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Importance and challenges of
geomagnetic storm forecasting

Olga Khabarova* and Colin Price

Geophysical Department, Porter School of the Environment and Earth Sciences, Tel Aviv University,
Tel Aviv, Israel

Space weather prediction is a central focus of solar-terrestrial studies, with
forecasts of geomagnetic storms deemed critical due to their significant
practical implications. We have gathered facts that highlight the effects
of geomagnetic storms on electric power systems and satellites. Recent
studies indicate that geomagnetic storms of moderate intensity are statistically
associated with larger spike amplitudes of telluric currents potentially leading to
power outages compared to those caused by major storms. This underscores
the importance of building reliable forecasts for all geomagnetic storms,
especially given that solar cycles 20–24 saw less than 1% of storms classified
as severe or extreme. A major challenge in current prediction models, even
those utilizing advancedmachine learning techniques, is the decline in accuracy
for forecast lead times beyond 3 h, limiting the ability to mitigate infrastructure
damage effectively. In this work, we provide a concise overview of geomagnetic
storm statistics, describe key forecasting methods, recent advancements, and
discuss the challenges in achieving accurate and timely storm predictions.
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1 Introduction

A prediction of geomagnetic storms has significant implications for modern society,
especially as our reliance on space and terrestrial technology grows. These intense
geomagnetic field disturbances are associatedwith severe space weather events, solar cosmic
rays and energetic particles damaging sensitive satellite equipment, creating disruptions
of radiowave propagation and connection to satellites, inducing telluric currents that
lead to power system transformer saturation and excessive heating in all elongated wired
systems, and causing negative biological effects (e.g., Pulkkinen et al., 2005; Khabarova and
Dimitrova, 2009; Lakhina and Tsurutani, 2016; Malandraki and Crosby, 2018; Daglis et al.,
2021; Buzulukova and Tsurutani, 2022; Khabarova et al., 2024).

Prediction of geomagnetic storms involves understanding a complex interplay of solar
phenomena and their interaction with the Earth’s magnetosphere. The challenge lies in
estimating initial properties of potentially geoeffective streams, such as fast Interplanetary
Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) or longer-
lived Corotating Interaction regions (CIRs) surrounding high-speed flows from coronal
holes, tracing their evolution during propagation, and finding dependencies that allow
giving an alert in a reasonable time (Joselyn, 1995; Vennerstroem, 2001; Siscoe and
Schwenn, 2006; Tsurutani et al., 2006; Zhang et al., 2007; Kay et al., 2017; Luhmann et al.,
2022; Mursula et al., 2022). A scheme of the key solar-terrestrial couplings linking the
solar activity, flows and streams in the heliosphere and their effects on the Earth
is given by Daglis et al. (2021).
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Besides the purely academic significance of understanding solar-
terrestrial couplings, it is crucial to comprehend the mechanisms of
how the solar wind impacts Earth’s magnetosphere to predict the
risks geomagnetic storms pose to power grid systems and space
technology. This understanding aims to forecast all geomagnetic
storms, not just the severe ones, with lead times ranging from hours
to days, allowing society to prepare and mitigate potential damage,
which is a complex challenge that remains unresolved (see Srivastava
et al., 2021 and references therein). This mini-review highlights the
practical importance of geomagnetic storm forecasting, consolidates
findings from various studies to identify current challenges
in improving predictions, and proposes potential solutions to
advance the field.

2 Practical importance of predicting
geomagnetic storms

The potential harms of geomagnetic storms are frequently
highlighted in space physics literature as a justification for in-
depth research on solar and space plasma processes. However,
there are relatively few practical studies addressing the direct
consequences of space weather impacts on terrestrial infrastructure
or proposing mitigation measures. While solar activity does
not directly affect the Earth or humans, several key indirect
impacts of space weather must be considered (see Lakhina and
Tsurutani, 2016; Buzulukova and Tsurutani, 2022, and references
therein). Solar flares emit X-rays and cosmic rays that disrupt
radio waves and GPS signals, making the dayside ionosphere
particularly vulnerable (e.g., Daglis et al., 2021; Buzás et al.,
2023). High-speed solar wind streams with a strong southward-
directed IMF trigger geomagnetic storms, inducing electric
fields that disrupt power grids (Molinski, 2002; Sorokin et al.,
2023). These streams also accelerate charged particles locally
and re-accelerate solar energetic particles, which collectively
bombard Earth’s magnetosphere, causing auroras, particle
precipitation, and thermosphere heating (Zank et al., 2015;
Malandraki and Crosby, 2018; Daglis et al., 2019; Daglis et al.,
2021; Reames, 2021; Khabarova et al., 2021). Particle enhancements
can occur even without geomagnetic storms. Additionally,
varying geomagnetic fields and cosmic rays affect biological
systems, especially in high-latitude regions and the South
Atlantic Anomaly area, though the exact mechanisms remain
unclear (Tchijevsky, 1938; Khabarova and Dimitrova, 2009;
Dimitrova and Babayev, 2018; Khabarova et al., 2024). See
details in Supplementary Material S1.

Among risks listed above, Geomagnetically Induced Currents
(GICs) represent the biggest space-weather relater problem
pushing the governments over the world seeking for the
scientific community’s help since telluric GICs can severely
impact power grids during geomagnetic storms (e.g., Daglis et al.,
2021; Boutsi et al., 2023; Calabia et al., 2023; Evans et al., 2024;
Souza et al., 2024). An analysis of related risks have been
carried out in several developed countries (e.g., Hines et al.,
2008; Persons and Rusco, 2018; Lucas et al., 2020; Ryu et al.,
2020; Gritsutenko et al., 2023). It shows that some of measures
preventing blackouts, such as a targeted disconnection of

high-voltage transmission lines, can only be achieved if they
are based on correct and timely predictions of geomagnetic
storms. Recently, (Mac Manus et al., 2022; Mac Manus et al.,
2023) simulated GIC levels across New Zealand’s network
transformers under various extreme storm scenarios, finding
up to 35% of transformers at risk. More details can be
found in the Supplementary Material S1.

Figure 1 illustrates potential connections between power
outages and space weather by comparing the annual number of
major blackouts in the United States with sunspot numbers and
the Kp index over two solar cycles. Hines et al., 2008 suggest that
smaller-scale events, under 400 MW, occur irregularly but increase
in frequency over time. In contrast, the most common larger events,
in the 400–999 MW range (derived from Figure 3 of Hines et al.,
2008), smoothly wave, showing two peaks between 1984 and 2006,
as depicted in Figure 1A.

The fluctuation in large blackout numbers follows variations of
the sunspot numbers and the Kp index recorded in the OMNI2
database for the same period. Geomagnetic activity, indicated by the
Kp index in Figure 1B, does not perfectly align with the solar cycle
reflected in the sunspot number because it is influenced by both
geoeffective ICMEs and SIRs/CIRs (e.g., Boroyev et al., 2020). The
latter peak from the declining phase of solar activity through the
solar minimum, as shown by Mursula et al. (2022). Consequently,
the Kp profile is smoother and slightly shifted to the right compared
to the solar cycle peak marked by sunspot numbers. Blackouts may
be linked to the solar cycle both directly, via the damaging effects
of GICs, and indirectly, through changes in the atmosphere and
weather events or even human factors.

It is important to note that the highest GIC amplitudes do
not always match the strongest geomagnetic activity (Ngwira et al.,
2015; Dimmock et al., 2020; Gritsutenko et al., 2023). The sudden
GIC spikes resulting in dramatic changes in the power grid are
related to the time derivative of the ground horizontal magnetic
field. Significant GIC jump excitations, potentially leading to power
system failures, occur not only during the main storm phase but
are also related to magnetospheric-ionospheric sudden impulses or
sudden storm commencements prior geomagnetic storms caused
by sharp changes in the solar wind dynamic pressure, VLF-ULF
pulsations in the geomagnetic field, and even intensification of
substorms. Gritsutenko et al. (2023) show that the peak of the
excitement of GIC spikes is statistically associated with Kp ranging
from 4 to 6, not with the maximal Kp values. This finding
aligns with the results of the recent analysis of the most intense
storms with Dst < −150 nT observed during solar cycle 24 in the
Mediterranean region (Boutsi et al., 2023).

A similar effect can be observed in the analysis of satellite
losses and malfunctions (Baker, 2001; Cilden-Guler et al., 2021).
While severe geomagnetic storms are known to damage satellites,
such as disrupting their trajectories, as recently noted during the
extreme Gannon geomagnetic storm in May 2024 (Parker and
Linares, 2024) — moderate storms also pose significant risks. The
primary threat comes from energetic “killer” electrons with energies
ranging from 0.5 to 5 MeV at geostationary orbit. These electrons
are linked to the arrival of geoeffective ICMEs and SIRs, which
are nonlinearly associated with the geomagnetic activity level and
may peak before or after the geomagnetic storm maximum (see
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FIGURE 1
Electric power system failures modulated by solar activity and statistical properties of geomagnetic storms. (A) Number of large blackouts per year in
the United States with the event size (amount of electricity taken off) of 400–999 MW. Data are provided by Hines et al. (2008). (B) Sunspot number per
year (white) and Kp⋅10 (black), OMNI2 database data. (C) Dst index vs. Kp⋅10. OMNI2 hourly data for 1964–2023. (D) Percentage of storms of the certain
intensity for cycles 20–24 and for all cycles in total (ALL). Data are taken from Abe et al. (2023). The Kp and Dst datasets can be found in the NASA’s
Space Physics Data Facility – OMNI web data repository: https://omniweb.gsfc.nasa.gov/ow.html, and WDC Kyoto: https://wdc.kugi.kyoto-u.ac.
jp/dst_provisional/. Storm intensity categories are based on Dst values and indicated by colors in (C, D). Weak intensity is marked by green,
moderate—by blue, strong is yellow, severe is red, and extreme is black. Although there is significant variation in Dst values relative to Kp, an
approximate correspondence between the level of geomagnetic field disturbances characterized by Dst can be found for Kp values greater than 4 (see
https://www.swpc.noaa.gov/noaa-scales-explanation). Kp = 4 is typically considered to indicate a disturbed geomagnetic field or a weak geomagnetic
storm. Kp = 5 corresponds to a weak or minor storm, Kp = 6 indicates a moderate storm, Kp = 7 signifies a strong storm, Kp = 8 represents a severe
storm, and Kp = 9 denotes an extreme storm.

Baker, 2001;Wrenn, 2009;Daglis et al., 2019;Miteva et al., 2023, and
references therein).

Information about satellite malfunctions or losses is often
proprietary and not publicly available, complicating research
into the physical factors affecting sensitive satellite equipment.
However, some general data is accessible in the literature.
For instance, NASA reported that an ICME caused the loss
of 38 commercial satellites in February 2022 (https://svs.gsfc.
nasa.gov/5193/). A moderate geomagnetic storm with a Dst
minimum of −66 nT on 3 February 2022 coincided with the
launch of Starlink satellites, leading to such significant losses
(Miteva et al., 2023; Baruah et al., 2024).

As Solar Cycle 25 peaks, the risk to Earth-orbiting satellites
and spacecraft operating in the solar wind increases. For
instance, the ACE and DSCOVR L1 spacecraft malfunctioned
after the severe geomagnetic storm of 24 March 2004, failing
to provide critical solar wind density data for 2 weeks, which
halted related forecasts. This highlights the urgent need for the
scientific community to prioritize methods for predicting all
geomagnetic storms, from weak to extreme, rather than focusing
only on intense events, which remains a challenge despite the
growing number of prediction models.

3 Geomagnetic storm prediction:
geomagnetic storm intensity
classifications, general approaches,
solutions and problems

3.1 Classifications

Space weather prediction models commonly rely on two key
geomagnetic activity indices: Kp and Dst (Wintoft and Wik, 2018;
Chakraborty and Morley, 2020; Matzka et al., 2021; Xu et al., 2020;
Park et al., 2021; Wang J. et al., 2023; Zhang et al., 2023; Sierra-
Porta et al., 2024). See https://kp.gfz-potsdam.de/en/and https://
wdc.kugi.kyoto-u.ac.jp/index.html and Supplementary Material S1
for details.

Kp and Dst indices, which characterize geomagnetic activity at
different geomagnetic latitudes and are calculated differently, do not
have a direct correspondencewhich complicates a comparison of the
results of prognostic techniques using different indices (Borovsky
and Shprits, 2017). Figure 1C displays the relationship between Dst
and Kp⋅10, fitted with a cubic polynomial (with coefficient values
provided above the panel). The categorization of Dst, from weak to
extreme storm intensity, is represented in different colors.
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Figure 1D shows that the occurrence rate of geomagnetic storms
of varying intensities is inversely related to the color proportions
representing storm intensity in Figure 1C. Based on statistics from
Abe et al. (2023), which we used to calculate the percentage of
storms by intensity, weak storms constitute 61% of all storms
observed during solar cycles 20–24 (labeled as “ALL” in Figure 1D).
Moderate storms account for 32%, strong storms – 6.4%, severe
storms – 0.45%, and extreme storms — just 0.12%. Over these five
solar cycles, the occurrence of moderate and strong storms shows
an anticorrelation with the rate of weak storms, with a correlation
coefficient of −0.9. Although the number of cycles is too small to
draw definitive conclusions, if this trend continues in solar cycle 25,
it could offer insights for predicting the probability of moderate and
strong storms in future cycles. Figure 1D illustrates the importance
of forecasting all geomagnetic storms because themajority of storms
are weak and moderate.

3.2 General approaches

Geomagnetic storm forecasting relies on understanding solar
wind-magnetosphere interactions.TheEarth’smagnetosphere reacts
to any solar wind variations (Borovsky, 2023), but storms occur
when magnetic reconnection is triggered by specific solar wind
conditions, particularly when the IMF is southward and the solar
wind speed is high, known as the “VBz paradigm” (Lakhina
and Tsurutani, 2016). These conditions typically arise from high-
speed ICMEs or SIRs surrounding fast solar wind flows from
coronal holes (Vennerstroem, 2001; Siscoe and Schwenn, 2006;
Tsurutani et al., 2006; Zhang et al., 2007; Cid et al., 2014; Kim et al.,
2014; Kay et al., 2017; Daglis et al., 2021; Echer and Gonzalez, 2022;
Luhmann et al., 2022; Mursula et al., 2022).

The accuracy of predictions depends on the timescale
considered, as well as the quality of the input data and models used.
In terms of the alert time, the geomagnetic storm prognoses are
divided into three categories: long-term, mid-term, and short-term.
Long-term predictions from 3 days to a week based on estimations
of the development of active processes and coronal hole dynamics
at the Sun are rarely used since they are accurate for predicting the
likelihood of a geomagnetically active period but cannot correctly
forecast the exact timing or intensity of individual storms.

Mid-term forecasts aim to predict storms up to several days
in advance. Some of them are based on the expert estimation of
the direction of CMEs or the occurrence of low-latitude coronal
holes, and some of them use modeling. They can be given in
the simple verbal alert ways sometimes complemented with the
Kp level forecast or in the probabilistic form, when a certain
probability is given next to the certain intensity of the geomagnetic
storm (e.g., https://spaceweather.com/ and https://www.swpc.noaa.
gov/products/3-day-forecast).

Some empirical techniques use MHD or semi-empirical models
to estimate V and Bz at the Earth’s orbit. The models rely on
the solar magnetic field data and recalculate the corresponding
IMF and plasma parameters from the source surface to the
Earth (see Pizzo et al., 2011; Reiss et al., 2016; https://www.
swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction) or use
interplanetary scintillation data (Jackson et al., 1998; https://ips.

ucsd.edu). More details can be found in Supplementary Material S1.
There are also models employing the L1 spacecraft data. These

are usually the same models as used for short-term predictions
but with larger leading times. Mid-term predictions based on the
empirical models aim to extend the forecasting horizon from 1 h
to 3 h and beyond, yet challenges arise due to the diminishing
relevance of data as the time frame increases (Shprits et al., 2019;
Nair et al., 2023; Xu et al., 2023; Wang C et al., 2023). Achieving
reliable forecasts beyond 3 h has proven to be complex and, as of
now, is thought to reach a practical limit (Pulkkinen et al., 2022).

Short-term predictions focus on forecasting geomagnetic
storms minutes or hours before they occur, primarily using data
from L1 spacecraft and geomagnetic indices (see Shprits et al.,
2019; Nair et al., 2023; Wang C et al., 2023; Wang J et al., 2023
and references therein). They are reliable for determining if a
storm will happen within a specific timeframe based on the
propagation time of the geoeffective stream or flow from L1 to
the magnetosphere. Such forecasts not only provide probabilistic
predictions but also compare predicted Dst and Kp indices with
real-time geomagnetic activity indices (e.g., https://lasp.colorado.
edu/space_weather/dsttemerin/dsttemerin.html, https://swx-trec.
com/dst/, https://spaceweather.ru/content/extended-geomagnetic-
storm-forecast; http://eng.sepc.ac.cn/dstModel.php).

3.3 Solutions

Methodologies of the geomagnetic storm prediction based
on the knowledge of solar-terrestrial couplings have traditionally
ranged from MHD-based models, like ENLIL, to empirical models,
using primarily V and the IMF Bz (see Joselyn, 1995; Luo et al.,
2017 and references therein). Predictions are sometimes based
on other known physical principles, such as pre-storm variations
in the X-ray, cosmic ray and energetic particle fluxes associated
with the arrival of geoeffective streams (e.g., Chakraborty and
Morley, 2020; Wang C et al., 2023; Belov et al., 2024). Another
approach involves the similarity technique, where models assess the
resemblance between the current situation and past geomagnetic
storms (e.g., Xu et al., 2023). There are also hybrid models and
models that differentiate between ICMEs and SIRs as drivers of
geomagnetic storms (e.g., Kim et al., 2014; Park et al., 2021). In
recent years, many models have incorporated machine learning
(ML) techniques.

ML methods for predicting geomagnetic storms represent a
significant shift towards data-driven approaches in geomagnetic
storm prediction, which increasingly leverage advanced ML
algorithms to improve forecast accuracy and adaptability (e.g.,
Gruet et al., 2018; Pulkkinen et al., 2022; Conde et al., 2023;
Hu et al., 2023; Wang J et al., 2023; Zhang et al., 2023; Xu et al.,
2023). These algorithms utilize vast datasets related to solar activity
and geomagnetic indicators to anticipate storm events, adapting
various techniques to enhance predictive accuracy.

A recent competition, the “MagNet: Model the Geomagnetic
Field” challenge, organized by the National Oceanic and
Atmospheric Administration and the University of Colorado,
attracted 1,197 models competing to predict real-time Dst values
using a shared dataset (Nair et al., 2023). The winning model, a
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FIGURE 2
Examples of characteristics of machine learning models predicting geomagnetic storms. (A) Ratio of the root-mean-square for each feature
(parameter) to IMF Bz, the main predictive feature. Blue curve characterizes the importance of parameters on which the model is based. Bx, By, and Bz

are three IMF components (GSM). V, N, and T are the solar wind speed, density and temperature, respectively. “Std” means standard deviation. Adapted
from Nair et al. (2023) under the terms of the Creative Commons CC BY license. (B) Balanced accuracy for the five most effective neural network
architectures (represented by different colored lines as indicated in the legend) shown for multi-hour advance warnings of geomagnetic storms with
SYM-H< −50 nT. Adapted from Telloni et al. (2023) under Copyright 2024 IOP Publishing, CC: Daniele Telloni and authors.

bidirectional Long Short-Term Memory (LSTM)-Gated Recurrent
Unit (GRU) with three Flattening Layers and three Dense Layers,
utilized the parameters shown in Figure 2A. The data were grouped
into 1-h intervals, with the mean and standard deviation calculated
for each feature. The model used normalized data from the 128 h
preceding the prediction time.

Figure 2A shows the permutation feature importance for the
winning model, where RMSE (root-mean-square error) represents
the error between observed and predicted Dst values.The x-axis lists
the model’s input parameters, and the y-axis shows the ratio of the
RMSE for each feature compared to the most important one (see
more information in Supplementary Material S1). This technique
assesses the impact of each input feature. Upon forecasting of indices
such as Dst or SYM-H, themodel inputs (e.g., V, Bz, and B, and other
parameters) are tested for their importance. The method starts by
measuring the model’s baseline performance using RMSE. At the
next step, each feature is shuffled (permuted) one by one, breaking
its link to the target variable, and the model’s performance is
recalculated. The larger the performance drop occurs after a feature
is shuffled, the more important that feature is. Balanced accuracy
representing the average of recall values is another useful metric,
particularly valuable when dealing with imbalanced datasets (e.g.,
Cristoforetti et al., 2022), which is a common issue in geomagnetic
storm forecasting since severe storms are much rarer than quiet
periods (see Supplementary Material S1).

As one can see in Figure 2A, the model easily finds the VBz
dominance in the ability to predict Dst, to which it adds the
parameters known as secondary-important features in empirical
modeling, namely, total IMF (B), the smoothed sunspot numbers
(SSn), and IMF By component, with the tail of less-important
parameters that still improve the quality of predictions: standard
deviations of the most important parameters that can characterize
the level of turbulence of the solar wind as well as the solar
wind density (N), the radial IMF component Bx, the temperature
(T), and their standard deviations.

3.4 Problems

The main challenge in space weather forecasting is that even
well-known hazards associated with geomagnetic storms are poorly
predicted, with most techniques providing reliable alerts only
60 min in advance, leaving insufficient time for implementing space
weather countermeasures. The five models compared in Figure 2B,
adapted from Telloni et al. (2023), utilize V, Bz, B, T, N, and the
SYM-H index — an analogue of hourly Dst with one-minute
resolution. The correlation matrix between the parameters and
SYM-H and performance metrics values are given, respectively, in
Figure 1 and Tables 3, 4 of Telloni et al. (2023). As illustrated in
Figure 2B, the prediction accuracy tends to decline as the forecast
lead time increases. This issue is corroborated by numerous studies
using various models and input parameters (e.g., Shprits et al.,
2019; Xu et al., 2020; Nair et al., 2023; Wang C et al., 2023; Xu et al.,
2023), which similarly find that extending the forecast lead
time compromises prediction accuracy. The solar wind conditions
measured at L1 have both linear and near-linear links with the
state of the magnetosphere and, subsequently, with geomagnetic
indices at different timescales. For lower advance warning hours,
linear models outperform deep CNNs because the relationship
between solar wind parameters and geomagnetic storms is near-
linear in the short term. As a result, linear models capture the direct
connection effectively with fewer parameters. On the other hand,
the magnetospheric response to changes in solar wind conditions at
longer timescales involves more complex interactions and delayed
effects, which require sophisticated models capable of capturing
complex patterns and temporal dependencies. As a result, deep
CNNs perform better for longer advance warning periods, which
is important for mid-term forecasts (e.g., see Siciliano et al., 2021
and references therein). The performance difference reflects the
models’ differing abilities to handle simpler vs. more complex
relationships, though data quality and training can still impact
the exact magnitude of improvement.
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One can also find the geomagnetic storm forecast accuracy
of NOAA mid-term prognoses (24 h in advance) www.swpc.
noaa.gov/sites/default/files/images/u30/SWPC%20GPRA%20Metri
c%20Description.pdf and https://www.swpc.noaa.gov/content/
geomagnetic-activity-forecast-verification, which remains at the
probabilistic ∼50% level. Note that G1 storm in the NOAA
classification corresponds to Kp = 5. Alternative techniques,
such as remote sensing of the solar wind or MHD large-scale
modeling are useful to understand the propagation of streams in
the interplanetary medium in general, but they are often wrong
or give a 12-h-delay in predictions of the increase in the speed or
density of the solar wind (e.g., Jian et al., 2011).

Another major issue in geomagnetic storm prediction is the
lack of open-access platforms for real-time data and difficulty in
comparing different models, as many do not provide historical
data or rely on different indices. Additionally, significant storms
are rare, making up less than 1% of the data, which creates
challenges for ML models that struggle with imbalanced datasets,
often overlooking rare events. Incomplete datasets, such as the
OMNI dataset with 20% missing data, further complicate training,
leading to variable predictions. Traditional model-based methods,
often paired with ML, assume Gaussian noise, but real spacecraft
data deviate from this, reducing reliability. These challenges show
that we are still in the early stages of achieving reliable geomagnetic
storm forecasts.

4 Discussion

The ultimate goal of predicting geomagnetic storms is to
provide a sufficient warning time for these events, which is critical
for mitigating potential damages to satellites, power grids, and
communication infrastructures. To address these challenges, various
methodologies are explored, including the use of ensemble models
that combinemultiple predictive algorithms to enhance the accuracy
of predictions. Meanwhile, the biggest problem of the current
geomagnetic storm forecasts is the low accuracy of mid-term
predictions with the advance time from 3 h to 3 days.

Short-term geomagnetic storm forecasts are highly accurate,
primarily due to the time lag between detecting an approaching
geoeffective stream by spacecraft at L1 and its actual impact
on the Earth’s magnetosphere. This allows us to take advantage
of the fact that solar wind conditions signaling the onset of a
storm are observable about an hour in advance. There is the
assumption that the magnetosphere responds almost instantly
to changes in solar wind, with the influx of energy mainly
depending on VBz. Consequently, most mid-term forecasts rely
on the same approach as short-term ones, monitoring the solar
wind speed and the IMF strength and direction measured at L1
as primary model inputs. Efforts to enhance these predictions,
includingmodels combining solar source data with L1 observations,
continue to follow this paradigm, focusing on the same solar wind
parameters.

The core problem with current storm prediction methods is that
they are very effective for short-term forecasts but almost useless
for mid-term ones. This is because predicting what is going to
happen requires analyzing events leading up to the phenomenon

under study, i.e., to the geomagnetic storm in our case — not just
studying solar wind conditions once the storm has already started
but looking for precursors. Another major flaw in the dominant
approach is the assumption that all geomagnetic storms, regardless
of their cause or intensity, are driven by the same key solar wind
parameters.

In these terms, future studies of pre-storm conditions applied
to the geomagnetic storm prognosis seem to be the way to solve
the problems discussed above. The pre-storm variations in the
X-ray (Chakraborty and Morley, 2020), energetic particle flux
(Ameri and Valtonen, 2019; http://tromos.space.noa.gr/aspecs/#
home), the cosmic ray intensity (Wang C et al., 2023), ULF
variations, and enhancements in the solar wind plasma parameters
(Khabarova, 2007; Khabarova and Yermolaev, 2008; Balasis et al.,
2024; Santoso et al., 2024) may increase the accuracy of mid-term
predictions, especially being combined with those distinguishing
between different storm sources (e.g., Park et al., 2021).

Given that around 90% of storms during solar cycles 20–24
were weak to moderate, focusing on predicting all storms — not just
extreme events — is critical, as these moderate storms statistically
cause greater power grid disruptions. The fact that recent satellite
issues occurred during a moderate storm further emphasizes the
need for reliable forecasts as solar cycle 25 peaks. AI advancements,
combined with real-time models like SWX-TREC (https://swx-
trec.com/geoelectric/), may improve mitigating storm impacts,
while creation of regional space weather centers like the recently
opened Chinese Meridian Project (https://www.meridianproject.ac.
cn/en/) and Tel Aviv University Space Weather Center (https://
www.spaceweather.sites.tau.ac.il/) can help integrate scientific
research into operational forecasting, improving preparedness
for space weather. Future directions should include both studies
of pre-storm conditions in the solar wind and exploring more
sophisticatedMLalgorithms to automate feature selection processes,
thereby improving prediction accuracy for geomagnetic storm
events.

Author contributions

OK: Conceptualization, Formal Analysis, Investigation,
Methodology, Visualization,Writing–original draft,Writing–review
and editing. CP: Conceptualization, Project administration,
Supervision, Writing–review and editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article. The
authors thank the International Office at Tel Aviv University for
partial funding.

Acknowledgments

This study was carried out as a part of the activity
of the Space Weather Center of the Tel Aviv University

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2024.1493917
http://www.swpc.noaa.gov/sites/default/files/images/u30/SWPC%20GPRA%20Metric%20Description.pdf
http://www.swpc.noaa.gov/sites/default/files/images/u30/SWPC%20GPRA%20Metric%20Description.pdf
http://www.swpc.noaa.gov/sites/default/files/images/u30/SWPC%20GPRA%20Metric%20Description.pdf
https://www.swpc.noaa.gov/content/geomagnetic-activity-forecast-verification
https://www.swpc.noaa.gov/content/geomagnetic-activity-forecast-verification
http://tromos.space.noa.gr/aspecs/
http://tromos.space.noa.gr/aspecs/
https://swx-trec.com/geoelectric/
https://swx-trec.com/geoelectric/
https://www.meridianproject.ac.cn/en/
https://www.meridianproject.ac.cn/en/
https://www.spaceweather.sites.tau.ac.il/
https://www.spaceweather.sites.tau.ac.il/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Khabarova and Price 10.3389/fspas.2024.1493917

(https://www.spaceweather.sites.tau.ac.il/). Olga Khabarova thanks
the Center for Absorption in Science, Ministry of Immigration and
Absorption, State of Israel for the support.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This
had no impact on the peer review process and the final
decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fspas.2024.
1493917/full#supplementary-material

References

Abe, O. E., Fakomiti, M. O., Igboama, W. N., Akinola, O. O., Ogunmodimu,
O., and Migoya-Orué, Y. O. (2023). Statistical analysis of the occurrence rate of
geomagnetic storms during solar cycles 20–24. Adv. Space Res. 71 (5), 2240–2251.
doi:10.1016/j.asr.2022.10.033

Ameri, Dh., and Valtonen, E. (2019). Potential role of energetic particle
observations in geomagnetic storm forecasting. Adv. Space Res. 64 (3), 801–813.
doi:10.1016/j.asr.2019.05.012

Baker, D. N. (2001). “Satellite anomalies due to space storms,” in Space storms and
space weather hazards. NATO science series. Editor I. A. Daglis (Dordrecht: Springer),
38, 285–311. doi:10.1007/978-94-010-0983-6_11

Balasis, G., De Santis, A., Papadimitriou, C., Boutsi, A. Z., Cianchini, G., Giannakis,
O., et al. (2024). Swarm investigation of ultra-low-frequency (ULF) pulsation and
plasma irregularity signatures potentially associated with geophysical activity. Remote
Sens. 16, 3506. doi:10.3390/rs16183506

Baruah, Y., Roy, S., Sinha, S., Palmerio, E., Pal, S., Oliveira, D. M., et al. (2024).
The loss of Starlink satellites in February 2022: how moderate geomagnetic storms
can adversely affect assets in low-earth orbit. Space weather 22, e2023SW003716.
doi:10.1029/2023SW003716

Belov, A. V., Belova, E. A., Shlyk, N. S., Abunina, M. A., Abunin, A. A., and Belov,
S. M. (2024). Forbush effects and geomagnetic storms. Geomagn. Aeron. 64, 289–301.
doi:10.1134/S0016793224600097

Borovsky, J. E. (2023). Further investigation of the effect of upstream solar-wind
fluctuations on solar-wind/magnetosphere coupling: is the effect real? Front. Astron.
Space Sci. 9 (id), 433. doi:10.3389/fspas.2022.975135

Borovsky, J. E., and Shprits, Y. Y. (2017). Is the Dst index sufficient to define all
geospace storms? J. Geoph. Res. 122 (11), 11543–11547. doi:10.1002/2017ja024679

Boroyev, R. N., Vasiliev, M. S., and Baishev, D. G. (2020). The relationship between
geomagnetic indices and the interplanetary medium parameters in magnetic storm
main phases during CIR and ICME events. J. Atmosph. Sol-Terr. Phys. 204, 105290.
doi:10.1016/j.jastp.2020.105290

Boutsi, A. Z., Balasis, G., Dimitrakoudis, S., Daglis, I. A., Tsinganos, K.,
Papadimitriou, C., et al. (2023). Investigation of the geomagnetically induced current
index levels in the Mediterranean region during the strongest magnetic storms of solar
cycle 24. Space weather 21, e2022SW003122. doi:10.1029/2022SW003122

Buzás, A., Kouba, D., Mielich, J., Burešová, D., Mošna, Z., Koucká Knížová, P.,
et al. (2023). Investigating the effect of large solar flares on the ionosphere based on
novel Digisonde data comparing three different methods. Front. Astron. Space Sci. 10,
1201625. doi:10.3389/fspas.2023.1201625

Buzulukova, N., and Tsurutani, B. (2022). Space weather: from solar origins
to risks and hazards evolving in time. Front. Astron. Space Sci. 9, 1017103.
doi:10.3389/fspas.2022.1017103

Calabia, A., Lu, G., and Bolaji, O. S. (2023). Editorial: advances on upper atmosphere
characterization for geodetic space weather research and applications. Front. Astron.
Space Sci. 10, 1211582. doi:10.3389/fspas.2023.1211582

Chakraborty, S., and Morley, S. K. (2020). Probabilistic prediction of geomagnetic
storms and thepindex. J. Space Weather Space Clim. 10, 36. doi:10.1051/swsc/2020037

Cid, C., Palacios, J., Saiz, E., Guerrero, A., and Cerrato, Y. (2014). On extreme
geomagnetic storms. J. Space Weather Space Clim. 4, A28. doi:10.1051/swsc/
2014026

Cilden-Guler, D., Kaymaz, Z., and Hajiyev, Ch. (2021). Geomagnetic
disturbance effects on satellite attitude estimation. Acta Astronaut. 180, 701–712.
doi:10.1016/j.actaastro.2020.12.044

Conde, D., Castillo, F. L., Escobar, C., García, C., García, J. E., Sanz, V., et al.
(2023). Forecasting geomagnetic storm disturbances and their uncertainties using deep
learning. Space weather 21, e2023SW003474. doi:10.1029/2023SW003474

Cristoforetti, M., Battiston, R., Gobbi, A., Iuppa, R., and Piersanti, M. (2022).
Prominence of the training data preparation in geomagnetic storm prediction using
deep neural networks. Sci. Rep. 12, 7631. doi:10.1038/s41598-022-11721-8

Daglis, I. A., Chang, L. C., Dasso, S., Gopalswamy, N., Khabarova, O. V., Kilpua,
E., et al. (2021). Predictability of variable solar–terrestrial coupling. Ann. Geophys. 39,
1013–1035. doi:10.5194/angeo-39-1013-2021

Daglis, I. A., Katsavrias, C., and Georgiou, M. (2019). From solar sneezing to killer
electrons: outer radiation belt response to solar eruptions. Philosophical Trans. Ser. A,
Math. Phys. Eng. sci 377 (2148), 20180097. doi:10.1098/rsta.2018.0097

Dimitrova, S., and Babayev, E. (2018). “Space weather effects on human health,”
in Variability of the Sun and sun-like stars: from asteroseismology to space weather.
Editors J. P. Rozelot, and E. S. Babayev (Les Ulis, France: EDP Sciences), 177–186.
doi:10.1051/978-2-7598-2196-9.c012

Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton,
R. J., et al. (2020). On the regional variability of dB/dt and its significance to GIC. Space
weather 18, e2020SW002497. doi:10.1029/2020SW002497

Echer, E., and Gonzalez, W. D. (2022). Relation between Dst∗ and interplanetary
parameters during single-step geomagnetic storms.Adv. Space Res. 70 (10), 2830–2841.
doi:10.1016/j.asr.2022.07.031

Evans, J. S., Correira, J., Lumpe, J. D., Eastes, R. W., Gan, Q., Laskar, F. I., et al. (2024).
GOLD observations of the thermospheric response to the 10–12 May 2024 Gannon
superstorm. Geophys. Res. Lett. 51, e2024GL110506. doi:10.1029/2024GL110506

Gritsutenko, S., Korovkin, N., Sakharov, Y., and Sokolova, O. (2023). Assessment
of geomagnetically induced currents impact on power grid modelling. Magnetism 3,
135–147. doi:10.3390/magnetism3020011

Gruet, M. A., Chandorkar, M., Sicard, A., and Camporeale, E. (2018). Multiple-
hour-ahead forecast of the Dst index using a combination of long short-term
memory neural network and Gaussian process. Space weather 16, 1882–1896.
doi:10.1029/2018SW001898

Hines, P., Apt, J., and Talukdar, S. (2008). “Trends in the history of large blackouts in
the United States,” in 2008 IEEE power and energy society general meeting - conversion
and delivery of electrical energy in the 21st century (Pittsburgh, PA, USA), 1–8.
doi:10.1109/PES.2008.4596715

Hu,A., Camporeale, E., and Swiger, B. (2023).Multi-hour-aheadDst index prediction
using multi-fidelity boosted neural networks. Space weather 21, e2022SW003286.
doi:10.1029/2022SW003286

Jackson, B. V., Hick, P. L., Kojima, M., and Yokobe, A. (1998). Heliospheric
tomography using interplanetary scintillation observations: 1. Combined Nagoya and
Cambridge data. J. Geophys. Res. 103 (A6), 12049–12067. doi:10.1029/97JA02528

Jian, L. K., Russell, C. T., Luhmann, J. G., MacNeice, P. J., Odstrcil, D., Riley, P.,
et al. (2011). Comparison of observations at ACE and Ulysses with Enlil model results:
stream interaction regions during Carrington rotations 2016–2018. Sol. Phys. 273 (1),
179–203. doi:10.1007/s11207-011-9858-7

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2024.1493917
https://www.spaceweather.sites.tau.ac.il/
https://www.frontiersin.org/articles/10.3389/fspas.2024.1493917/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fspas.2024.1493917/full#supplementary-material
https://doi.org/10.1016/j.asr.2022.10.033
https://doi.org/10.1016/j.asr.2019.05.012
https://doi.org/10.1007/978-94-010-0983-6_11
https://doi.org/10.3390/rs16183506
https://doi.org/10.1029/2023SW003716
https://doi.org/10.1134/S0016793224600097
https://doi.org/10.3389/fspas.2022.975135
https://doi.org/10.1002/2017ja024679
https://doi.org/10.1016/j.jastp.2020.105290
https://doi.org/10.1029/2022SW003122
https://doi.org/10.3389/fspas.2023.1201625
https://doi.org/10.3389/fspas.2022.1017103
https://doi.org/10.3389/fspas.2023.1211582
https://doi.org/10.1051/swsc/2020037
https://doi.org/10.1051/swsc/2014026
https://doi.org/10.1051/swsc/2014026
https://doi.org/10.1016/j.actaastro.2020.12.044
https://doi.org/10.1029/2023SW003474
https://doi.org/10.1038/s41598-022-11721-8
https://doi.org/10.5194/angeo-39-1013-2021
https://doi.org/10.1098/rsta.2018.0097
https://doi.org/10.1051/978-2-7598-2196-9.c012
https://doi.org/10.1029/2020SW002497
https://doi.org/10.1016/j.asr.2022.07.031
https://doi.org/10.1029/2024GL110506
https://doi.org/10.3390/magnetism3020011
https://doi.org/10.1029/2018SW001898
https://doi.org/10.1109/PES.2008.4596715
https://doi.org/10.1029/2022SW003286
https://doi.org/10.1029/97JA02528
https://doi.org/10.1007/s11207-011-9858-7
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Khabarova and Price 10.3389/fspas.2024.1493917

Joselyn, J. A. (1995). Geomagnetic activity forecasting: the state of the art. Rev.
Geophys. 33 (3), 383–401. doi:10.1029/95RG01304

Kay, C., Gopalswamy, N., Reinard, A., and Opher, M. (2017). Predicting the
magnetic field of earth-impacting CMEs. Astrophys. J. 835, 117. doi:10.3847/1538-
4357/835/2/117

Khabarova, O., and Dimitrova, S. (2009). On the nature of people’s reaction to space
weather and meteorological weather changes. Sun Geosph. 4 (2), 60–71. Available at:
http://www.shao.az/SG/v4n2/SG_v4_No2_2009-p-60-71.pdf.

Khabarova, O., Malandraki, O., Malova, H., Kislov, R., Greco, A., Bruno, R., et al.
(2021). Current sheets, plasmoids and flux ropes in the heliosphere. Part I. 2-D or not
2-D? General and observational aspects. Space Sci. Rev. 217, 38. doi:10.1007/s11214-
021-00814-x

Khabarova, O., Pinaev, S. K., Chakov, V. V., Chizhov, A. Y., and Pinaeva, O. G.
(2024). Trends in childhood leukemia incidence in urban countries and their relation
to environmental factors, including space weather. Front. Public Health 12, 1295643.
doi:10.3389/fpubh.2024.1295643

Khabarova, O. V. (2007). Current problems of magnetic storm prediction and
possible ways of their solving. Sun Geosph. 2 (1), 33–38. Available at: http://sg.shao.
az/v2n1/SG_v2_No1_2007-pp-33-38.pdf.

Khabarova, O. V., and Yermolaev, Yu.I. (2008). Solar wind parameters’ behavior
before and after magnetic storms. J. Atm Sol. Terr. Phys. 70 (2-4), 384–390.
doi:10.1016/j.jastp.2007.08.024

Kim, R.-S., Moon, Y.-J., Gopalswamy, N., Park, Y.-D., and Kim, Y.-H.
(2014). Two-step forecast of geomagnetic storm using coronal mass ejection
and solar wind condition. Space weather 12 (4), 246–256. doi:10.1002/2014
SW001033

Lakhina, G. S., and Tsurutani, B. T. (2016). Geomagnetic storms: historical
perspective to modern view. Geosci. Lett. 3, 5. doi:10.1186/s40562-016-
0037-4

Lucas, G., Love, J. J., Kelbert, A., Bedrosian, P. A., and Rigler, E. J. (2020). A 100-
year geoelectric hazard analysis for the U.S. high-voltage power grid. Space weather 18,
e2019SW002329. doi:10.1029/2019SW002329

Luhmann, J. G., Li, Y., Lee, C. O., Jian, L. K., Arge, C. N., and Riley, P. (2022). Solar
cycle variability in coronal holes and their effects on solar wind sources. Space weather
20, e2022SW003110. doi:10.1029/2022SW003110

Luo, B., Liu, S., and Gong, J. (2017). Two empirical models for short-
term forecast of Kp. Space weather 15 (3), 503–516. doi:10.1002/2016SW
001585

Mac Manus, D. H., Rodger, C. J., Dalzell, M., Renton, A., Richardson, G.
S., Petersen, T., et al. (2022). Geomagnetically induced current Modeling in
New Zealand: extreme Storm analysis using multiple disturbance scenarios and
industry provided hazard magnitudes. Space weather 20, 12. doi:10.1029/2022
SW003320

Mac Manus, D. H., Rodger, C. J., Renton, A., Ronald, J., Harper, D., Taylor,
C., et al. (2023). Geomagnetically induced current mitigation in New Zealand:
operational mitigation method development with industry input. Space weather 21,
e2023SW003533. doi:10.1029/2023SW003533

Malandraki, O. E., and Crosby, N. B. (2018). “Solar energetic particles and
space weather: science and applications,” in Solar particle radiation storms
forecasting and analysis. Astrophysics and space science library. Editors O.
Malandraki, and N. Crosby (Cham: Springer), 444, 1–26. doi:10.1007/978-3-319-
60051-2_1

Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., and Morschhauser, A. (2021). The
geomagnetic Kp index and derived indices of geomagnetic activity. Space weather 19,
e2020SW002641. doi:10.1029/2020SW002641

Miteva, R., Samwel, S.W., andTkatchova, S. (2023). Spaceweather effects on satellites.
Astronomy 2, 165–179. doi:10.3390/astronomy2030012

Molinski, T. S. (2002). Why utilities respect geomagnetically induced
currents. J. Atmosph. Sol-Ter. Phys. 64, 1765–1778. doi:10.1016/S1364-6826(02)
00126-8

Mursula, K., Qvick, T., Holappa, L., andAsikainen, T. (2022).Magnetic storms during
the space age: occurrence and relation to varying solar activity. J. Geophys. Res. 27,
e2022JA030830. doi:10.1029/2022JA030830

Nair, M., Redmon, R., Young, L.-Y., Chulliat, A., Trotta, B., Chung, C., et al.
(2023). MagNet—a data-science competition to predict disturbance storm-time index
(Dst) from solar wind data. Space weather 21, e2023SW003514. doi:10.1029/2023SW
003514

Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Viljanen, A., and Crowley,
G. (2015). Characteristics of extreme geoelectric fields and their possible causes:
localized peak enhancements. Geophys. Res. Lett. 42, 6916–6921. doi:10.1002/2015GL
065061

Park, W., Lee, J., Kim, K. C., Lee, J., Park, K., Miyashita, Y., et al. (2021).
Operational Dst index prediction model based on combination of artificial neural
network and empirical model. J. Space Weather Space Clim. 11, 38. doi:10.1051/swsc/
2021021

Parker, W. E., and Linares, R. (2024). Satellite drag analysis during the may
2024 Gannon geomagnetic storm. J. Spacecr. Rockets 61, 1412–1416. doi:10.2514/1.
A36164

Persons, T. M., and Rusco, F. (2018). “Technology assessment. Critical infrastructure
protection,” in Protecting the electric grid from geomagnetic disturbances (United States
Senate: United States Government Accountability Office Report to the Committee
on Homeland Security and Governmental Affairs). Available at: https://www.gao.
gov/products/gao-19-98.

Pizzo, V., Millward, G., Parsons, A., Biesecker, D., Hill, S., and Odstrcil, D. (2011).
Wang-sheeley-arge–enlil conemodel transitions to operations. Spaceweather 9, S03004.
doi:10.1029/2011SW000663

Pulkkinen, A., Lindahl, S., Viljanen, A., and Pirjola, R. (2005). Geomagnetic
storm of 29-31 October 2003: geomagnetically induced currents and their relation to
problems in the Swedish high-voltage power transmission system. Space weather 3 (8).
doi:10.1029/2004SW000123

Pulkkinen, T. I., Brenner, A., Al Shidi, Q., and Toth, G. (2022). Statistics of
geomagnetic storms: global simulations perspective. Front. Astron. Space Sci. 9, 972150.
doi:10.3389/fspas.2022.972150

Reames, D. V. (2021). Solar energetic particles, 2nd ed.; open access. Cham,
Switzerland: Springer Nature. doi:10.1007/978-3-030-66402-2

Reiss,M. A., Temmer,M., Veronig, A.M., Nikolic, L., Vennerstrom, S., Schöngassner,
F., et al. (2016). Verification of high-speed solar wind stream forecasts using
operational solar wind models. Space weather 14 (7), 495–510. doi:10.1002/2016SW
001390

Ryu, M., Nagarajan, H., and Bent, R. (2020). Algorithms for mitigating the effect
of uncertain geomagnetic disturbances in electric grids. Electr. Power Syst. Res. 189,
106790–107796. doi:10.1016/j.epsr.2020.106790

Santoso, A., Sismanto, S., Priyatikanto, Rh., Hartantyo, E., and Martiningrum,
D. R. (2024). The intensity of the geomagnetic storms associated with imf and
solar wind parameters during solar cycle 24. Earth Planet. Phys. doi:10.26464/epp
2024069

Shprits, Y. Y., Vasile, R., and Zhelavskaya, I. S. (2019). Nowcasting and predicting
the Kp index using historical values and real-time observations. Space weather 17,
1219–1229. doi:10.1029/2018SW002141

Siciliano, F., Consolini, G., Tozzi, R., Gentili, M., Giannattasio, F., and De
Michelis, P. (2021). Forecasting SYM-H index: a comparison between long short-
term memory and convolutional neural networks. Space weather 19, e2020SW002589.
doi:10.1029/2020SW002589

Sierra-Porta, D., Petro-Ramos, J. D., Ruiz-Morales, D. J., Herrera-Acevedo, D.
D., García-Teheran, A. F., and Tarazona Alvarado, M. (2024). Machine learning
models for predicting geomagnetic storms across five solar cycles using Dst index
and heliospheric variables. Adv. Space Res. 74 (8), 3483–3495. doi:10.1016/j.asr.
2024.08.031

Siscoe, G., and Schwenn, R. (2006). CME disturbance forecasting. Space Sci. Rev. 123,
453–470. doi:10.1007/s11214-006-9024-y

Sorokin, V., Yaschenko, A., Mushkarev, G., and Novikov, V. (2023). Telluric
currents generated by solar flare radiation: physical model and numerical estimations.
Atmosphere 14 (3), 458. doi:10.3390/atmos14030458

Souza, J. R., Dandenault, P., Santos, A. M., Riccobono, J., Migliozzi, M. A.,
Kapali, S., et al. (2024). Impacts of storm electric fields and traveling atmospheric
disturbances over the Americas during 23–24 April 2023 geomagnetic storm:
experimental analysis. J. Geophys. Res. 129, e2024JA032698. doi:10.1029/2024JA0
32698

Srivastava, N., Mierla, M., and Zhang, J. (2021). Editorial: space weather
prediction: challenges and prospects. Front. Astron. Space Sci. 8, 818878.
doi:10.3389/fspas.2021.818878

Tchijevsky, A. L. (1938). Les epidémies et les perturbations electromagnétiques du
milieu extérieur. Paris, France: Hippocrate. Available at: https://search.worldcat.
org/formats-editions/14724886.

Telloni, D., Lo Schiavo, M., Magli, E., Fineschi, S., Guastavino, S., Nicolini, G., et al.
(2023). Prediction capability of geomagnetic events from solar wind data using neural
networks. Astrophys. J. 952, 111. doi:10.3847/1538-4357/acdeea

Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy,
N., Grande, M., et al. (2006). Corotating solar wind streams and recurrent
geomagnetic activity: a review. J. Geophys. Res. 111, A7. doi:10.1029/2005JA0
11273

Vennerstroem, S. (2001). Interplanetary sources of magnetic storms: a
statistical study. J. Geophys. Res. 106 (A12), 29175–29184. doi:10.1029/2001JA00
0004

Wang, C., Ye, Q., He, F., Chen, B., and Zhang, X. (2023). A new method for
predicting non-recurrent geomagnetic storms. Space weather 21, e2023SW003522.
doi:10.1029/2023SW003522

Wang, J., Luo, B., Liu, S., and Shi, L. (2023). A machine learning-based model for
the next 3-day geomagnetic index (Kp) forecast. Front. Astron. Space Sci. 10, 1082737.
doi:10.3389/fspas.2023.1082737

Frontiers in Astronomy and Space Sciences 08 frontiersin.org

https://doi.org/10.3389/fspas.2024.1493917
https://doi.org/10.1029/95RG01304
https://doi.org/10.3847/1538-4357/835/2/117
https://doi.org/10.3847/1538-4357/835/2/117
http://www.shao.az/SG/v4n2/SG_v4_No2_2009-p-60-71.pdf
http://www.shao.az/SG/v4n2/SG_v4_No2_2009-p-60-71.pdf
https://doi.org/10.1007/s11214-021-00814-x
https://doi.org/10.1007/s11214-021-00814-x
https://doi.org/10.3389/fpubh.2024.1295643
http://sg.shao.az/v2n1/SG_v2_No1_2007-pp-33-38.pdf
http://sg.shao.az/v2n1/SG_v2_No1_2007-pp-33-38.pdf
https://doi.org/10.1016/j.jastp.2007.08.024
https://doi.org/10.1002/2014SW001033
https://doi.org/10.1002/2014SW001033
https://doi.org/10.1186/s40562-016-0037-4
https://doi.org/10.1186/s40562-016-0037-4
https://doi.org/10.1029/2019SW002329
https://doi.org/10.1029/2022SW003110
https://doi.org/10.1002/2016SW001585
https://doi.org/10.1002/2016SW001585
https://doi.org/10.1029/2022SW003320
https://doi.org/10.1029/2022SW003320
https://doi.org/10.1029/2023SW003533
https://doi.org/10.1007/978-3-319-60051-2_1
https://doi.org/10.1007/978-3-319-60051-2_1
https://doi.org/10.1029/2020SW002641
https://doi.org/10.3390/astronomy2030012
https://doi.org/10.1016/S1364-6826(02)00126-8
https://doi.org/10.1016/S1364-6826(02)00126-8
https://doi.org/10.1029/2022JA030830
https://doi.org/10.1029/2023SW003514
https://doi.org/10.1029/2023SW003514
https://doi.org/10.1002/2015GL065061
https://doi.org/10.1002/2015GL065061
https://doi.org/10.1051/swsc/2021021
https://doi.org/10.1051/swsc/2021021
https://doi.org/10.2514/1.A36164
https://doi.org/10.2514/1.A36164
https://www.gao.gov/products/gao-19-98
https://www.gao.gov/products/gao-19-98
https://doi.org/10.1029/2011SW000663
https://doi.org/10.1029/2004SW000123
https://doi.org/10.3389/fspas.2022.972150
https://doi.org/10.1007/978-3-030-66402-2
https://doi.org/10.1002/2016SW001390
https://doi.org/10.1002/2016SW001390
https://doi.org/10.1016/j.epsr.2020.106790
https://doi.org/10.26464/epp2024069
https://doi.org/10.26464/epp2024069
https://doi.org/10.1029/2018SW002141
https://doi.org/10.1029/2020SW002589
https://doi.org/10.1016/j.asr.2024.08.031
https://doi.org/10.1016/j.asr.2024.08.031
https://doi.org/10.1007/s11214-006-9024-y
https://doi.org/10.3390/atmos14030458
https://doi.org/10.1029/2024JA032698
https://doi.org/10.1029/2024JA032698
https://doi.org/10.3389/fspas.2021.818878
https://search.worldcat.org/formats-editions/14724886
https://search.worldcat.org/formats-editions/14724886
https://doi.org/10.3847/1538-4357/acdeea
https://doi.org/10.1029/2005JA011273
https://doi.org/10.1029/2005JA011273
https://doi.org/10.1029/2001JA000004
https://doi.org/10.1029/2001JA000004
https://doi.org/10.1029/2023SW003522
https://doi.org/10.3389/fspas.2023.1082737
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Khabarova and Price 10.3389/fspas.2024.1493917

Wintoft, P., and Wik, M. (2018). Evaluation of Kp and Dst predictions using ACE
and DSCOVR solar wind data. Space weather 16, 1972–1983. doi:10.1029/2018SW
001994

Wrenn, G. L. (2009). Chronology of ‘killer’ electrons: solar cycles 22 and 23. J.
Atmosph. Sol.-Terr. Phys. 71 (10–11), 1210–1218. doi:10.1016/j.jastp.2008.08.002

Xu, S., Huang, S., Yuan, Z., Deng, X., and Jiang, K. (2020). Prediction of the Dst
index with bagging ensemble-learning algorithm. Astrophys. J. Suppl. Ser. 248, 14.
doi:10.3847/1538-4365/ab880e

Xu, W., Zhu, Y. M., Zhu, L., Lu, J., Wei, G., Wang, M., et al. (2023). A class of Bayesian
machine learning model for forecasting Dst during intense geomagnetic storms. Adv.
Space Res. 72 (9), 3882–3889. doi:10.1016/j.asr.2023.07.009

Zank, G. P., Hunana, P., Mostafavi, P., Roux, J. A. L., Li, G., Webb,
G. M., et al. (2015). Diffusive shock acceleration and reconnection
acceleration processes. Astrophys. J. 814 (1), 137. doi:10.1088/0004-637X/814/
2/137

Zhang, J., Feng, Y., Zhang, J., and Li, Y. (2023). The short time prediction of the Dst
index based on the long-short time memory and empirical mode decomposition–long-
short time memory models. Appl. Sci. 13, 11824. doi:10.3390/app13
2111824

Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E., Kasper,
J. C., et al. (2007). Solar and interplanetary sources of major geomagnetic storms
(Dst < -100 nT) during 1996–2005. J. Geophys. Res. 112, A10102. doi:10.1029/2007JA0
12321

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2024.1493917
https://doi.org/10.1029/2018SW001994
https://doi.org/10.1029/2018SW001994
https://doi.org/10.1016/j.jastp.2008.08.002
https://doi.org/10.3847/1538-4365/ab880e
https://doi.org/10.1016/j.asr.2023.07.009
https://doi.org/10.1088/0004-637X/814/2/137
https://doi.org/10.1088/0004-637X/814/2/137
https://doi.org/10.3390/app132111824
https://doi.org/10.3390/app132111824
https://doi.org/10.1029/2007JA012321
https://doi.org/10.1029/2007JA012321
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

	1 Introduction
	2 Practical importance of predicting geomagnetic storms
	3 Geomagnetic storm prediction: geomagnetic storm intensity classifications, general approaches, solutions and problems
	3.1 Classifications
	3.2 General approaches
	3.3 Solutions
	3.4 Problems

	4 Discussion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

