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Machine learning opportunities
for nucleosynthesis studies

Michael S. Smith1* and Dan Lu2

1Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, 2Computational
Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States

Nuclear astrophysics is an interdisciplinary field focused on exploring the impact
of nuclear physics on the evolution and explosions of stars and the cosmic
creation of the elements. While researchers in astrophysics and in nuclear
physics are separately using machine learning approaches to advance studies
in their fields, there is currently little use of machine learning in nuclear
astrophysics. We briefly describe the most common types of machine learning
algorithms, and then detail their numerous possible uses to advance nuclear
astrophysics, with a focus on simulation-based nucleosynthesis studies. We
show that machine learning offers novel, complementary, creative approaches
to address many important nucleosynthesis puzzles, with the potential to initiate
a new frontier in nuclear astrophysics research.
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1 Introduction

Machine learning (ML) is now broadly used in the field of astrophysics to study
a wide variety of phenomena. A selection of recent examples includes projects in
observational cosmology (Moriwaki et al., 2023), galactic evolution (Fraser et al., 2023),
cosmic ray measurement interpretation (Arimura, 2023), star formation with dark matter
(Hernández et al., 2023), galaxy spectral energy distributions (González-Morán et al., 2023),
blazer observations (Ding et al., 2023), Ba star abundances (den Hartogh et al., 2023),
and metallicity-dependent abundances (Sun, 2024). While not as widely used in nuclear
physics, ML utilization there is growing, as reviewed in Boehnlein et al. (2022). Some more
recent examples in nuclear physics include the use of ML for studies at low- and medium-
energies (He et al., 2023), for neutron-induced reaction cross section evaluations (Xu et al.,
2023), for heavy-ion fusion cross sections (Li Z. et al., 2024), for nuclear mass predictions
(Le et al., 2023; Wu X. H. et al., 2024; Zhang et al., 2024; Li M. et al., 2024; Yüksel et al.,
2024), for active-target time projection chamber data analysis (Wu H. et al., 2023), for
analysis of time-of-flight data (Sanchez-Caballero et al., 2023), and for reaction cross section
predictions (Gargouri et al., 2023).

From these examples, it would seem likely that ML would also be widely
utilized in the interdisciplinary research that spans these two fields–that is, in nuclear
astrophysics–but this is not the case. Researchers in nuclear astrophysics (Schatz et al.,
2022; Arcones and Thielemann, 2023) explore the critical leverage that physics at
the femtometer scale has on stellar systems that are 1024 times larger, as well as
on the origin and evolution of the Universe. At the core of many of these studies
are simulations that combine the results nuclear measurements, nuclear theory, and
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astrophysical observations to expand our understanding of
the cosmic creation of the elements, and to decipher why
systems like our sun, red giants, white dwarfs, variable stars,
and others evolve peacefully while other stars end their lives in
nova, supernova, hypernova, or even more exotic explosions.
In this era of multi-messenger astronomy (Neronov, 2021),
improved predictions of such simulations are needed more than
ever to connect measurements at new and planned accelerator
facilities (Wei et al., 2019; Motobayashi and Sakurai, 2012;
Scheidenberge, 2017; Hong, 2023) and advances in nuclear
theory driven by exascale supercomputers (NUCLEI, 2022) with
observations from the latest generation of ground- and space-based
telescopes (National Academies of Sciences et al., 2021).

While astrophysics and nuclear physics have separately used
ML approaches to advance their frontiers, there is very little use
of ML approaches in nuclear astrophysics. This is evident from
recent journal articles, from presentations at the largest recent
international symposia [e.g., NICXVII (2023); OMEG (2022)], and
from the latest strategic planning documents for nuclear physics
(Aidala et al., 2023); there are two exceptions (at the time of writing
this article), Fan et al. (2022) and Grichener et al. (2024), which
will be discussed below in Section 3. To address this paucity of ML
studies, this article explores opportunities for ML approaches to
advance the field of nuclear astrophysics, with a focus on simulation-
based studies of the cosmic synthesis of the elements (Hix and
Thielemann, 1999; Arnett, 1996). We show that ML offers novel,
complementary, creative approaches to address many important
nucleosynthesis puzzles. Since traditional approaches in this work
have not changed in decades, ML has the potential to initiate a new
frontier in nuclear astrophysics research.

To begin, we first give a brief description of a variety of
widely-utilized ML algorithm types in Section 2. Some important
nucleosynthesis puzzles are then described in Section 3, along with
suggestions of methods to employ ML algorithms that may advance
our knowledge.We then briefly discuss some of the challenges ofML
approaches in Section 4, and then give a summary in Section 5.

2 Widely-utilized machine learning
approaches

ML approaches have been shown to be very effective in
addressing data-centric problems in a wide variety of fields.
Common uses for ML algorithms are to classify data, make
decisions, predict values, identify outliers or anomalies, find
patterns, interpret large datasets, quantify uncertainties, efficiently
map inputs to outputs, reduce dimensionalities, and find hidden
functional relationships. Below we give a brief description of widely
utilized ML algorithm types that are routinely used for these (and
other) tasks. For convenience, we have grouped these algorithm
types into six categories based roughly on functionality, but we note
that many are routinely used for multiple purposes. The different
ML algorithms will be discussed in Section 3 as possible approaches
to address important challenges in nucleosynthesis research. Our
algorithm summary may also inspire the use of ML approaches
in other research fields, such as geophysics, biophysics, material
science, and chemistry.

2.1 Regression

Linear Regression (LinR) (Kumar and Bhatnagar, 2022) – fitting a
data set to a (single- or multivariate) linear function by least squares
minimization iswellunderstoodandwidelyutilized fordata setswitha
linear input-outputmapping.MLuseemphasizesaccuratepredictions;
usage in statistics emphasizes the correctness of the linear model.

Kernel Ridge Regression (KRR) (Hastie et al., 2009) – produces
fits (predictions) over multiple variables that have high correlations
(multicollinearities) that can cause problems in standard regressions;
KRRsmaptheoriginaldata intoamorecomplexkernel-definedfeature
space, but do not generate prediction uncertainties.

Logistic Regression (LogR) (Bisong and Bisong, 2019) – this
widely used classification algorithm maps continuous quantities
to (usually two) discrete quantities (e.g., “Yes/No”, “On/Off”) by
fitting a sigmoid (logit) function to the data. This approach is easily
understood (explainable) and works with non-linear data sets.

Gaussian Processes (GP) (Rasmussen and Williams, 2005) – use
a collection of normally-distributed random variables to specify
distributions over complex functions without knowing the exact
form. GPs are useful for accurate predictions (regression) with
uncertainties, as well as for classifications.

2.2 Classification

Classification Tree (CT) (Breiman, 2017) – these employ a set
of cascading rule-based tests with a tree-like structure to sort
(classify) labelled data into categories. A variation –Classification and
RegressionTrees (CARTs) – can be used for regression by partitioning
data into groups with similar values of a dependent variable.

Decision Tree (DT) (Quinlan, 1986) – structurally similar toCTs,
these trees make decisions (i.e., give answers) based on rule-based
tests (i.e., questions).DTs can function as “expert systems” that drill
down to a recommendation based on multivariate input.

Random Forest (RF) (Cutler et al., 2012) – instead of using rule-
based data tests, RFs randomly generate many DTs that each “vote”
on a classification, in order to overcome limitations of single DTs
and add features like weighting and error estimation. RFs can also
be used for regression when testing on a continuous variable.

Gradient Boost (GB) (Friedman, 2001) – in contrast toRFs which
combine results of different DTs as a final step, a GB combines
DT results in series to make successively stronger (better predictive)
models. GBs have great flexibility for tuning and loss functions, and
can give highly accurate predictions.

Isolation Forest (IF) (Liu et al., 2008) – since anomalies (outliers)
in data tend to be “few and different” fromother data, a tree structure
can be used to separate them after only a few tests (i.e., near the
“root” of the tree). IFs are characterized by fast execution and high
performance for a wide range of anomalies.

Support Vector Machine (SVM) (Steinwart and Christmann,
2008) – for data with n features, an n-dimensional vector is
drawn with values on each coordinate corresponding to its feature
value; classifications are made via relative data point distances
in the n-space. SVM algorithms are robust against outliers and
computationally efficient.

KMeansClustering (KM) (Xu et al., 2019) – unlabeled data points
are grouped via distances in feature space to k randomly-assigned
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centroids; data is classified by iteratively reassigning centroids until
obtaining optimally separated clusters. Care is needed with this
approach to avoid local minima.

K Nearest Neighbor (KNN) (Zhang, 2016) – used to classify
(group) data points based on commonalities with the majority of
its k nearest neighbors in feature space. KNNs can also be used for
regression where commonalities are treated as numerical distances.

2.3 Neural Networks

Neural Network (NN) (Suk et al., 2017) – layers of interconnected
nodes (neurons), each with its own weighting, bias, and activation
function, serve to process inputs to outputs; backpropagation is used
to iteratively adjust weights by comparing outputs to training data,
after which predictions can be made from new inputs. Widely used
to model complex functions, deep NNs (DNNs) with many hidden
layers are the basis of “deep learning” (DL).

Convolutional Neural Net (CNN) (Ankile et al., 2020) – these
DNNs extract features by “sliding” (i.e., convolving) a set of filters
(kernels) over data that has a grid-like structure. Filter outputs are
subsequently collected and combined by fully connected NN layers
for classification. CNNs are widely used for image analyses.

Bayesian Neural Net (BNN) (Jospin et al., 2022) – these NNs
have stochastic weights to simulate, using a Bayesian inference
framework, the predictions of multiple possible models and the
probability distribution associated with each. In this way, BNNs are
used to quantify the prediction uncertainties of NN-based models.

Recurrent Neural Net (RNN) (Lipton et al., 2015) – by structuring
aDNN with repeating layers (loops) that link in forward and reverse
(recurrent) directions, information can be stored (a “memory”)
as inputs of arbitrary length are sequentially processed. RNNs are
widely used to analyze time series data, speech, music, and text.

Graph Neural Net (GNN) (Wu et al., 2021) – graph-like data
(e.g., entities plus their relationships, which can be images, texts,
molecular structures, and more) are analyzed by an optimizable
transformation of all graph attributes to find missing elements
or relationships, identify/characterize subcomponents, or other
prediction tasks.

Radial Basis Function Neural Net (RBFNN) (Lee et al., 1999)
– useful for regression of non-linear functions or associated
classification problems, these 3-layer NNs have a unique hidden
layer with neuron weights determined by the (kernel-calculated)
distance from a central point; they train quickly but can be
difficult to set up.

Emulators (Kasim et al., 2021) – fast-executing ML models
trained to approximately reproduce the results of (i.e., produce the
same input - outputmapping as) complex simulations.They facilitate
exploring uncertainties, sensitivities, parameter spaces, and more.
NNs, DNNs, CNNs, GPs, and RFs are often used as emulators.

2.4 Generative models

Generative Models (GEN) (Harshvardhan et al., 2020) – these
models generate (create) new data (including images, text, sound,
and more) that resembles training data. Some GENs learn patterns
and structure to enable a mapping from a latent (feature) space

to a data space, while others directly sample from a probability
distribution.

Generative Adversarial Network (GAN) (Gonog and Zhou, 2019)
– in training, these set a generative model against a competing
discriminative algorithm to produce better outputs. GANs are
widely used to generate images from text, reword text, create training
data, and much more.

Diffusion Models (DIFF) (Yang et al., 2023) – these generative
models add random noise to a clean input (e.g., image, video,
signals, molecular structure) and then reverse the process to create
a new (but different) output. They can well capture patterns in
complex images and data distributions and generate similar but
diverse outputs.

2.5 Deep learning language models

Large Language Model (LLM) (Zhao et al., 2023) – trained on
up to ∼1012 tokens using ∼1012 parameters, these models include
recurrent, generative, and other NN layers to recognize, predict,
and generate text. LLMs use statistical approaches in contrast to
traditional rule-based approaches of natural language processing.

Transformers (Vaswani et al., 2017) – a widely used, highly
scalable DNN architecture that revolutionized LLMs by using
the concept of attention to comprehend contextual relationships
within text and sequential data. It excels at summarizing and
translating text, answering questions, analyzing sequential data,
and much more.

Generative Pre-trained Transformer (GPT) (OpenAI, 2022) –
adding generative capabilities to a Transformer foundation trained
on internet-scale textual data, this is a popular foundation for LLMs.
Fine-tuned GPTs, some with chat interfaces for queries (prompts)
(e.g., ChatGPT), work primarily with text but can have capabilities
with images, music, video, and more.

Foundation Model (FM) (Bommasani et al., 2021) – trained
on internet-scale unlabeled multi-modal datasets (text, time-series
data, images, code, graphs, video, andmore), these very large general
purpose DL models can be fine-tuned for specific applications and
may exhibit emergent capabilities.

2.6 Other algorithm types

Principal Component Analysis (PCA) (Kherif et al., 2020) –
reduces the dimensionality of large multivariate data sets by
finding fewer (sometimes new) parameters to “represent” the data
collection with minimal information loss. PCA works well with
highly correlated data sets that have many parameters.

Naïve Bayes (NB) (Webb et al., 2010) – uses information in
the data to estimate Bayesian posterior probabilities with the
(naïve) assumption that attributes are conditionally independent.
Classifications and decisions are made by setting thresholds on
probabilities.

Variational Autoencoder (VAE) (Kingma et al., 2019) – uses a
neural net to compress/encode data as parameters of a distribution
over random variables in a continuous lower-dimensional latent
space, then generatively reconstruct/decode the data. This reduces
noise, adds probabilities, and focuses on critical data features.
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Symbolic Regression (SR) (Cava et al., 2021) – used to optimally
specify amathematical formula to input-to-output datamapping, by
altering both the structure and parameters of an analytical model.
This produces a model that can be more easily explained (i.e.,
interpreted).

3 Machine learning for
nucleosynthesis studies

In any given astrophysical system, the complex mechanisms
responsible for the cosmic synthesis of nuclei involve over
1050 nuclei spread over ∼103 nuclear species (isotopes) together
with sequences of up to ∼104 interconnecting thermonuclear
reactions that transmute nuclides of one species to another. To
simulate nucleosynthesis in such a system, the specified initial
abundances are numerically evolved, in short time steps, into
their final abundances over an appropriate set of hydrodynamic
conditions (Hix and Thielemann, 1999; Hix and Meyer, 2006). The
compositional changes predicted by simulations are often given as
one-dimensional (1D) plots of abundance histories [Figure 1 (Smith,
2024; Nesaraja et al., 2005; Smith et al., 2006; Hix, 2024)]. Because
there are too many histories to show at once on these plots, 2D
visualizations (Figure 2) are often used which display abundance
values (mapped to colors) of each isotope at its location set by
neutron number N and proton number Z; such an N-Z plane is
referred to as the “nuclide chart”. At any time step in the simulation,
such an image shows the cumulative effect of all reactions that
have both created and destroyed (“burned”) each isotope up to
that point in the simulation. A complementary 2D nuclide chart
visualization (Figure 3) represents the amount of material changing
from one isotope to another via individual reactions (the reaction
“flux” (van Wormer et al., 1994)) as the width/pattern/color of
arrows connecting the isotopes. Such “flow diagrams” are especially
appropriate given that nucleosynthesis is often conceptualized as
the flow of stellar material (abundances) from lighter- to heavier-
mass nuclides.

While the overall approach of most simulation-based
nucleosynthesis studies are similar, there are differences depending
on the investigation goals, available computational power, and
acceptable approximations. For studies exploring the importance
of thermonuclear reactions on simulation predictions, a full
treatment of thermonuclear burning is often used wherein
the abundances of all relevant isotopes are solved numerically
considering all interconnecting reactions. To speed execution,
many studies employ a “post-processing” simulation approach
where the full thermonuclear burning problem is computed
over predetermined temperature and density vs time trajectories
[e.g., Hix (2024), NUGRID Collaboration (2024)]. Additional
execution speed is obtained by assuming spherical symmetry in
the hydrodynamic trajectories, so calculations are made in one
dimension (1D) along the system radius.

Some studies more realistically couple a full thermonuclear
burn treatment to a 1D hydrodynamics code [e.g., Paxton et al.
(2011); Weaver et al. (1978)]. This coupling, missing in post-
processing studies, is critical because it produces self-consistent
solutions. Further model enhancements require more complex
hydrodynamics. For example, mixing length theory (Joyce and

Tayar, 2023) is often used to approximate the complex effects of
convection in 1D studies, but more realistic convection treatments
require 2D or 3D hydrodynamics codes (Fryxell et al., 2000;
Almgren et al., 2010). For certain effects like standing accretion
shock instabilities (SASI) (Dunham et al., 2023) and stellar rotation,
3D hydrodynamic approaches are required. Because of the extreme
computational demands of the 2D and 3D codes (Papatheodore
and Messer, 2017), however, these simulations often employ a
very truncated (approximate) treatment of thermonuclear burning
that includes only the reactions and isotopes that most influence
the hydrodynamics. To more accurately time-evolve the full
isotopic inventory in such approaches, hydrodynamic trajectories
are then extracted from the simulation for use in separate post-
processing nucleosynthesis studies. This extraction is often done
with a “tracer particle” approach, discussed further below in
Section 3.1. There are, however, known issues with the use of
truncated thermonuclear burning treatments, including problems
with energy generation, neutrino heating, and nucleosynthesis
in core-collapse supernovae (Navó et al., 2023). A major goal
in nucleosynthesis studies is therefore to develop simulations
that couple full thermonuclear burning with multi-dimensional
hydrodynamics.

This goal has not yet been practically realized, however, due
to the daunting computational requirements. For this reason,
and because every relevant thermonuclear reaction and every
set of hydrodynamic conditions cannot be investigated, it is
critical to carry out studies that guide researchers on where to
focus their efforts to make the most progress in understanding
nucleosynthesis. Some such efforts, for example, strive to understand
details of nucleosynthesis flows – a challenge as these flows
reflect the interplay of the hydrodynamic conditions and the
underlying relevant nuclear physics. Other efforts focus on devising
approximations to nucleosynthesis flows – desirable to reveal
underlying structures or symmetries, as well as to speed simulation
execution and thereby accelerate scientific discoveries. There
are also studies focusing on quantifying the uncertainties of
model predictions to enable robust comparisons of predictions to
observations. Sensitivity Analyses are another important approach,
where changes in model predictions (outputs) caused by systematic
variations of inputs are examined; this flags inputs that significantly
impact critical simulation outputs for further investigation. And
finally, there are efforts to improve models, such as by identifying
and correcting anomalous inputs.

The following subsections give some details on possible
studies in each of these areas mentioned above – nucleosynthesis
flows, complexity reduction, uncertainty quantification, sensitivity
analyses, and improving models – using ML algorithm types
mentioned in Section 2. Some of these are novel and creative
approaches that hold the promise of enabling significant progress for
simulation-based nucleosynthesis studies, where the overall solution
scheme has not changed in decades. A brief discussion of the
utility of ML (especially LLMs) for speeding scientific workflows
is also given. Furthermore, additional advances in the field may
also be achieved by combining the approaches discussed below in
innovative ways. We note that while the ML algorithms mentioned
below have not been used for nucleosynthesis studies, many of
them have been successfully used, for very different purposes, in
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FIGURE 1
Nucleosynthesis simulation predictions shown as 1D plots of abundances versus time for numerous different isotopes. The zero time is set at the peak
temperature of the event. The calculation was made with the Computational Infrastructure for Nuclear Astrophysics (CINA) (Smith, 2024;
Nesaraja et al., 2005; Smith et al., 2006) running the XNET post-processing simulation code (Hix, 2024).

nuclear physics [e.g., Boehnlein et al. (2022)] and in astrophysics
[e.g., Bufano et al. (2022)].

3.1 Nucleosynthesis flows

3.1.1 Flow Patterns
Identifying and analyzing patterns in complex nucleosynthesis

flows may provide insights, decouple overlapping (e.g.,
thermonuclear and hydrodynamic) effects, and pinpoint critical
nuclides and reactions for future study. For example, many
experimental efforts have been driven (Smith and Rehm, 2001)
by the identification of (nearly) identical flow patterns over different
portions of the nuclide chart (e.g., the Hot CNO, NeNa, MgAl, and
SiP cycles (Figure 4)) in simulations of nucleosynthesis in nova
explosions and X-ray bursts; see, for example, van Wormer et al.
(1994), Rembges et al. (1997), Smith and Rehm (2001). Repetitive

flow patterns may also arise from the use of thermonuclear rates
derived from statistical reactionmodels, since thesemodels generate
very similar reaction cross sections for target nuclides separated
by an alpha particle (i.e., two units in each of N and Z) on the
nuclide chart. Other interesting flow patterns include: interruptions
in the flow from lower to higher masses at particular nuclides
(“waiting point nuclei”) (Smith, 2011); a many-to-one reduction
in the number of possible flow paths to higher masses (“bottleneck
reactions”) (Smith, 2011); a rapid cessation of flow to higher masses,
indicating expansive cooling of the system or exhaustion of the
thermonuclear “fuel” of an exploding star (Roberts et al., 2006);
and a balancing of flows through particle captures and their inverse
photodisintegrations, indicating the condition of Nuclear Statistical
Equilibrium (NSE) (Lippuner and Roberts, 2017).

The complexity of simulation predictions has, however, limited
systematic studies of the flow patterns mentioned above, and has
hampered searches for novel flow patterns that could provide
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FIGURE 2
Nucleosynthesis abundance diagram where color indicates abundances for each isotope on the chart of the nuclides (N-Z plane). The simulation was
made with CINA (Smith, 2024).

other important signatures of aspects of thermonuclear burning or
the onset of certain hydrodynamic conditions. This is where ML
approaches could be very useful. For example, by treating each
isotope as a graph node, and each reaction flux arrow as a directed
graph edge, a GNN could be employed to identify and analyze
patterns in flow diagrams like Figure 3. For such a “flow graph”, there
are a limited number of edges directed into, and directed out of,
each node, representing the possible nuclear reactions (Figure 5).
Because of these limited possible edges, and because these edges are
localized to reach nearest (or near) neighbors, these graphs aremuch
less complex than many routinely analyzed by GNNs. For a GNN-
based nucleosynthesis study, the edges should be weighted by the
reaction flux, and the nodes should be indexed by their (N,Z) values
and (if necessary) weighted by their abundance values.

A GNN could take a flow graph as input, generate a
representation in a lower-dimensional latent (feature) space, and
then identify clusters of nodes, objects and their connections,
and region classifications. These could facilitate studies of the
numerous flow effects mentioned above, and perhaps identify
some new effects as well. GNNs can also generate new graph
visualizations which could reveal structures and anomalies not
readily apparent in the original flow diagram. By weighting nodes
with, for example, accelerator beam intensities, a GNN could be
used to rank identified features (e.g., nucleosynthesis waiting points,
bottlenecks, repetitive patterns) to prioritize experiments thatmatch
facility capabilities. By weighting graph edges with reaction energy
release (Q-values), a GNN could identify a truncated selection of

isotopes and reactions that generate nearly the same thermonuclear
energy as the original simulation; this could subsequently be used for
accelerated nucleosynthesis simulations coupling hydrodynamics
and approximate (truncated) thermonuclear burning.

In a complementary manner, ML approaches may also help
identify flow patterns in abundance diagrams like Figure 2; this
can be especially useful because not all simulation codes generate
flow diagrams like Figure 3. Noting that abundance diagrams are
coarsely “pixelated” over the nuclide chart, CNNs are a natural
approach to search for patterns using filters that “slide” over the
image. Since the pixel values (abundances) change in time,ML video
analysis approaches can be used on a series of sequential pixelated
abundance images, like those shown in Figure 6. For example, aCNN
could be used to extract high-level features from individual frames
that are then fed to an RNN that keeps a memory of the frame-
to-frame temporal correlations (Xu et al., 2016). Such a scheme
could be used as a novel nucleosynthesis simulation emulator, as
described below in Section 3.2.

Adjusting the color palette could also aid in analyzing these
images. First, in the image creation stage, abundances are usually
continuously mapped to colors, but using a coarser discrete color
binning (Smith, 2011) as in Figure 2 could accelerate CNN image
analyses by reducing the dimension of the color space. Additionally,
such binning could facilitate the use of KNN or KM clustering
algorithms to find abundance patterns via groupings of isotopes
in a combined color- and (Z, N)-space. After image generation,
colors can be “quantized” using a variety of techniques (CNNs,
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FIGURE 3
Nucleosynthesis flow diagram where arrows indicate reaction flux from one isotope to the next through individual thermonuclear reactions on the
chart of the nuclides. The simulation was made with CINA (Smith, 2024).

RNNs, GANs, and more) that preserve visual structures over a
smaller color palette for faster subsequent analyses (Hou et al., 2020).
Alternatively, KNN and KM clustering algorithms could process
(pre-image) numerical abundance values to determine optimal non-
uniform color maps for improved CNN image analysis, or be used
to reveal otherwise hidden patterns by bypassing image generation
altogether.

Finally, since flows can be numerically approximated by the
change of the abundances in Figure 2 in time (e.g., between
sequential images), abundance time derivative images could be
analyzed using CNNs, CNNs in combination with RNNs, or
clustering algorithms to generate new insights, especially when
flow diagrams are not available. Figure 7 shows an example of
the evolution of abundance time derivatives for an energetic nova
explosion. As the temperature rises to the peak, the abundances at
nuclides with higher (lower) Z values are increasing (decreasing)
in time, with corresponding positive (negative) values for their
abundance time derivatives; this is consistent with reaction flow
towards higher Z (i.e., upwards) on theN-Z plane. After a transition
near the peak temperature, these abundance time derivatives flip in
sign, consistent with the reaction flow dominated by positron decays
which flow diagonally downward and to the right on the nuclide
chart. New thermonuclear burning insights may be derived by
examining effects including: correlations between abundance time

derivative sign changes and changes in hydrodynamic conditions;
rapid fluctuations in abundance time derivative signs; patterns and
groupings of isotopes with similar abundance time derivative signs
and sign changes; and more.

3.1.2 Flow correlations
Instances where two or more isotopes have nearly identical

predicted abundance vs time histories (Zhang et al., 2013) (Figure 8)
may reveal underlying nucleosynthesis structures, especially for
isotopes that have significant mass differences (i.e., are well
separated from one another on the nuclide chart). In such cases,
the flow correlations could be connecting groups of isotopes
in a localized NSE, a condition called nuclear quasi-statistical
equilibrium (QSE) (Meyer et al., 1998). Alternatively, correlations
could be due to flows through a sequence of intervening reactions
that connect these distant isotopes. However, because simulations
track the abundances of so many isotopes, and because there
are numerous general abundance time evolution trends (e.g.,
abundances increasing during rapid temperature rises), such flow
correlations could merely be random. It is therefore important not
only to search for such correlations, but also to determine if a causal
relationship is present.

There are numerousML approaches that could be used to search
for such causal flow correlations. For example, abundance histories
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FIGURE 4
Repetitive reaction flow patterns–the Hot CNO, NeNa, MgAl, and SiP cycles–in a nucleosynthesis simulation of an energetic nova explosion. The
simulation was made with CINA (Smith, 2024).

could be pre-processed (in this case, labeled) by selecting their
values (and/or time derivatives) over a coarse time grid and then
using a KM or SVM clustering algorithm or a NN to group similar
histories together. NNs could also be used to facilitate Dynamic
Time Warping algorithms (Seshan, 2022) for picking out similar
curves. A wider range of variations of abundance histories can likely
be handled by “encoding” abundances histories with an RNN (or a
1D CNN) and then using another DNN for feature extraction and
subsequent clustering and classification.

To show causality, analyses of 2D flow diagrams (like Figure 3)
with a GNN could be used to identify cases where sequences of
strong flows “connect” distant isotopes with correlated abundance
histories, or more generally to identify new possible causal
connections. This would involve weighting graph edges by reaction
flux and graph nodes by abundance values and comparing nearby
edges and nodes to find sequences of strong flows. For cases of
QSE, analyses of the pixelated 2D abundance plots (like Figure 2)
are appropriate, because it was noted in Meyer et al. (1998) that the
shape of these groups in the N-Z plane can critically impact final
abundance predictions. CNNs would be useful for such analyses, as
well as KNN and SVM clustering algorithms.

3.1.3 Tracer particles
In a hydrodynamics simulation, tracer particles (TPs) are

passive Lagrangian mass elements that move along with the fluid;
in spite of the name, they are not actually individual “particles”
like a proton. By tracing (recording) the time-dependence of TP
properties – position, velocities, angular momentum, temperature,

density, composition – a characterization of complex fluid flows can
be obtained. TPs are widely utilized in nucleosynthesis research
to extract hydrodynamic profiles from simulations coupling
multi-dimensional hydrodynamics with a truncated treatment of
thermonuclear burning; by later following a full thermonuclear burn
simulation over each TP profile and combining the results, a fuller
treatment of thermonuclear burning can be obtained. Examples
of this TP approach include studies of core collapse supernovae
(Sieverding et al., 2023; Harris et al., 2017), binary neutron star
mergers (Bovard and Rezzolla, 2017), and Type Ia supernovae
(Seitenzahl et al., 2010; Seitenzahl et al., 2020). A few thousand
TPs are typically used, in some cases evenly distributed across the
entire spatial grid (Harris et al., 2017) and in other cases strategically
located to track critical spatial regions.

There are a number of issues, however, that arise from the
use of TPs. These include (Sieverding et al., 2023): the impact
of initial tracer positions and velocities; the precise times when
tracer particles are initiated and terminated in the simulation; the
number of tracer particles to deploy; the challenges of obtaining
convergence of post-processed abundances; problems withmethods
to add more tracer particles after the simulation is completed
(which can aid in convergence); and that TP approaches do not
generate uncertainties. There are other issues including possible
discontinuities in velocity assignments (Tiede et al., 2022) as well
as inadequate spatial resolution and inconsistent thermodynamic
evolution. For core-collapse supernovae simulations, questions
can arise as to which tracers are ejected from the explosion,
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FIGURE 5
The prominent thermonuclear reactions that create (destroy) a given
proton-rich nuclide are shown as orange (blue) arrows connecting
isotopes on the N-Z plane. Inverse reactions and some other reactions
are not shown for clarity. For stable and for neutron-rich nuclides, the
prominent reactions are different.

and the very divergent nucleosynthesis results in asymmetrical
explosions (Harris et al., 2017).

ML approaches can address some of issues arising from TP use.
For example, outlier trajectories that may prevent convergence of
post-processing nucleosynthesis abundances could be identified and
removed using IF, SVM, andNNs, or clustering algorithms likeKNN
or KM. GPs could be used to smooth tracer particle trajectories to
make them more generic or “representative” of the astrophysical
environment, removing complex structure that may be tied to a
specific model; this could help deal with velocity discontinuities
or convergence issues. Going further, it could be advantageous to
determine a smaller set of trajectories that could each represent
many (tens to hundreds) individual TPs; these could be denoted
as “pseudo-tracers”. These could be centroids of a cluster of TPs
identified by KNN or KM, especially in combination with a GP that
assigned uncertainties to TP trajectories. Runs with pseudo-tracers
could then enable analyses with significantly improved 2D spatial
resolution compared to the same number of TPs with the same
computational power; this could help with abundance convergence
and spatial resolution problems. Alternatively, an ensemble of
pseudo-tracer runs with initial variations in parameters such as
positions/velocities, start/stop times, or others could be used to
address these and other issues in a more computationally efficient
manner. Pseudo-tracers could also help reveal hidden flow structures
or mark transitions between different flow regions (e.g., strong
outflows vs convective regions).

For uncertainties, GPs could be utilized to add uncertainties to
tracer particle trajectories, which could then be propagated through
post-processing simulations with a Monte Carlo uncertainty
quantification (UQ) approach as discussed below in Section 3.3.
Finally, regarding nucleosynthesis in asymmetrical systems,
clustering algorithms may be useful to divide TP trajectories into

groups that, when appropriately mass weighted, could be used to
determine final abundances in the system weighted over respective
contributions from (for example) polar vs equatorial trajectories.
Combined with GPs, this could also determine uncertainties in
these weighted abundances.

3.2 Complexity reduction

3.2.1 Emulators
Nucleosynthesis simulations can be considered functions that

map inputs (initial abundances, thermonuclear reaction rates,
hydrodynamic conditions) to outputs (final abundances, nuclear
energy generation). As discussed in Section 3.1, simulationswith the
most realistic hydrodynamics and a full treatment of thermonuclear
burning are not yet computationally viable. By replacing such
simulations with fast-executing approximations (i.e., emulators), the
complexity of the problem is reduced, andmore realistic simulations
become viable. In this way, emulators may accelerate the pace of
scientific discovery, and also enable the multiple runs of more
realistic simulations as required for determining their uncertainties
(see Section 3.3) as well as the sensitivities of their outputs to
inputs (see Section 3.4).

NNs are a popular foundation for emulators as they are
known to be universal function approximators. Specifically, a
NN with fixed depth and arbitrary width can, to any specified
accuracy, approximate any continuous function when the activation
functions are continuous and nonpolynomial (Cybenko, 1989;
Park et al., 2020). Numerous studies of different NN depths,
widths, and activations have since been studied in this regard;
for a review, see DeVore et al. (2021). By training a DNN on a
set of nucleosynthesis simulation inputs and outputs, for example,
that simulation would be effectively reverse engineered: loading
a new set of inputs (within range of the training data) into a
trained emulator would produce a new and consistent set of
outputs. As with all ML approaches, running emulators with inputs
outside of the training data range (i.e., making extrapolations) can
produce problematic outputs; retraining the emulator is usually
required for extrapolations. Besides DNNs, other ML algorithms
have been used as emulators, including GPs, SVMs, and RFs. The
choice of algorithm depends on the complexity of the problem,
the size of the training data set, the available computational
resources, the desired accuracy of the approximation, and the goals
of the study.

For nucleosynthesis codes that couple hydrodynamics and
thermonuclear burning, a natural first goal could be to replace
either the hydrodynamics or thermonuclear burn with an emulator.
To replace the hydrodynamics, an approach similar to that used
in Stachenfeld et al. (2021) could be used, wherein a CNN-
based architecture trained on only 16 simulations was found to
calculate turbulent fluid dynamics more accurately than classical
numerical solvers on a comparably low resolution spatial grid.
Their modest system was also able to capture the behavior
generated by the athena++ solver (Stone et al., 2020), a state-of-
the-art magneto-hydrodynamics code used for high-performance
computing astrophysics simulations.

An alternative approach is to emulate the thermonuclear
burn (rather than hydrodynamics) calculations in a fully coupled
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FIGURE 6
Snapshots of the evolution of isotopic abundances at different time steps of a simulation of a Type I X-ray burst. The simulation was made
with CINA (Smith, 2024).

FIGURE 7
Evolution of the sign of the time derivative of abundances on the nuclide chart (N-Z plane) for an energetic nova explosion at times before the peak
temperature (A), nearly at peak (B), and after peak (C). The simulation was made with CINA (Smith, 2024).

nucleosynthesis code: at each time step, the emulator would
give approximate results for the change in abundances of all the
tracked species. This approach can offer improved performance
if the emulator runs faster than the traditional linearized
thermonuclear burn solution. As discussed below, the execution
time of traditional simulations scales as the square of the number
of tracked isotopes, so emulators will give more performance
gains for simulations tracking many hundreds to thousands
of isotopes. This approach was first attempted for supernova
nucleosynthesis in Fan et al. (2022) with a DNN emulating a
(very approximate) three-isotope system, and careful attention
was given in that study to integrating the hydrodynamics with
the emulator.

There are alternatives to using emulators that precisely mimic
the approach used by standard nucleosynthesis codes, wherein all
isotopic abundances are evolved through short time steps from
initial to final values. Examples include: studies that predict only
final abundances for all tracked isotopes in a system; studies
to determine final abundances of a few particular isotopes to
compare to observations [e.g., nova contributions to the galactic
7Li abundance (Starrfield et al., 2024)]; studies that track only
isotopes with abundance values above a certain threshold; or
studies to predict an observable light curve (e.g., an X-ray burst

(Galloway et al., 2020)), especially valuable when there is little
if any ejected material to observe. An example of the first can
be found in a recent preprint (Grichener et al., 2024), where an
80-isotope simulation of nucleosynthesis in a massive star was
emulated with a NN with two hidden layers of 256 nodes each.
They trained their emulator on a set of final abundances of 6×
104 simulations (with variable initial temperature and density
conditions) and obtained – in some cases – qualitative agreement
between the emulator and the traditional simulation. They plan to
enlarge the training data set and utilize alternate NN architectures
to explore the possibilities of quantitative agreement with the stellar
simulations.

Additionally, DNNs can in some cases universally approximate
a nonlinear continuous operator, such as the solution operator of
a system of differential equations (Lu et al., 2021). This is relevant
for nucleosynthesis studies because the traditional approach to
solving the time-evolution of abundances, and the accompanying
thermonuclear energy generation, in a given astrophysical
environment involves numerically solving a first-order set of
coupled differential equations. Usually this is done by linearizing
the problem over small time steps and employing an implicit
differencing approach for numerical stability [see, e.g., (Arnett,
1996)]. By using a deep operator network (DeepONet) (Lu et al.,
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FIGURE 8
(Left) Abundance vs. time histories for many isotopes tracked in a nucleosythesis simulation (Right) subset of these isotopes exhibiting similar
abundance vs. time behavior (Zhang et al., 2013). The zero time is set at the peak temperature of the event. The simulation was made
with CINA (Smith, 2024).

2021), it may be possible to approximate the solution
operator of a thermonuclear burn simulation and time evolve
the abundances.

Moving even farther away from traditional approaches,
emulators could be constructed to approximate a series of images of
isotopic abundances on a nuclide chart, which essentially form
the frames of a simulation animation as sketched in Figure 6.
As briefly mentioned above in Section 3.1, such an emulator
may be constructed with a CNN for image analysis combined
with an RNN for frame-to-frame memory. Similarly, a GNN
could be combined with an RNN to emulate a nucleosynthesis
flow diagram animation. With these approaches, the time
dependence of abundances or flows could be extracted from
the emulated animation frames, thereby providing a novel
nucleosynthesis solver.

An important approach for emulators is to incorporate physics
equations into the loss function of a NN. Such “physics-driven”
ML approaches have demonstrated improved performance over
traditional NN systems, and typically require far less data for
training. This approach was successfully used in Ma et al. (2022)
to predict fluid flows (using the Navier-Stokes equations), in
Zhang et al. (2020) to predict seismic responses (using equations of
motion), and in Jin et al. (2020) to solve a nonlinear inverse problem
in geological drilling (using a parameterized Earth model). A strong
motivation for the growing popularity of these “hybrid” approaches
that combine traditional physicsmodelingwithML is to realize their
combined discovery potential (Rai and Sahu, 2020).

Given these successes and the promise for future emulator
developments, it is likely that the first ML emulation of a

realistic nucleosynthesis simulation will be created in the
near future.

3.2.2 Reduce simulation dimensionality
The execution time for thermonuclear burn simulations roughly

scales with the square of the number of nuclear species (isotopes)
N whose abundances are followed. This is because at each
simulation time step, an N by N matrix–constructed to detail
how each species transmutes into others – must be inverted
to determine a linearized solution of the abundance changes
(Arnett, 1996; Hix and Thielemann, 1999; Hix and Meyer,
2006). As discussed previously, realistic nucleosynthesis simulations
with multi-dimensional hydrodynamics necessarily truncate their
thermonuclear burning treatment–by following fewer nuclei–to be
computationally viable. “Alpha nuclei” (e.g., 12C, 16O, 20Ne … 56Fe)
are typically chosen for this as their interlinking alpha-capture
reactions [e.g., 12C(α,γ)16O … ] generate most of the thermonuclear
energy in the system; a full treatment of the evolution of the complete
isotopic inventory then requires an extraction of hydrodynamic
profiles and a subsequent post-processing simulation.

For some astrophysical scenarios, it may be possible to use a
similar approach of following fewer isotopes – specifically, those
that can represent much of the isotopic inventory evolution (as
well as the energy generation, if desired). Specifically, it may be
possible to use a PCA or other dimension-reducing ML algorithm
(Fodor, 2002; Espadoto et al., 2019) to help determine a small
set of isotopes (hereafter denoted pseudo-isotopes) each of which
represents multiple nuclide species, and track only the changes
in their respective abundances (pseudo-abundances). The smaller
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number of tracked species will result in a significant reduction in
complexity of the system and in the execution time of a standard
nucleosynthesis simulation. The choice of pseudo-isotopes could
be verified by running an ensemble of traditional simulations
and identifying (a) the most abundant isotopes in a traditional
simulation and (b) other “nearby” isotopes whose abundances ratios
to them are similar throughout the ensemble. Such an analysis could
be done with KNN, KM, or other clustering algorithms. The concept
of pseudo-isotopes bears a resemblance to the clusters of nuclear
species described in studies of Quasi Statistical Equilibrium (QSE)
(Meyer et al., 1998) and the collection of nuclei involved in repetitive
reaction flow patterns (Rembges et al., 1997); this latter is discussed
below in approaches to approximating flows.

A more ML-centric approach would be to use a VAE as a
simulation emulator, where the smaller set of pseudo-abundances
(determined by the algorithm) form the lower dimensional space.
The simplest approach would be to train the algorithm on final
abundances only. In cases where it may be desirable to more closely
mimic a traditional nucleosynthesis simulation, training could be
done on the abundances at each time step (e.g., Figure 6). For
analyses of such time-series data, VAEs (which use NNs) have some
advantages in dimension reduction (Todo et al., 2022) over more
traditional approaches such as wavelet decomposition or PCAs. A
complementary approach would be to use an RNN to analyze the
time-series data.

Overall, the advantages of using pseudo-isotopes is that
their presence and identity could reveal hidden structures in
the nucleosynthesis process that are not evident in traditional
simulations. The pseudo-isotopes determined for one simulation
could be reused for computationally-efficient parameter space
explorations, or potentially reused in simulations of other
astrophysical environments. Furthermore, a comparison of such
pseudo-isotopes across simulations of different astrophysical
environments could give a new perspective that aids in deconvolving
nuclear and hydrodynamic effects that work together to create the
elements of the Universe.

3.2.3 Approximating flows
In the above discussion of “alpha nuclei” like 12C and 16O,

the interlinking alpha-capture reactions like 12C(α,γ)16O were
mentioned as being critical to track energy generation in this
particular approximation to thermonuclear burning. This approach
can be generalized to consider pseudo-reactions which link together
pseudo-isotopes (or perhaps regions of the nuclide chart) for
nucleosynthesis studies needing to approximate reaction flow
and/or energy generation. ML techniques like those described
above – PCAs, VAEs – could be used to identify the most critical
reactions during particular time windows of a simulation, then
the time evolution could be studied with VAEs or RNNs. Because
the focus here is on reaction flow, it is natural to use a GNN (as
described in Section 3.1) in combination with a VAE to reduce
the dimensionality of the problem. Furthermore, by combining
treatments of both pseudo-isotopes and interlinking pseudo-reactions,
both reaction flows and isotopic abundances could be approximated
simultaneously.

Some nucleosynthesis studies focus on reaction flow patterns
that repeat over different portions of the nuclide chart. Asmentioned
in Section 3.1 above, Figure 4 gives an example of repetitive

thermonuclear burning cycles that occur in a nucleosynthesis
simulation of a nova explosion: the NeNa, MgAl, and SiP cycles,
named for the isotopes involved. When such cycles occur in an
explosive astrophysical environment, they are considered a “trap”
or “sink” for material that otherwise would be processed by
thermonuclear burning up to higher mass isotopes. These traps can
be characterized by their “leakage rate” of material that escapes the
trap and resumes a flow to higher masses. By representing all the
isotopes in each cycle as a single pseudo-isotope, and interlinking
cycles with pseudo-reactions that characterize the leakage from
one to the next, the complexity of the reaction flow can be
greatly reduced. A similar technique was used in a traditional
nucleosynthesis simulation of an X-ray burst (Rembges et al., 1997),
primarily to speed up the simulation execution. However, this novel
work was never replicated, perhaps in part because advances in
computing hardware made this approximation less necessary for
post-processing nucleosynthesis studies. It could, however, prove
fruitful to explore possible insights thatmay arise from this approach
when applied to more realistic nucleosynthesis simulations.

3.2.4 Functional representations
As mentioned earlier, current approaches to solving the time-

evolution of abundances and thermonuclear energy generation
requires a numerical solution to a first-order set of coupled
differential equations (Arnett, 1996). For 1D post-processing
approaches that solve thermonuclear burn, these simulations
can be completed rather quickly with very modest computing
requirements. In the distant past, however, computational power
was much more limited, and significant efforts were spent devising
analytical approximations to estimate abundance changes and
energy generation. In some cases, valuable scaling laws were devised
[see, e.g., (Caughlan and Fowler, 1962; Parker et al., 1964; Clayton,
1983)] to approximate how predictions of these quantities changed
with temperature or other variables, thereby significantly reducing
the complexity of the model and allowing further detailed
investigations.

While the field has largely moved away from these approaches,
scaling laws may offer valuable insights – perhaps into the complex
interplay of hydrodynamics and thermonuclear burning, or perhaps
for “back-of-the-envelope” approximations – not readily apparent
from numerical solutions. They may also facilitate large-scale
explorations of parameter spaces because these approximations are
so fast to calculate.

ML approaches could revitalize such scaling studies, by first
creating an emulator to approximate the input-output mapping (as
described above), then using a symbolic regression (SR) algorithm
with a set of temperature-dependent functions. Such an approach
could generate, for example, approximations for the values of
abundance ratios, or the total nuclear energy generation, as a
function of peak temperature in an astrophysical system. It is
possible that suchML techniques could yield nucleosynthesis scaling
laws as valuable as those used to explain the revival of a stalled
shock wave in a core collapse supernova by neutrino heating (Bethe
and Wilson, 1985) – a work that revolutionized studies of the core
collapse mechanism. There are, in fact, recent suggestions that using
NNs in combination with SRs are not just a way to approximate the
behavior of a physical system, but also a way to uncover previously
hidden physical laws (Cranmer et al., 2020).
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3.3 Uncertainty quantification

The quantitative comparison of nucleosynthesis simulation
predictions to observations is critical for advancing studies of many
astrophysical environments. One example comes from the Big Bang,
where comparisons of the primordial 7Li abundance to model
predictions (Smith et al., 1993), the “cosmic lithium problem”, has
driven studies of diverse effects including lithium depletion in stars,
dark matter, exotic particles, thermonuclear reaction rates, and
observational techniques (Fields et al., 2023). The material ejected
from Type Ia supernovae provide another example: observations
of isotopic nickel abundances from these explosions are compared
to nucleosynthesis predictions to discriminate between different
explosion mechanisms (Seitenzahl et al., 2020). Measurements of
isotopic abundance ratios in grains of meteorites provide a third
example, where comparisons to nucleosynthesis predictions are used
to attribute the origin of some meteorites to Asymptotic Giant
Branch stars and Carbon stars (Liu et al., 2021), and others to novae,
supernovae, or elsewhere in the cosmos (Nittler, 2003; Zinner, 2003).

Uncertainties in simulation predictions are needed to make
robust comparisons to observations. While lacking in many
nucleosynthesis research efforts, uncertainty quantification (UQ)
treatments are now becoming routine for many simulation-based
physics studies (Ghanem et al., 2017). A widely-utilized UQ
treatment involves propagating input uncertainties through a
simulation (Kroese et al., 2013) using Monte Carlo input sampling.
Specifically, a large (1,000–10,000) ensemble of simulations are
executed, each of which has small independent random variations
of the input parameters over their respective probability distribution
functions; the ensemble outputs are then analyzed to determine the
prediction uncertainties.This approach has previously been used for
nucleosynthesis studies of the big bang (Smith et al., 1993), novae
(Hix et al., 2003), X-ray bursts (Roberts et al., 2006), and red giant
stars and other scenarios (Rauscher et al., 2018). However, it has
not been used for more realistic multi-dimensional nucleosynthesis
simulations due to the long execution time required for each run of
the ensemble.

This could change by utilizing any of the ML complexity-
reduction approaches mentioned above in Section 3.2. Specifically,
the fast execution times of simulation emulators, pseudo-
abundances, flow approximations, or functional representations
could make viable Monte Carlo UQ approaches with multi-
dimensional simulations that couple hydrodynamics with
thermonuclear burning. This approach could also facilitate 1D
coupled and post-processing simulations that employ the larger
thermonuclear reaction networks needed for more complex
problems, especially in cases where larger ensemble sizes needed
for more precise uncertainty determinations.

Another ML-based UQ approach is based on BNNs. Gaining
use in theoretical nuclear physics (Boehnlein et al., 2022), BNNs
employ stochastic weights for NNs used in a Bayesian framework.
By constructing a simulation emulator with a BNN, uncertainties of
the NN predictions are naturally generated. A related approach is
based on deep ensembles (Lakshminarayanan et al., 2017) wherein
numerous DNNs, here used as emulators, are trained with random
initializations of theirmodel parameters.This approachwas recently
used to extract resonance parameters with uncertainties from
nuclear scattering data (Kim et al., 2024). Deep ensembles can

be viewed as a Bayesian approach using delta-function posteriors,
but have the added flexibility to capture different posterior modes
if needed (Gustafsson et al., 2020).

Deep ensembles are just one of many approaches toUQ that can
be used for deep learning (i.e., DNN-based) studies (Abdar et al.,
2021); others include Monte Carlo dropout, Bootstrapping, and
Gaussian Mixture Models (Hubschneider et al., 2019). There
are also specialized UQ approaches developed for DNNs that
model time-series data (Song et al., 2020); an application of this
for nucleosynthesis would be to use an RNN to predict a set
of abundance vs. time values with uncertainties. Most of the
approaches mentioned above can be configured to incorporate
uncertainties arising from training data as well as those from the
DNN architecture itself; in thismanner, amore complete uncertainty
characterization can be obtained.

Finally, diffusion-based uncertainty quantification (DBUQ)
(Lu et al., 2024) is a novel newmethod that develops a parameterized
generative model which is then approximated with a NN via
supervised learning to enable rapid generation of UQ parameter
posterior samples. This general-purpose approach was shown to
require 30 times less computing time and be less memory intensive
(Lu et al., 2024) than traditional Markov Chain Monte Carlo
uncertainty approaches (Lu et al., 2012). This technique builds on
work that shows generative diffusionmodels have increased stability
in image processing over GANs (Ho et al., 2022) and generalizes it
for scientific inverse problems.

3.4 Sensitivity analyses

Sensitivity Analyses (SA) are examinations of changes in one
or more target outputs of a simulation resulting from variation
of an individual input, while keeping all other inputs and
model parameters fixed. SA are widely utilized to understand
the relationships of inputs to outputs in complex systems, and
especially to identify those inputs which have the strongest impact
on outputs. SA have been widely used in nuclear astrophysics,
for example, to identify which thermonuclear reaction inputs or
hydrodynamic conditions – when varied – have a significant impact
on predicted isotopic abundances or nuclear energy generation [see,
e.g., Beun et al. (2008), Mumpower et al. (2016); Smith (2023)].

SA typically involve less than 100 simulation runs, far fewer
than those of the Monte Carlo-based UQ study described above in
Section 3.3. In spite of this, SA are often computationally prohibitive
for nucleosynthesis models with multi-dimensional hydrodynamics
and full thermonuclear burning. Similar to aiding UQ studies, the
ML complexity-reducing strategies discussed in Section 3.2, such as
NN-based emulators, can be used to facilitate SA of more realistic
nucleosynthesis models. In this way, better guidance can be given
for setting priorities for future studies of simulation inputs.

Since the variation of inputs are much larger in SA (orders of
magnitude) compared to that in UQ studies (usually a few standard
deviations), the corresponding ML algorithm training parameter
space is much larger for SA than for UQ determinations. A recent
example from reactor physics illustrated how a DNN constructed
to emulate a high-fidelity reactor simulation was used for both UQ
and SA (Radaideh and Kozlowski, 2020).This study utilized a Group
Method of DataHandling approach (Ivakhnenko, 1971) with aDNN
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for parametric optimization in high-dimensional spaces in amanner
that may be useful for emulating nucleosynthesis simulations.

There are other ways in which ML algorithms can help with
SA. One approach is to include a “feature importance” score as an
added domain knowledge in DTs (Al Iqbal et al., 2012) (or with
other categorization algorithms like RFs). By identifying important
features, this is complementary to traditional SA approaches.
Another technique is to use GPs or BNNs to identify which
simulation predictions have the largest uncertainties, and set
these as target outputs for a traditional SA. A third approach is
active learning (Settles, 2009), where an iterative procedure (either
manual or automated) is used to determine which new data (or
features) would reduce prediction uncertainties (for example, from
a GP or BNN) when added to the training data set. While active
learning is primarily used to boost efficiency via the use of smaller
training data sets, it can also help identify critical data that change
predictions and/or reduce prediction uncertainties.

These examples show that there are a number of ways
that traditional SA can be advanced, or complemented, by ML
approaches, and this can be very useful for identifying the most
critical nucleosynthesis simulation inputs. There are also a number
of deeper connections between SA and ML, which are discussed in
Scholbeck et al. (2023). These include how SA can be used for ML
interpretability, and how some ML approaches are redevelopments
of earlier work in SA [e.g., using Gaussian processes as emulators to
speed up SA (Le Gratiet et al., 2017)].

3.5 Improved models

Some of the ML techniques mentioned above have focused on
working with existing model outputs to find patterns or correlations
in nucleosynthesis flows that can improve our understanding, while
others focused on speeding up model execution (with emulators,
approximations, or dimension reductions) to aidUQ and SA that can
guide future studies. This subsection describes how ML approaches
can be used to improve models, independently or in combination
with those effortsmentioned above, specifically by examiningmodel
inputs and outputs.

Thermonuclear reaction rates are critical simulation inputs,
with some astrophysical environments requiring thousands of input
rates to fully describe the relevant nucleosynthesis. These rates
are temperature dependent and are collected in large libraries; see
Smith (2023) for a detailed discussion. Rates are determined by
convoluting an energy-dependent nuclear reaction cross section
with the temperature-dependent Maxwell-Boltzmann distribution
of relative energies of nuclei in an astrophysical environment
(Rolfs and Rodney, 1988; Arnett, 1996). For the widely utilized
REACLIB library (Cyburt et al., 2010) containing 55,000 rates, this
convolution is performed numerically for each rate and then fit to
a 7-parameter analytical temperature-dependent function, and the
fit parameters for each reaction are then stored in the library and
subsequently input into a simulation. It is very challenging, however,
to obtain precise parameter fits because the rates vary by up to 30
orders of magnitude over temperatures relevant for nucleosynthesis;
precision is needed because fit deviations of a few percent can
significantly alter nucleosynthesis predictions. ML approaches for

regression including LinR, KRR, GP, GB, SVM, and NNs could be
very useful to better determine these reaction rate fit parameters.

Rate improvements can also be realized by examining the
underlying reaction cross sections. While some cross sections are
determined from experimental measurements, the majority (nearly
90%) are determined from theoretical reaction models (Smith,
2023). A single flawed rate can distort model predictions, but it is
challenging to individually check thousands of rates for anomalies.
Theoretically based rates, however, usually exhibit smooth variations
across the N-Z plane, making some ML approaches well suited to
look for outliers based on comparisons of the shapes of cross section
vs energy (or rate vs temperature) curves for reactions spanning the
nuclide chart. Specifically, IF, SVM, and NNs may help with this, as
well as clustering algorithms like KNN and KM.

In addition to finding outliers of theoretical rates, ML
approaches can aid in improving cross sections determined from
measurements. A recent example is the use of KNN and DT
algorithms to improve evaluations of the 233U + n and 35Cl(n,p)
reactions (Vicente-Valdez et al., 2021) that are important for nuclear
security and nuclear energy applications. Another is the deep
ensemble approach mentioned above to analyze nuclear scattering
data (Kim et al., 2024), as an alternative to phenomenological R-
matrix analyses. Approaches similar to these could be useful for
reactions needed for nuclear astrophysics. There is also a long-term
effort to revamp the workflow for producing evaluated cross section
libraries using nuclear data elements (datasets, evaluated cross
sections, validation benchmarks) wrapped in software containers,
linked in a Bayesian network, and updated via GPs; first results
are reported in Schnabel et al. (2021). Additional examples of ML
utilizations for improving nuclear data and nuclear physics can
be found in Boehnlein et al. (2022).

ML approaches can also be utilized to improve the
hydrodynamic inputs for nucleosynthesis simulations. As
discussed in Section 3.1, tracer particle input for nucleosynthesis
simulations can contain outliers that could be identified and
removed with IF, SVM, and NNs or with KNN, KM, or other
clustering algorithms. Also, GPs could be used to smooth tracer
particle trajectories to make them more “representative” of
the astrophysical environment rather than tied to the specific
hydrodynamics model that generated them.

The same GP-based smoothing approach could also be utilized
formodifying hydrodynamic profiles extracted frommultiple spatial
zones. Figure 9 shows such (unsmoothed) temperature profiles of
zones extracted from a nova simulation (Politano et al., 1995); GP
smoothing could be done in a manner that removes significant
zone-to-zone discontinuities that may skew post-processing
nucleosynthesis predictions. ML outlier approaches (as mentioned
above) could also be helpful to search for anomalous profiles
extracted from “full” (coupled hydrodynamics + thermonuclear
burning) models, whereas clustering (KNN and KM) and other
ML techniques could improve the consistency of profile extractions
from the full coupled model output.

While there are other numerical techniques that could be
used for the above input manipulations, the ML approaches
mentioned could produce excellent results that are complementary
to traditional techniques used for regression, smoothing, and outlier
detection.
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FIGURE 9
Temperature profiles for some of the hydrodynamic zones of an energetic nova explosion (Politano et al., 1995). The innermost (outermost) zones have
the highest (lowest) peak temperatures. Some zones are not plotted for clarity. The zero time is set at the peak temperature of the event. Inset: The
same profiles shown over a longer time scale.

Another approach to improving models is to identify outliers
in model predictions or outputs. For example, when running a
Monte Carlo ensemble of simulations for UQ as described above
in Section 3.3, ML outlier approaches could be used to flag any
anomalous outputs; the inputs for that particular simulation run
could then be examined for anomalies and appropriately corrected.
This “back-tracing” of outlying outputs to find anomalous inputs
with ML could also be invaluable for parameter space explorations
which are so widely used in many fields including nucleosynthesis
[e.g., Nakamura et al. (1999)]; more discussions of parameter space
explorations are given in the next subsection.

3.6 Scientific workflows

3.6.1 Exploring parameter space
The above subsections have detailed some of the discovery

potential of ML to improve our understanding and approximations

of nucleosynthesis flows, to perform SA, to determine prediction
uncertainties, and to improve inputs for nucleosynthesis
simulations. Many of these ML-based investigations likely begin
by developing an appropriate model, obtaining or generating
an extensive training dataset, and training and adjusting the
model. For some projects, it is then necessary to execute
the model hundreds or thousands of times to explore some
particular input parameter space, followed by the critical steps
of processing, analyzing, visualizing, and comparing results of
each run before choosing the next set of inputs. The immense
parameter space of some problems – which for nuclear astrophysics
could be initial abundances, hydrodynamic histories over a
multi-dimensional spatial grid, and thermonuclear reaction
rate values – along with the complexity of operations at each
execution makes many such projects computationally intractable
without extensive parameter space truncations and/or model
approximations.As an example, the parameter study of core-collapse
supernova models in Nakamura et al. (1999). used approximations
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for generating an explosion (artificially depositing energy in the
core) as well as for exploring nucleosynthesis (tracking only 13
nuclides, followed by post-processing calculations that tracked
211 species).

In some fields, ML approaches are now removing the need for
such approximations when exploring large parameter spaces. An
example is the high-profile 3D protein folding problem, where new
protein discoveries can tremendously impact drug development,
medical research, environmental remediation, and many other
fields. AlphaFold (Jumper et al., 2021), a DNN protein folding
model designed for these searches, was able to predict over 350,000
stable 3D protein folding structures in 2021; this number grew to
2× 107 one year later. In comparison, traditional techniques had
yielded only 70,000 structures in 60 years of work, a pace requiring
∼109 years to match the performance of AlphaFold. Similarly, the
GNoME Project (Merchant et al., 2023) used GNNs to explore the
vast parameter space of crystalline structures for materials science
research. It predicted 2.2 million new structures, of which about
one-quarter are thought to be especially stable; this work thereby
expanded the number of such materials known to man by an order
of magnitude.

A promising approach to explore the expansive nucleosynthesis
parameter spaces described above may be to have algorithms
that interact with the space in order to most efficiently direct
(“steer”) searches. This suggests a reinforcement learning approach,
wherein an “agent” interacts with an environment and learns
in stages to make decisions that maximize a reward function
(Arulkumaran et al., 2017). For nucleosynthesis studies, the reward
function could be the production of certain ratios of abundances
or certain radiation fluxes to match observations. LLMs are now
being used to generate rewards that outperform those engineered
by human experts (Ma et al., 2024), without the need to train
on task-specific examples. Since reinforcement learning approaches
are growing more popular in physics research (Martín-Guerrero
and Lamata, 2021), it is quite possible that (LLM-powered)
reinforcement learning could soon be utilized to advance our
understanding of nucleosynthesis.

Such examples give a glimpse into the rapidly-
expanding capabilities of ML for exploring large parameter
spaces – a proficiency that could be extremely useful for
nucleosynthesis research.

3.6.2 Transforming workflows
The workflow of most research projects includes many

important, but rote, tasks such as literature searches/summaries and
generating reports and presentations. For many, these and related
efforts are serious productivity bottlenecks that can limit time spent
generating new insights and discoveries. Fortunately, LLMs can be
used to reduce some of these burdens, as well as streamline and
accelerate many other critical aspects of scientific workflows.

Triggered by the development of the Transformers architecture
(Vaswani et al., 2017) and the use of (up to) ∼1011 DNN model
parameters trained on enormous textual datasets of ∼1012 tokens
(words), LLMs have rapidly (since 2022) gained wide acceptance
through their ability to adeptly answer text queries (denoted as
“prompts”) via a familiar chat interface (e.g., ChatGPT (OpenAI,
2022)). LLMs can quickly provide detailed background information,
summarize and synthesize literature results, refine text passages,

outline and draft reports and papers, generate computer codes,
process and visualize data, recommend and prioritize research
problems, and perform many other important research tasks. In
essence, LLMs can function as research assistants.

There is currently a race to develop larger and ever-more capable
LLMs and LLM-based tools, especially those fine-tuned to have
multi-modal (text, audio/video, data analysis, coding, and more)
capabilities. Foundation models FMs (Bommasani et al., 2021) are
pre-trained on unlabeled multi-model data as general purpose tools,
allowing even further fine-tuning that may make them particularly
well suited to serve as research assistants with extensive data analysis
capabilities.

As with any new approach, LLMs and FMs have limitations
and problems, both technical (Nejjar et al., 2023) and conceptual
(Birhane et al., 2023); some of these are discussed in Section 4
below along with recent approaches to their solution. In spite of
their issues, the use of LLMs in research, and their acceptance as
an invaluable tool, is rapidly growing. It would be advantageous for
nucleosynthesis researchers to capitalize on the rapidly-developing
capabilities of LLMs and FMs for their work.

4 Challenges

Given the widespread utilization of ML in many fields, much
attention has been given to enumerating and addressing the
challenges and limitations of these approaches. We briefly discuss
some critical issues (and their possible solutions) below; for more
details, see the review on ML for physics in Carleo et al. (2019).

4.1 Training datasets

The success of any ML model depends in large part to the
availability of large, high-quality, low-noise, bias-free data sets
for training. For many research problems, these are not easy to
obtain or generate. The first step is to determine the training
data contents needed for a particular study. For simulation-
based studies of nucleosynthesis, the contents may likely consist
of collections of (input, output) pairs, where the input would
describe the astrophysical environment type (e.g., core-collapse
supernova) and properties (e.g., mass distribution, entropy, and
electron fraction in the core), initial abundances, a thermonuclear
reaction rate library, and thermodynamics information such as
initial conditions for hydrodynamics calculations or temperature
and density histories for post-processing simulations. The output
depends on the nature of the problem being addressed. For the
studies discussed in Section 3, these include: the final abundances
for all relevant isotopes; a collection of abundances at various time
steps during the simulation; those time-dependent abundances with
added hydrodynamic and/or position information; images of final
abundances (e.g., Figure 2) or reaction fluxes (e.g., Figure 3) on the
nuclide chart; time-dependent nuclide chart images of abundances
(e.g., Figure 6), reaction fluxes, or abundance derivatives (e.g.,
Figure 7) along with hydrodynamics information; one-dimensional
plots of abundance vs time (e.g., Figure 1); abundances and
hydrodynamics information from tracer particles (see Section 3.1);
or combinations of the above information.
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Once the data contents for a new study are determined, a
dataset can be established by processing or augmenting datasets
from previous studies or external sources, or can be generated
through many new executions of the relevant simulation(s). For
simulation-based studies of nucleosynthesis, this latter option –
running many simulations with a variety of inputs to generate
“synthetic” data – is ideal, if the researcher has the appropriate
astrophysical codes. One critical factor here is to ensure that
the distribution of input values are representative of the actual
distribution so as to avoid biased results. There is an extensive
general-purpose literature on this topic and methods to reduce
biases; for details, see Jeong et al. (2018) and Mehrabi et al. (2021).
Another key point is to include a sufficiently wide variation of
inputs for these simulation runs so that they span the range needed
for future use of the trained ML model. That is, the ML model
should be used to generate interpolations rather than (less reliable)
extrapolations whenever possible. Other well-studied, important
training techniques include methods to avoid over-fitting (Ying,
2019), and partitioning datasets for training/testing/validation (Xu
and Goodacre, 2018).

Since some nucleosynthesis researchers do not have access
to simulation codes, and few researchers have access to codes
for all astrophysical environments, a set of curated archives of
nucleosynthesis simulation results would be invaluable to enable
many more in the community to launch ML-based studies.

4.2 Model choice, execution, and
performance

For a given problem, selecting an appropriate ML algorithm
to use among the many choices can be a challenge in this
quickly-evolving field. For example, some algorithms adapt to
larger or changing data sets better than others, and some are
flexible enough to be used for multiple projects with minimal
changes. There is also a steep learning curve for some ML
algorithms, which constrains the number of researchers adopting
these approaches – and which suggests the utility of collaborating
with ML experts. Additionally, the lack of “interpretability” of
many ML models – especially NNs – limit their acceptance by
many researchers (including peer reviewers). The complex nature
of the algorithms often makes it nearly impossible to determine
which features of the data are responsible for the predictions
(Barbierato and Gatti, 2024). However, some models are more
interpretable than others, suggesting that careful model choice may
help with collaborative research projects as well as with publication
peer review. The topic of ML model interpretability is reviewed
in Rudin et al. (2022) and is discussed in terms of sensitivity
analyses in Scholbeck et al. (2023).

Regarding execution, most ML approaches are computationally
intensive, so the availability of adequate compute resources
(particularly those with graphical processing units or tensor
processing units) is essential. Large storage systems with fast
I/O are needed for handling the large data sets needed for
model training. Knowledge of the python coding language is
essential for some projects, as is access to python libraries such as
pyTorch, TensorFlow, Matplotlib, NumPy, Scikit-learn, and others
(Raschka, 2015; Saabith et al., 2020).

Regarding model performance, extrapolating models to
parameter regions beyond those in the training data can provide
significant limitations on the potential for scientific insights from
ML techniques. This can be partially addressed by interpretable
models (Muckley et al., 2023) and by physics-driven models
(Brahma et al., 2021), but is best handled by generating predictions
within the bounds of the training data. Another issue is over-fitting
(Ying, 2019) and under-fitting, both of which can lead to poormodel
performance. Because this is a widely known issue, there are many
established mechanisms to monitor and avoid such effects (Salman
and Liu, 2019).

4.3 Large Language Model Challenges

The extremely rapid development of LLMs makes it likely that
any list of challenges with their use will be quickly outdated, because
many current issues will be solved while new problems will arise
as capabilities increase. For this reason, Kaddour et al. (2023)
systematically formulated 16 major categories of open problems
for LLMs and then comprehensively discussed, for each, the latest
examples and solution approaches. Below, we will describe some
of the issues with LLMs that are the most relevant for scientific
research: flawed output, lack of reasoning, and data handling.

For the first issue, there are many different examples of
incorrect or nonsensical LLM output, including: when models have
incomplete, biased, or no training on data in a particular scientific
domain; when the training data is outdated by recent research; when
their (statistically-generated) responses differ from the “ground
truth”; and when responses are nonsensical or are fabricated lies
that are presented in an authoritative manner (“hallucinations”
(Yao J. Y. et al., 2023)). Given these numerous flaws, users must be
cautious when using LLM output for research purposes. There are
many approaches being pursued to rectify these issues. The first
is better training, both in general and especially domain-specific,
which could be done by some users with smaller LLMs on their
own data. Another is requiring the LLM to utilize “ground truth”
information – via manually-uploaded curated data sets (Perplexity,
2024), accessing a database via knowledge trees (Dietterich, 2023;
Sarthi et al., 2024) or (especially) knowledge graphs (Diffbot, 2024),
attaching a web browser to the LLM (Google, 2024), or using
a retrieval-augmented generation (RAG) framework (Lewis et al.,
2020). In this latter approach, relevant “expert” content is first
retrieved from a source (e.g., a database or the internet) and then fed
to an LLM along with the query to generate a response along with
the expert reference. Additionally, improved prompting (shorter,
multi-step queries) has been shown to improve response quality, as
have “mixture of experts”/“mixture of models” approaches wherein
multiple models are given the same prompt and answers are polled
and combined.

The second major issue – a lack of scientific reasoning –
arises because LLMs are trained on internet-scale amounts of
textual data to generate the most probable response to a query,
rather than understanding the underlying scientific principles (e.g.,
cause and effect). As a result, LLMs often cannot generate a
step-by-step reasoning process for a response, have difficulty in
verifying or reproducing results, have limited capabilities to review
scientific papers, and generally perform more poorly than humans
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on reasoning benchmarks (Yu et al., 2022). The overwhelming
need to use and display reasoning in LLM responses has led
to much research activity in this topic. One approach that has
improved reasoning abilities is to use “chain-of-thought” prompting
(Wei et al., 2022) wherein exemplars of intermediate reasoning
steps are provided as LLM input. Another approach is LangChain
(Topsakal and Akinci, 2023), a modular approach to building LLM-
driven applications where subroutines and external programs can
be called in a user-defined sequence to perform, for example,
calculations or searches that supplement and enhance the LLM
output. This is effectively hard-wiring a workflow that includes an
LLM. A third approach is “visualization of thought” (Wu W. et al.,
2024) wherein reasoning steps are spatially visualized and followed;
this approach could be useful for interpreting causality in reaction
flow diagrams.

A fourth approach to incorporating scientific reasoning is the
ReAct framework (Yao S. et al., 2023) that combines tasks devoted
to reasoning with those for action, in an effort to mimic human
learning. Specifically, an LLM is prompted to generate a “chain-of-
thought” reasoning response, and then to generate an appropriate
action, get feedback from the environment (an observation), and
repeat the process. As a hypothetical example for nucleosynthesis, if
the task is to answer the question “Has the approach to uncertainty
quantification used in this nucleosynthesis journal article been
used for studies of other astrophysical scenarios?”, then the first
reasoning result could be “I need to search this journal article and
find which uncertainty quantification method was used”. The first
action could then be to carry out the search, and if the observation
(the search result) is null (e.g., no mention of “uncertainty
quantification method” in the article), then the next round of
reasoning could be “I need to determine other terminologies for
‘uncertainty quantification’ ” leading to a next round of action (a
second search) and observation (that terms like “error analysis”
or “probability distribution function determination” are possible
alternatives). The iterative nature of reasoning/action/observation is
a significant improvement over the return of a single response typical
of most LLMs.

The third major issue – data handling – arises because LLMs are
primarily trained on textual data rather than on tabular, time series,
graphical, or other numerical data formats. While it may seem more
appropriate to use other ML tools for data handling and analyses,
LLMs are now becoming integrated into many scientific workflows,
driving efforts to enhance their capabilities by fine-tuning on non-
textual data. One approach is to greatly expand LLM fine-tuning
training datasets to include labeled audio, video, and numerical
data files. An example is provided in the recent release of ChatGPT
4o (OpenAI, 2024), which (among other advances) exhibits true
multi-modal capabilities and can interpret user-provided tabular
and graphical data. Another technique for numerical data handling
is to use an “agent”-centered approach (Wu Q. et al., 2023) wherein a
larger problem is broken up into subtasks, each of which is handled
by a different ML model (some of which may be LLMs) playing a
different role and collaborating in the overall solution. Even when
all the agents are from a single LLM, this approach gives superior
performance due to more targeted prompts. Including numerical-
based models like those described in Section 2 as agents can boost
performance with data handling, analysis, and interpretation tasks.
This was demonstrated in Data-Copilot (Zhang et al., 2023) where

a custom workflow with multiple data-centered tools combined
with an LLM is autonomously created in response to complex
problems provided by users. For problems that require writing
computer code, researchers could consider integrating a software
developer agent like Devin (Cognition Labs, 2024) into their
workflow. Finally, the issue of data handling is naturally incorporated
into the pre-training phase of FM development. This approach
has the significant benefit of using unlabeled training data, and
generates models that can handle a wide range of data sets and
analysis goals (Jakubik et al., 2023).

Some researchers recommend that LLMs should play only a
subsidiary role in research (Birhane et al., 2023), and some are
concerned about possible emergent capabilities with FMs and
their societal impact (Bommasani et al., 2021); there are others,
however, who are strident advocates of the use of these tools [e.g.,
Chen et al. (2024) and Jakubik et al. (2023)]. Given the current rate
of development of LLM and FM capabilities, it is likely that they
will become an integral portion of the workflows of the next (and
perhaps even the current) generation of researchers.

Overall, it is important to acknowledge that ML techniques
are not a simple panacea for all research roadblocks. However,
used with the appropriate caution, the examples given above
illustrate the promise and possibilities of capitalizing on ML
approaches to advance themethodology of simulation-based studies
of nucleosynthesis and to improve our understanding of the cosmic
creation of the elements.

5 Summary

Machine learning approaches have proven extremely useful in
many fields including astrophysics and nuclear physics but have an
untapped potential in nuclear astrophysics. Some very promising
utilizations of ML are for studies to advance our understanding
of the complex processes that synthesize nuclides in astrophysical
environments. We briefly summarize the characteristics of 30
widely-utilizedML algorithm types, and then describe how they can
be used for simulation-based nucleosynthesis studies. Specifically,
we describe unexplored possibilities for ML to better understand
and approximate nucleosynthetic flows, to quantify uncertainties,
to perform sensitivity analyses, and to identify anomalous inputs.
We also discuss how ML tools can speed up scientific workflows
and improve research productivity. The use of ML to advance
the decades-old methodology of simulation-based studies of
nucleosynthesis has the potential to significantly improve our
understanding of the cosmic creation of the elements and thereby
open a new frontier in nuclear astrophysics research. This is
especially the case given the rapid development of the capabilities
ofML tools. Collaborations between nuclear astrophysicists andML
experts would be an excellent way to realize the promise of ML for
nucleosynthesis studies.
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