) extend Equation 27 to

Dα0α0

p2
(E,R) ≈

Dα0α0

̃p2
( ̃E,R0) ×{

̃γ/γ, n ≠ 0,
( ̃γ/γ)2, n = 0,

Dα0p

p2
(E,R) ≈

Dα0p

̃p2
( ̃E,R0) ×{

1, n ≠ 0,
( ̃γ/γ)2, n = 0,

Dpp

p2
(E,R) ≈

Dpp

̃p2
( ̃E,R0) ×{

γ/ ̃γ, n ≠ 0,
( ̃γ/γ)2, n = 0.

(28)

Mourenas and Ripoll (2012) and Artemyev et al. (2013), relying on
the refractive index of Equation 15 and approximations of Φ2

n, also
obtained detailed analytical estimates for the total bounce-averaged
pitch angle diffusion coefficient. With ̃E determined by Equation 19
and with ω≪Ωe/γ, the scalings are consistent with those
obtained here.

4 Numerical tests

Bounce-averaged quasi-linear diffusion coefficients were
calculated using the simple chorus wave models of Glauert and
Horne (2005) and Horne et al. (2005), namely,

B2 (ω) = exp [−(ω−ωm)
2/δω2], ωLC ≤ ω ≤ ωUC,

gω (θ) = exp [−(tan θ− tanθm)
2/tan2θw], θmin ≤ θ ≤ θmax.

(29)

The parameter values used in Equation 29 are {ωm,δω,ωLC,ωUC}
= {0.35,0.15,0.125,0.575} ×Ωeq and {θm,θw,θmin,θmax} =
{0,30°,0,45°} at L = 5.25. The “equatorial” model restricts
the latitude to 0 ≤ λ ≤ 15°, while the “mid-latitude” model
differs only in taking 15° ≤ λ ≤ 30°. Cold plasma density
was taken as a constant along dipole magnetic field lines,
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with chosen representative values of R = ωp/Ωeq. For these
comparisons, only the range n = − 5 to 5 was included and,
for concreteness, the wave amplitude was set to Bwave = 100
pT. For each wave model and R value, diffusion coefficients
were calculated for 80 (logarithmically spaced) values of E
between 100 eV and 10 MeV and 89 values of α0 between 1° and
89°.

The top panel of Figure 3 shows values of Dα0α0 vs. energy,
at a fixed equatorial pitch angle α0 = 5°, for the equatorial model.
Values calculated for R0 = 5.0 are shown by dashed curves, values
calculated for R = 1.5 are shown by solid curves, and symbols
show values for R estimated using the values calculated for R0.
Results for n ≠ 0 and n = 0 are shown separately, in black and
magenta, respectively. Estimates based on Equation 20, denoted
D∗(R;R0), are indicated by asterisks, while estimates based
on Equation 28, denoted D(R;R0), are marked by diamonds.
It is seen that the estimates are qualitatively close to the
calculated values for much of the energy range, although less
so for n = 0 than for n ≠ 0, and that the factors of ̃γ/γ in
Equation 28 noticeably improve the agreement above a few hundred
keV. Note that, from Figure 2 (left), E below 1 keV would
require ̃E below 100 eV, outside the range of the calculated table
(100 eV–10 MeV).

The comparison is made clearer in the bottom panel of Figure 3,
which shows the ratios of estimated to calculated values. For
n ≠ 0, especially with the factors of γ included, the agreement
is quite good between 30 keV and 300 keV, which is the range
covered by the POES satellite and considered by Longley et al.
(2022). However, the estimates are much less reliable for energy
outside that range, giving underestimates at low and very high
energy and overestimates in a broad range at approximately
1 MeV. Cases for which estimated values are zero (due to lack
of resonances) but calculated values are nonzero are shown
by crosses at the bottom of the panel, and crosses at the
top of the panel indicate nonzero estimates where calculations
result in zero.

The results of conversely using values calculated for R0 =
1.5 to estimate values for R = 5.0 are shown in Figure 4.
For this combination of R and R0, the estimated values
of D are within a factor of approximately 10 for energy
below approximately 2 MeV, with underestimates below
1 MeV and overestimates above 1 MeV. From Figure 2 (right),
values of ̃E are outside the range of the calculated table for
approximately E > 2.7 MeV for n ≠ 0 and E > 24 keV for n =
0.

Figures 5, 6 repeat Figures 3, 4 using the mid-latitude chorus
model. With R = 1.5 and R0 = 5, the estimates for n ≠ 0 are
within a factor of 10 in the range 100 keV to 2 MeV (if the
relativistic factors are included), but they are lower at lower
energy and higher at higher energy. For n = 0, the estimates are
with a factor of 10 between 20 keV and roughly 150 keV but
predict nonzero values up to approximately 600 keV, while the
full calculations indicate they should be zero. With R = 5 and
R0 = 1.5, the estimates for n ≠ 0 are fairly reliable between 10 keV
and 2 MeV but fail above 2 MeV because (as shown in Figure 2)
they require values beyond the computed table. For n = 0, the
estimates are fairly good between 2 keV and 10 keV but fail above

10 keV because, again, Equation 19 requires values of ̃E beyond the
calculated table.

Figure 7 shows equatorial pitch angle diffusion coefficients for
the equatorial chorus model as a function of both energy and pitch
angle. Calculated values of D(R), for R = {1.2,1.5,2.5,5.0,7.5}, as
shown in the plots along the main diagonal of the figure, while
the ratios of estimated-to-calculated values, D(R;R0)/D(R), are
shown otherwise. For the values of R and R0 used, it can be seen
that the ratios often fall between 0.10 and 10 but frequently exceed
that range. Naturally, D(R;R0) and D(R0) are closest when R
and R0 are closest. The estimates are closer when R and R0 are
both larger than when they are both small. Generally, D(R;R0) is
more likely to be an underestimate of D(R) (blue regions) when
R >R0 and an overestimate (red regions) when R <R0. The
best agreement occurs roughly at approximately 100 keV at a low
pitch angle and a few hundred keV for a larger pitch angle, with
deteriorating agreement for energy above or below those values.
Finally, similar trends are seen in Figure 8 for the mid-latitude
chorus model.

5 Summary

This paper explored a method for quickly and easily estimating
bounce-averaged quasi-linear diffusion coefficients for one value of
“density ratio” R = ωp/Ωe using an existing set of values computed
for a different value of R. It was introduced by Longley et al.
(2022) for the specific application of generalizing the “POES
technique” to infer bothwave intensity and cold plasma density from
measurements of particle flux near the loss cone. In principle, that
the procedure could be donewithout such approximations, although
it would require repeated, time-consuming calculation of diffusion
coefficients.

Although the original derivation was justified on the basis of
parallel-propagating waves (wave normal angle θ = 0), for which
only resonances with n = − 1 contribute, the results were applied to
diffusion coefficient calculations with much more general models
of the waves. Here, we have justified the estimate of D(E,R) by
D(E,R0), (Equation 2), based on equating the resonant frequency
ω (Equation 1), for wide ranges of θ,n, E, and the equatorial
pitch angle αeq, drawing on both the quasi-longitudinal and high-
density approximations of the whistler-mode refractive index.
Modifications accounting for dependence of D on energy beyond
that captured by the dependence on ω were obtained (Equation 28)
and found to improve the agreement of the estimates with full
calculations using two simple, idealized wave models.

The resulting agreement is far from perfect, however, especially
when R and R0 differ greatly. For the tests done, the estimates
were typically within a factor of 10 for energy between 10s of
keV and 1 MeV for resonances with n ≠ 0 but frequently worse for
greater energy. For diffusion driven by Landau resonance, n = 0, the
estimates for α0 = 5°were reliable only over limited ranges of energy
below 100 keV. These results depend on the wave models: Landau
resonance typically occurs near the particle mirror point, so it might
be expected that values for the “equatorial” wavemodel, restricted to
below 15° latitude, are difficult to estimate.

We note that all parameters specifying the wave frequency and
wave normal angle distributions have been held fixed throughout.
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Sensitivity to these parameters was considered by Albert (2012).
Furthermore, the quasi-linear diffusion paradigm itself has well-
known caveats and limitations, e.g., Allanson et al. (2024). For
use with the POES technique, which has additional sources
of inaccuracy and uncertainty, the estimates here are probably
acceptable. If nothing else, the wave amplitude and density values
obtained can be used in more refined calculations. More generally,
the tradeoff of accuracy for computational convenience should
be carefully assessed for each intended application. One possible
avenue toward improvement is to precompute several tables of
diffusion coefficients, with different values of R, and use the
approach described here to scale from the nearest match to required
R values. This is identical to the interpolation inR but in a manner
that respects the (approximate) analytical form of the underlying
expressions.
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