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Introduction: The 21 μm emission feature discovered in a small sample of
carbon-rich protoplanetary nebulae has remained unidentified for over 30 years.
A dozen of different molecular species (both organics and inorganics) have
been proposed as the carrier candidates of this important feature, among
which polycyclic aromatic hydrocarbons (PAHs) and fulleranes (hydrogenated
fullerenes) have yet to be sufficiently examined.

Method: In this study, we attempt to fit the 21 μm features in observed spectra
of the above-mentioned astronomical sources via theoretically simulated
spectra of various PAHs and fulleranes, aiming to investigate whether the two
hydrocarbon families can reproduce the 21 μm feature.

Results and Discussion: Based on the fitting outcomes we conclude that
fulleranes can provide a more plausible explanation for the origin of 21 μm
feature than PAHs.

KEYWORDS

infrared, polycyclic aromatic hydrocarbons, fullerenes, fulleranes, protoplanetary
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1 Introduction

As a low- or intermediate-mass star progresses into the final stage of the asymptotic
giant branch (AGB), its circumstellar envelope is detached from the stellar surface, and the
effective temperature rises (e.g., Kwok, 1993; 2024). When the center star is sufficiently hot,
the envelope is ionized, initiating the formation of a planetary nebula (PN). During the
transition from the AGB to PN phases, there is a brief evolutionary phase (∼103 yr), called
protoplanetary nebula (PPN, see, e.g., Volk Kwok, 1989). Observing PPNe is challenging
because theirmain radiation bands are in the infraredwavelength region and almostwithout
emission lines in the optical region. Infrared instruments such as the Infrared Astronomical
Satellite (IRAS, Neugebauer et al., 1984), the Infrared SpaceObservatory (ISO, Van Winckel,
2003), and the Spitzer Space Telescope (Gehrz et al., 2007) have significantly enhanced our
ability to observe and study PPNe.

Despite evolving from an AGB star’s envelope, a PPN’s infrared spectrum exhibits
substantial variations with the appearance of a group of Unidentified Infrared Emission
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FIGURE 1
Normalized Spitzer spectra of the 21 μm sources (solid curves). The continua (red dashed curves) are subtracted to obtain the spectra for fitting (blue
dotted curves).

(UIE) bands at 3.3, 3.4, 6.2, 6.9, 7.7, 8.6, 11.3, and 12.7 μm (Duley
and Williams, 1981; Buss Jr et al., 1990). suggesting the formation
of complex hydrocarbons with aromatic and aliphatic functional
groups during the PPN stage (Kwok, 2004). The chemical processes
that lead to the production of these organic molecules in PPN have
yet to be uncovered.

In addition, an UIE feature at 21 μm was first discovered by
Kwok et al. (1989) in four carbon-richPPNe from the IRASdatabase.
Over the subsequent three decades, researchers have detected a total
of 31 sources exhibiting this feature from the IRAS, ISO, and Spitzer
Space Telescope databases (García-Lario et al., 1999; Hrivnak et al.,
2000; 2009; Cerrigone et al., 2011; Volk et al., 2011; Matsuura et al.,
2014; Gładkowski et al., 2019). Among them, 20 are within the
Milky Way galaxy, nine are within the Large Magellanic Cloud
(LMC), and two are within the Small Magellanic Cloud (SMC).
The 21 μm emission feature has an asymmetric profile that expands
over the wavelength range of 17.4–23.4 μm with a maximum flux
centered around 20.1 μm. The feature is characterized by a rapid
rise in the short and gradually declining at the long wavelength side
(Volk et al., 2020). The 21 μm feature is mostly accompanied by a
broad emission at 30 μm and a plateau emission at 11–17 μm. The
exclusive presence of the 21 μm feature in PPNe may hold a vital
clue in understanding PPN chemistry. However, the identification

of its carrier remains highly controversial. So far different carrier
candidates have been proposed (see, Volk et al., 2020, for a list).
Considering that the carrier must meet two criteria: 1) the involved
elements must be abundant enough to account for the intense 21
μm emission; 2) other emission bands produced by the substance
must resemble the observed spectrum, Zhang et al. (2009) examined
nine Si-, Fe-, and Ti-bearing carrier candidates, and found that most
of them except FeO nanoparticles do not satisfy the two criteria.
Subsequently, Li et al. (2013) found evidence that FeO cannot be
responsible for the 21 μm feature.

Apart from inorganic compounds, complex organic molecules
such as polycyclic aromatic hydrocarbons (PAHs) and hydrogenated
fullerenes (fulleranes), could also emit at around 21 μm.
Distinguishing from a single inorganic species, PAHs and fulleranes
are presenting hydrocarbon families with specific molecular
structures. PAHs contain a large cyclic conjugate structure, allowing
them to be stable in interstellar space, and are being considered as
possible carriers of some groups of UIEs (3.3, 6.2, 7.7, 8.6, 11.3, and
12.7 μm) (Tielens, 2008;Duley andWilliams, 1981). Papoular (2011)
found that PAH-like molecules can reproduce the 21 μm feature.
Fullerene (C60) was first discovered in the PNTc1 (Cami et al., 2010)
and subsequently observed in different circumstellar environments
including the PPN (García-Hernández et al., 2010; 2011a; b;
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FIGURE 2
Fitting the observed spectra (solid curves) using the theoretical spectra of PAHs at 100 K (red dashed curves), 125 K (green dotted curves), and 150 K
(blue dashed-dotted curves).

Sellgren et al., 2010; Gielen et al., 2011; Zhang and Kwok, 2011;
Evans et al., 2012; Roberts et al., 2012; Otsuka et al., 2013). In
laboratory conditions, C60 can be quickly hydrogenated into C60H36
by atomic hydrogen (Cataldo and Iglesias-Groth, 2009) and would
undergo rapid dehydrogenation when heated to around 550 K
(Rüchardt et al., 1993). So far there is no compelling evidence
for the presence of circumstellar fulleranes, although tentative
detection has been anticipated (Zhang et al., 2017; Palotás et al.,
2020). Fullerene cage structure maintains in harsh astronomical
environments (Sadjadi and Parker, 2021) to form fulleranes and
emit UIEs. The possibility of fulleranes as the carrier of the
21 μm feature was raised by Webster (1995) and revisited by
Zhang et al. (2020).

In comparison to other astrochemically relevant species, PAHs
and fulleranes have certain advantages to account for the 21
μm emission. The cosmic abundances of carbon and hydrogen
are high. The 21 μm features are revealed only in carbon-rich
sources, suggesting its carrier is more likely to be carbon-bearing.
Moreover, considering the different sizes, structures, charge states,
and impurities, the numbers of PAHs and fulleranes could be
large, providing a very flexible way to fit the observed spectrum.
However, their likehoods as the 21 μm feature carrier have not

been sufficiently evaluated. To this end, we perform spectral fittings
of the observations utilizing the theoretical spectra of PAHs and
fulleranes, aiming to investigate how well the two hydrocarbon
families reproduce the 21 μm feature.

The paper is structured as follows: Section 2 presents the
methodology and the data used. In Section 3 we discuss the
goodness of different materials as the carrier of the 21μm
emission feature. Section 4 presents our conclusions.

2 Methodology

2.1 Observational spectra

The Spitzer Space Telescope observed 11 sources exhibiting the 21
μm emission feature between 2004 and 2008 as part of the programs
No. 20208 (PI: B. Hrivnak) and 93 (PI: D. Cruikshank), including
IRAS 04296 + 3,429, IRAS 05113 + 1,347, IRAS 05341 + 0,852,
IRAS 06530-0,213, IRAS 07134 + 1,005, IRAS 07430 + 1,115, IRAS
19477 + 2,401, IRAS 20000 + 3,239, IRAS 22223 + 4,327, IRAS
22574 + 6,609, and IRAS 23304 + 6,147. Among them, IRAS 07134
+ 1,005 and IRAS 20000 + 3,239 exhibit exceptionally strong 21
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FIGURE 3
Same as Figure 2 but for fulleranes.

μm emissions, which are saturated in the observations. The Spitzer
spectra of the other nine PPNe were extracted from the Spitzer
archive for our analysis (see Zhang et al., 2010, for the details of the
spectra and the data processing), covering a wavelength range from
9.9 to 37.2 μm. IRAS 04296 + 3,429 and IRAS 22223 + 4,327 were
also observed using the short-low (SL) module in programs 30036
(PI: G. Fazio) and 45 (PI: T. Roellig), thus their spectra have a larger
wavelength coverage (5.5–37.2 μm.)

To subtract the continuum underlying the features, we
selected the concave points in the spectra as anchors. A spline
interpolation was utilized to construct a curve that passes
through all selected anchors. Then constructed curve was
subtracted from the observed spectrum for the subsequent
fitting. The continuum-subtracted spectra are shown in
Figure 1.

2.2 Theoretical spectra of PAHs

Theoretical Infrared (IR) spectra of PAH molecules calculated
at density functional theory (DFT) (Parr, 1985; Mattioda et al.,
2020) were obtained from the NASA Ames PAH IR Spectroscopic

Database1 (PAHdb Bauschlicher et al., 2010; 2018). Among the
4000 PAH spectra in PAHdb, we chose 288 for the fitting
based on the following criteria: 1) the molecules contain C,
H, and N atoms only; 2) the molecules include aromatic C-
H bonds that are responsible for UIE; (3) the numbers of
selected small-, medium-, and large-sized PAHs (with carbon-
atom number < 50, 50–100, and > 100) should be roughly
the same to avoid a bias toward the PAHs with a specific
size; 4) for each selected PAH, the spectrum of its cation
should be available. The molecular formula and UID of the
selected PAHs are presented in Supplementary Appendix S1
of the Supplementary Material. Following previous studies
(Rosenberg et al., 2014; Zhang and Kwok, 2015), we performed
a line broadening by convoluting with a Gaussian profile of a
width of 15 cm−1. Using the online tools provided by PAHdb,
the normalized fitting spectra were finally deduced under an
assumption of thermal excitation with temperatures ranging from
100 to 150 K.

1 www.astrochemistry.org/pahdb/
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TABLE 1 χ2red of the fits.

Source Temperature
(K)

χ2red
(PAH)

χ2red
(fullerane)

IRAS
06530–0213

100 6.35 0.407

125 2.69 0.298

150 2.89 0.263

IRAS
05341 + 0852

100 0.753 0.0836

125 0.361 0.0851

150 1.91 0.0880

IRAS
07430 + 1115

100 1.15 0.236

125 0.272 0.244

150 0.293 0.249

IRAS
05113 + 1347

100 0.377 0.125

125 0.242 0.221

150 0.401 0.262

IRAS
19477 + 2401

100 1.35 0.0621

125 0.840 0.105

150 3.92 0.502

IRAS
04296 + 3429

100 0.255 0.280

125 0.297 0.260

150 0.394 0.326

IRAS
22223 + 4327

100 0.187 0.0893

125 0.104 0.114

150 0.229 0.140

IRAS
23304 + 6147

100 4.48 0.758

125 3.54 0.758

150 3.92 0.835

IRAS
22574 + 6609

100 1.72 0.121

125 0.697 0.133

150 0.283 0.142

2.3 Theoretical spectra of fulleranes

Theoretically calculated IR spectra of 55 fulleranes (C60Hm,m =
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 36) were taken from our previous
works (Zhang et al., 2017).Two DFT hybrid functionals B3LYP
and BH&HLYP in combination with PC1 basis set (Jensen, 2001;

2002) have been applied to the computations. Gaussian09 quantum
chemistry package (Frisch, 2009) was used for this purpose.
Five structural isomers have been considered for each C60Hm
fulleranes. Fulleranes with an odd number of hydrogen atoms are
thermodynamically less favorable than those with an even number
and thus were not considered in this study (Kabo et al., 2010). The
line broadening was performed by convoluting a Gaussian profile
with a width of 15 cm−1. To simulate the thermal excitation model,
we multiplied the theoretical spectra by a temperature-dependent
Planck function. All of the assumptions for constructing fullerane
spectra are the same as those for PAH spectra, minimizing potential
biases in comparison of their fitting results.

2.4 Spectra fitting

The nine continuum-subtracted spectra were fitted by
synthesizing separately the theoretical spectra of PAHs and those
of fulleranes using the Markov chain Monte Carlo algorithm. The
steps involved were as follows.

1. Import the observational spectrum and the spectrum data
matrix of PAHs/fulleranes.

2. Generate a series of random numerical sequences, each
containing the same number of digits as the number of
molecules in the spectrum data matrix.

3. Multiplying the spectrum data matrix with the numerical
sequence, we get a series of synthesized spectra.

4. Compare the observed spectrum and the synthesized spectra,
and pick up that with the minimum error.

5. Repeat the above steps until no synthesized spectrum with
lower error can be found.

6. Output the synthesized spectrum and the numerical sequence
given by the optimal fitting.

The goodness of the fits is evaluated quantitatively by the reduced
chi-square (χ2red), with a smaller χ2red indicating a better fit. The
calculations of χ2red were mainly based on the spectra within the
wavelength range from 17.4 to 23.4 μm. However, multiple spectral
features could be seen outside this wavelength coverage, which might
originate from different species. At these wavelength ranges ( < 7.4 μm
and > 23.4 μm), the errors were accounted in the χ2red calculations
only when the synthesized spectrum was more intense than the
observed one.

After theoptimalfittingwasobtained,wecaninvestigate the typesof
PAHs and fulleranes that are mostly responsible for the 21 μm feature.
For that purpose, the PAHs were classified according to their sizes,
charge states, number of nitrogen atoms, and C/H ratios; the fulleranes
were classified according to their hydrogenation degrees.

3 Result and discussion

As thermal excitation has been assumed, the synthesized spectra
depend on the preset temperatures. If the preset temperature was too
high, in the short-wavelength regions, the synthesized spectra would
exhibit too intense features to be compatible with the observations,
and vice versa. To optimize the temperature adopted, we performed
the fitting using a few different temperature values for PAH and
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FIGURE 4
Contributions of the fulleranes with different hydrogenation to the fits. The solid curves show the observed spectra. The blue dotted and red dashed
curves represent the spectra of C60Hm with m ≤ 10 and m > 10, respectively.

fullerane spectra, as shown in Figures 2, 3 respectively. As shown in
the figures, when the preset temperature is 150 K, the synthesized
spectra show too strong emission bands near 12.7 μm. When it is
100 K, the band around 30 μm appears to be too intense. Therefore,
we adopted a temperature of 125 K for the fitting.

The χ2red values of the fits are listed in Table 1. It is shown
that adopting a temperature of 125 K gives the optimal choice
for the PAH spectral fitting. Notably, χ2red(fullerane) are generally
much smaller than χ2red(PAH), suggesting that fulleranes are more
plausible to reproduce the 21 μm feature than PAHs. Therefore, in
the following, we will focus on the discussion of the fitting results
of fulleranes. For the PAH spectral fitting, the contributions from
different PAH groups are illustrated by Supplementary Appendix S2
in the Supplementary Material.

The fulleranes are divided into two groups according to their
hydrogenation degree (C60Hm with m ≤ 10 and m > 10). Figure 4
shows the contributions of the two groups to the best fits (Figure 3).
It is clear that slightly hydrogenated C60 cannot contribute to the
emission band around 21 μm, which are mostly from the fulleranes
withmoderatehydrogencontent(m = 10–36).Thissupportsthefinding
of Zhang (2020) that moderately hydrogenated C60 are a promising
carriermaterial producing the 21 μm feature, and is consistent with the
experimental results (Cataldo, 2003; Iglesias-Groth et al., 2012).

C60 can be formed in the PPN phase (Zhang and Kwok,
2011). However, it seems that the C60 and 21 μm PPNe are
mutually exclusive. No 21 μm source exhibits the C60 bands. The
C60 PPN has a hotter central star than the 21 μm PPNe, and
thus is more evolved (Zhang et al., 2010). The deep spectroscopy
of two PNe exhibiting strong C60 bands do not detect the
C-H stretching bands of fulleranes around 3.4–3.6 μm (Díaz-
Luis et al., 2016). Theoretically, The emission bands from carbon-
cage vibrations are still visible for slightly hydrogenated C60,
and gradually fade with increasing hydrogenation (Zhang et al.,
2017). Consequently, a reasonable hypothesis is that the moderately
hydrogenated C60 responsible for the 21 μm the feature could be
formed in the early PPN stage, and then, with further increasing
temperature of the central, is rapidly dehydrogenated by the
intense ultraviolet radiation. In the PN stage, hydrogen atoms are
completely removed from C60 surface so that no C-H band could
be observed.

The binding energy of hydrogen atoms linking on fullerene
surface is 3.3 eV and 1.9 eV for fulleranes with even and odd
hydrogen-atom numbers, respectively (Abbink et al., 2024). The
values are lower than that of ordinary H-H bonds (∼4.5 eV).
Therefore, C60 cannot be effectively hydrogenated if hydrogen is
mainly in molecular state. Glassgold and Huggins (1983) found
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that the ejected hydrogen from an AGB star remains in molecular
state until the stellar temperature exceeds 2500 K. Therefore, atomic
hydrogen dominates the stellar wind when the AGB envelope enter
the PPN stage, and efficiently hydrogenates fullerenes. As a result of
the dramatic changes of the physical conditions of PPNe, fulleranes
are rapidly formed and then are rapidly dehydrogenated. If fullerenes
are heavily hydrogenated, the carbon cage is unstable, and may
be destructed. These can explain the transient nature of the 21
μm feature.

The C-H streching vibration of moderately hydrogenated
fullerenes may provide observable emission features around 3.4
μm (Iglesias-Groth et al., 2012). Unfortunately, this feature lies
outside the wavelength coverage of Spitzer spectra. Previous
observations have revealed that the 21 μm sources are enriched
with aliphatic features (Kwok et al., 2001), which may partly origin
from fulleranes. It is highly desirable to investigate the correlation
between the intensities of the 3.4 μm and 21 μm features. The James
Webb Space Telescope could add light on this topic.

4 Conclusion

To examine the possibility of PAHs and fulleranes as the
carrier of the 21 μm emission feature, we fit the infrared spectra
of nine PNe exhibiting the 21 μm feature. The result shows
that fulleranes can provide a better match than PAHs. Further
analysis suggests that if fulleranes are responsible for the 21
μm feature, their hydrogenation degree must be moderate. The
intense mass loss and rapidly increasing ultraviolet radiation
of PPNe provide favorable environments for the formation of
moderately hydrogenated fullerenes. During further evolution,
fulleranes are readily dehydrogenated or destructed, providing a
plausible interpretation for the rarity of the 21 μm feature.

Nevertheless, we have no means to draw firm conclusions at this
moment. We hope that this work could attract research interests in
fulleranes in space as collaborative efforts in observations, theories,
and experiments are required.
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