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New insights into supradense
matter from dissecting scaled
stellar structure equations

Bao-Jun Cai1* and Bao-An Li2*
1Quantum Machine Learning Laboratory, Shadow Creator Inc., Shanghai, China, 2Department of
Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX, United States

The strong-field gravity in general relativity (GR) realized in neutron stars (NSs)
renders the equation of state (EOS) P(ε) of supradense neutron star matter to
be essentially nonlinear and refines the upper bound for ϕ ≡ P/ε to be much
smaller than the special relativity (SR) requirement with linear EOSs, where P
and ε are respectively the pressure and energy density of the system considered.
Specifically, a tight bound ϕ ≲ 0.374 is obtained by perturbatively anatomizing
the intrinsic structures of the scaled Tolman–Oppenheimer–Volkoff (TOV)
equations without using any input nuclear EOS. New insights gained from this
novel analysis provide EOS-model-independent constraints on the properties
(e.g., density profiles of the sound speed squared s2 = dP/dε and trace anomaly
Δ = 1/3−ϕ) of cold supradense matter in NS cores. Using the gravity-matter
duality in theories describing NSs, we investigate the impact of gravity on
supradense matter EOS in NSs. In particular, we show that the NS mass
MNS, radius R, and compactness ξ ≡MNS/R scale with certain combinations
of its central pressure and energy density (encapsulating its central EOS).
Thus, observational data on these properties of NSs can straightforwardly
constrain NS central EOSs without relying on any specific nuclear
EOS model.

KEYWORDS

equation of state, supradense matter, neutron star, Tolman–Oppenheimer–Volkoff
equations, principle of causality, special relativity, speed of sound, generality relativity

1 Introduction

The speed of sound squared (SSS) s2 = dP/dε (Landau and Lifshitz, 1987) quantifies
the stiffness of the equation of state (EOS) expressed in terms of the relationship
P(ε) between the pressure P and the energy density ε of the system considered. The
principle of causality of special relativity (SR) requires the speed of sound of any signal
to stay smaller than the speed of light c ≡ 1, that is, s ≤ 1. For a linear EOS of the
form P = wε with w being some constant, the condition s2 ≤ 1 is globally equivalent
to ϕ = P/ε ≤ 1. For such EOSs, the causality condition can be equivalently written
as follows:

PrincipleofCausalityofSRwith linearEOSimpliesP ≤ ε↔ ϕ ≡ P/ε ≤ 1. (1)

The indicated equivalence between s2 ≤ 1 and ϕ ≤ 1 could be demonstrated as follows:
If P could be greater than ε somewhere, then the curve of P(ε) may unavoidably across the
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line P = ε from below to above, indicating the slope at the crossing
point is necessarily larger than 1, as illustrated in Figure 1. In the
following, we use the above causality requirement on ϕ with linear
EOSs as a reference in discussing properties of supradense matter in
strong-field gravity.

The EOS of nuclear matter may be strongly nonlinear
depending on both the internal interactions and the external
environment/constraint of the system; this means that ϕ ≤ 1 is
necessary but not sufficient to ensure supradense matter in all
NSs always stays causal. For example, the EOS of noninteracting
degenerate fermions (e.g., electrons) can be written in the polytropic
form P = Kεβ (Shapiro and Teukolsky, 1983), where β = 5/3 for
non-relativistic and β = 4/3 for extremely relativistic electrons;
consequently, ϕ ≤ β−1 < 1. Similarly, many years ago, Zel’dovich
considered the EOS of an isolated ultra-dense system of baryons
interacting through a vector field (Zel’dovich, 1961). In this case, P =
ε ∼ ρ2; here, ρ is the baryon number density. Consequently, P/ε ≤ 1 is
obtained. The EOS of dense nuclear matter where nucleons interact
through both the σ-meson and ω-meson in the Walecka model
(Walecka, 1974) is an example of this type. In particular, the ω-
field scales at asymptotically large density as ω ∼ ρ while the σ-field
scales σ ∼ ρs with the scalar density ρs approaching some constant
for ρ→∞ (Cai and Li, 2016); therefore, the vector field dominates
at these densities. More generally, however, going beyond the vector
field, the baryon density dependence of either P(ρ) or ε(ρ) could
be very complicated and nontrivial. The resulting EOS P(ε) could
also be significantly nonlinear. The EOS of supradense matter under
the intense gravity of NSs could be forced to be nonlinear as the
equilibrium state of NSs is determined by extremizing the total
action of the matter–gravity system through Hamilton’s variational
principle. It is well known that the strong-field gravity in general
relativity (GR) is fundamentally nonlinear; the EOS of NS matter,
especially in its core, is thus also expected to be nonlinear.Therefore,
the causality condition s2 ≤ 1 may be appreciably different from
ϕ ≤ 1, and it may also effectively render the upper bound for ϕ to
be smaller than 1. Accurately determining an upper bound of ϕ
(equivalently a lower bound of the dimensionless trace anomaly Δ =
1/3−ϕ) will thus help constrain properties of supradense matter in
strong-field gravity.

The upper bound for ϕ is a fundamental quantity essentially
encapsulating the strong-field properties of gravity in GR. Its
accurate determination may help improve our understanding of the
nature of gravity. The latter is presently the least known among
the four fundamental forces despite being the first one discovered
in nature (Hoyle, 2003). An upper bound on ϕ substantially
different from 1 then vividly characterizes how GR affects the
supradense matter existing in NSs. In some physical senses, this
is similar to the effort in determining the Bertsch parameter.
The latter was introduced as the ratio EUFG/EFFG of the EOS
of a unitary Fermi gas (UFG) over that of the free Fermi gas
(FFG) EFFG (Giorgini et al., 2008); here, EFFG and EUFG are the
energies per particle in the two systems considered. The EOS
characterizes the strong interactions among fermions under the
unitary condition. Extensive theoretical and experimental efforts
have been made to constrain/fix the Bertsch parameter. Indeed,
its accurate determination has already made a strong impact on
understanding strongly interacting fermions (Giorgini et al., 2008;
Bloch et al., 2008).

FIGURE 1
An illustration of the equivalence between s2 ≤ 1 with a linear EOS and
ϕ ≤ 1: If P could be greater than ε somewhere, then the curve of P(ε)
must cross the line P = ε from below to above, indicating that s2 =
dP/dε > 1 at the crossing point.

There are fundamental physics issues regarding both strong-
field gravity and supradense matter EOS and their couplings. What
is gravity? Is a new theory of light and matter needed to explain
what happens at very high energies and temperatures? These are
among the eleven greatest unanswered physics questions for this
century, as identified in 2003 by the National Research Council of
the U.S. National Academies (National Research Council, 2003).
Compact stars provide farmore extreme conditions necessary to test
possible answers to these questions than terrestrial laboratories. A
gravity-matter duality exists in theories describing NS properties;
see, for example, Psaltis (2008) and Shao (2019) for recent reviews.
Neutron stars are natural testing grounds for our knowledge of these
issues. Some of their observational properties may help break the
gravity-matter duality; see, for example, DeDeo and Psaltis (2003),
Wen et al. (2009), Lin et al. (2014), He et al. (2015), Yang et al.
(2020). Naturally, these issues are intertwined, and one may gain
new insights into the EOS of supradensematter by analyzing features
of strong-field gravity or vice versa. The matter-gravity duality
reflects the deep connection between the microscopic physics of
supradense matter and the powerful gravity effects of NSs. They
both must be fully understood to unravel mysteries associated with
compact objects in the Universe. In this brief review, we summarize
the main physics motivation, formalism, and results of our recent
efforts to gain new insights into the EOS of supradense matter
in NS cores by perturbatively dissecting the intrinsic structures
of the Tolman–Oppenheimer–Volkoff (TOV) equations (Tolman,
1939; Oppenheimer and Volkoff, 1939) without using any input
nuclear EOS. For more details, we refer the readers to our original
publications in Cai et al. (2023b), (Cai et al., 2023a), Cai and Li
(2024a), and (Cai and Li, 2024b).

The rest of this article is organized as follows: First, in Section 2,
we make a few remarks about some existing constraints on the
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EOS of supradense NS matter. Section 3 introduces the scaled TOV
equations from which one can execute an effective perturbative
expansion; the central SSS is obtained in Section 4. We then infer
an upper bound for the ratio X ≡ ϕc = Pc/εc of central pressure
Pc over central energy density εc for NSs at the maximum-mass
configuration along theM-R curve.The generalization for the upper
bound of P/ε is also studied in Section 4. In Section 5, we compare
our prediction on the lower bound of Δ = 1/3− P/ε with existing
predictions in the literature. We summarize in Section 6 and give
some perspectives for future studies. In the Appendix, we discuss an
effective correction to s2c obtained in Section 4.

2 Remarks on some existing
constraints on supradense NS matter

Understanding the EOS of supradense matter has long been an
important issue in both nuclear physics and astrophysics (Walecka,
1974; Chin, 1977; Freedman and McLerran, 1977; Baluni, 1978;
Wiringa et al., 1988; Akmal et al., 1998; Migdal, 1978; Morley and
Kislinger, 1979; Shuryak, 1980; Bailin and Love, 1984; Lattimer and
Prakash, 2001; Danielewicz et al., 2002; Steiner et al., 2005; Lattimer
and Prakash, 2007; Alford et al., 2008; Li et al., 2008; Watts et al.,
2016;Özel and Freire, 2016;Oertel et al., 2017; Vidaña, 2018). In fact,
it has been an outstanding driver at many research facilities in both
fields. For example, finding the EOS of the densest visible matter
existing in our Universe is an ultimate goal of astrophysics in the era
of high-precision multimessenger astronomy (Sathyaprakash et al.,
2019). However, despite much effort and progress made during
the last few decades using various observational data and models,
especially since the discovery of GW170817 (Abbott et al., 2017a;
2018), GW190425 (Abbott et al., 2020a), GW190814 (Abbott et al.,
2020b) and the recent NASA’s NICER (Neutron Star Interior
Composition Explorer) mass-radius measurements for PSR J0740
+ 6,620 (Fonseca et al., 2021; Riley et al., 2021; Miller et al., 2021;
Salmi et al., 2022; Dittmann et al., 2024; Salmi et al., 2024), PSR
J0030 + 0451 (Riley et al., 2019; Miller et al., 2019; Vinciguerra et al.,
2024), and PSR J0437-4715 (Choudhury et al., 2024; Reardon et al.,
2024), knowledge about the core NS EOS remains ambiguous
and quite elusive (see, for example, Bose et al., 2018; De et al.,
2018; Fattoyev et al., 2018; Lim and Holt, 2018; Most et al.,
2018; Radice et al., 2018; Tews et al., 2018; Zhang et al., 2018;
Bauswein et al., 2019; 2020; Baym et al., 2019; McLerran and Reddy,
2019; Most et al., 2019; Annala et al., 2020; 2023; Sedrakian et al.,
2020; Zhao and Lattimer, 2020; Weih et al., 2020; Xie and Li,
2019; 2020; 2021; Drischler et al., 2020; 2021a; Li et al., 2020;
Bombaci et al., 2021; Al-Mamun et al., 2021; Nathanail et al., 2021;
Raaijmakers et al., 2021; Altiparmak et al., 2022; Breschi et al., 2022;
Komoltsev and Kurkela, 2022; Perego et al., 2022; Huang et al.,
2022; Tan et al., 2022a; b; Brandes et al., 2023b; a; Gorda et al.,
2023; Han et al., 2023; Jiang et al., 2023; Ofengeim et al., 2023;
Mroczek et al., 2023; Raithel and Most, 2023; Somasundaram et al.,
2023; Zhang and Li, 2020; 2021; 2023b; a; Pang et al., 2023;
Fujimoto et al., 2024; Providência et al., 2024; Rutherford et al.,
2024). See recent reviews for additional discussion (for example,
Baym et al., 2018; Baiotti, 2019; Li et al., 2019; Orsaria et al., 2019;
Blaschke et al., 2020; Capano et al., 2020; Chatziioannou, 2020;
Burgio et al., 2021; Dexheimer et al., 2021; Drischler et al., 2021b;

Lattimer, 2021; Li et al., 2021; Lovato et al., 2022; Sedrakian et al.,
2023; Kumar et al., 2024; Sorensen et al., 2024; Tsang et al., 2024).

Extensive theoretical investigations about the EOSof supradense
NS matter have been conducted, and many interesting predictions
have been made. For example, the realization of approximate
conformal symmetry of quark matter at extremely high densities
ρ ≳ 40ρ0 with ρ0 ≡ ρsat the nuclear saturation density implies the
corresponding EOS approaches that of an ultra-relativistic Fermi gas
(URFG) from below, namely (Bjorken, 1983; Kurkela et al., 2010):

URFG: P ≲ ε/3↔ ϕ ≲ 1/3, atextremelyhighdensities. (2)

For the URFG, 3P ≈ ε ∼ ρ4/3. Therefore, ϕ = P/ε is at least upper
bounded to be below 1/3 at these densities; equivalently, a lower
bound on the dimensionless trace anomaly emerges:

Δ ≡ 1/3− P/ε ≳ 0, atextremelyhighdensitiesρ ≳ 40ρ0. (3)

This prompts the question of whether the bound ϕ ≤ 1/3
holds globally for dense matter or if some other bound(s) on
ϕ may exist. In this sense, massive NSs like PSR J1614-2230
(Demorest et al., 2010; Arzoumanian et al., 2018), PSR J0348 +
0432 (Antoniadis et al., 2013), PSR J0740 + 6,620 (Fonseca et al.,
2021; Riley et al., 2021; Miller et al., 2021; Salmi et al., 2022;
Dittmann et al., 2024; Salmi et al., 2024), and PSR J2215 + 5135
(Sullivan and Romani, 2024) provide an ideal testing bed for
exploring such quantity. A sizable ϕ ≳O(0.1) arises for NSs but
not for ordinary stars or low-density nuclear matter (Cai and Li,
2024a). For example, considering stars such as white dwarfs (WDs),
one has P ≲ 1022−23 dynes/cm2 ≈ 10−(11−10) MeV/fm3 and ε ≲
108−9 kg/m3 ∼ 10−6 MeV/fm3; thus, ϕ ≲ 10−(5−4). The ϕ could
be even smaller for main-sequence stars like the Sun. Specifically,
the pressure and energy density in the solar core are approximately
10−16 MeV/fm3 and 10−10 MeV/fm3, respectively, and therefore
ϕ ≈ 10−6. These stars are Newtonian in the sense that GR effects are
almost absent. Similarly, for NS matter around nuclear saturation
density ρ0 = ρsat ≈ 0.16 fm−3, the pressure is estimated to be
P(ρ0) ≈ P0(ρ0) + Psym(ρ0)δ

2 ≈ 3−1Lρ0δ
2 ≲ 3 MeV/fm3. Its isospin-

dependent part is Psym(ρ0) = 3
−1Lρ0with L ≈ 60 MeV (Li et al.,

2018; 2021) being the slope parameter of nuclear symmetry
energy Esym(ρ)at ρ0, δis the isospin asymmetry of the system
(δ2 ≲ 1), and P0(ρ0) = 0is the pressure of symmetric nuclear matter
(SNM) at ρ0. The energy density at ρ0is similarly estimated as
ε(ρ0) ≈ [E0(ρ0) +Esym(ρ0)δ

2 +MN]ρ0 ≈ 150 MeV/fm3with MN ≈
939 MeVthe nucleon static mass, E0(ρ0) ≈ −16 MeVthe binding
energy at ρ0for SNM, and Esym(ρ0) ≈ 32 MeV (Li, 2017), leading
to ϕ ≲ 0.02.

Based on the dimensional analysis and the definition of sound
speed, we may write out the SSS generally as (we use the units in
which c = 1)

s2 = ϕ f (ϕ) , ϕ = P/ε, (4)

where f(ϕ) is dimensionless. For low-density matter, such as matter
in ordinary stars and WDs or the nuclear matter around saturation
density ρ0, the ratio ϕ is also small (as estimated in the last
paragraph), indicating that f(ϕ) could be expanded around ϕ = 0 as
f(ϕ) ≈ f0 + f1ϕ+ f2ϕ

2 +⋯ , where f0 > 0 (to guarantee the stability
condition s2 ≥ 0). Keeping the first leading-order term f0 enables us
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to obtain s2 ≈ f0ϕ, so s2 has a similar value of ϕ if f0 ∼O(1), and
the EOS does not take a linear form (except for f0 = 1). Moreover,
the causality principle requires ϕ ≲ f−10 .The s2 ≈ 0.03 ∼ ϕ ≲ 0.02 at ρ0
from chiral effective field calculations (Essick et al., 2021) confirms
our order-of-magnitude estimate on s2. If the next-leading-order
term f1 is small and positive, then the upper bound for ϕ becomes
ϕ ≲ f−10 (1− f1/ f

2
0), which is even reduced compared with f−10 . The

exact form of f(ϕ) should be worked out/analyzed by the general-
relativistic structure equations forNSs (Tolman, 1939;Oppenheimer
and Volkoff, 1939). By doing that, we demonstrated earlier that ϕ is
upper bounded as ϕ ≲ 0.374 near the centers of stable NSs (Cai et al.,
2023b; Cai et al., 2023a; Cai and Li, 2024a; Cai and Li, 2024b). The
corresponding trace anomaly Δ in NS cores is thus bounded to
be above −0.04. In the next sections, we first show the main steps
leading to these conclusions and then discuss their ramifications
compared with existing predictions on Δ in the literature.

3 Analyzing scaled TOV equations,
mass/radius scalings, and central SSS

TheTOVequations describe the radial evolution of pressureP(r)
and mass M(r) of an NS under static hydrodynamic equilibrium
conditions (Tolman, 1939; Oppenheimer and Volkoff, 1939). In
particular, we have (adopting c = 1)

dP
dr
= −GMε

r2
(1+ P

ε
)(1+ 4πr3P

M
)(1− 2GM

r
)
−1
, dM

dr
= 4πr2ε,

(5)

Here, the mass M =M(r), pressure P = P(r), and energy density ε =
ε(r) are functions of the distance r from NS center. The central
energy density εc is a specific and important quantity, which
straightforwardly connects the central pressure Pc via the EOS Pc =
P(εc). Using εc, we can construct a mass scale W and a length scale
Q:

W = 1
G

1

√4πGεc
= 1

√4πεc
, Q = 1

√4πGεc
= 1

√4πεc
, (6)

respectively. Here, the second relations follow with G = 1. Using
W and Q, we can rewrite the TOV equations in the following
dimensionless form (Cai et al., 2023b; Cai et al., 2023a; Cai and
Li, 2024a; Cai and Li, 2024b),

dP̂
d ̂r
= − ̂εM̂
̂r2
(1+ P̂/ ̂ε)(1+ ̂r3P̂/M̂)

1− 2M̂/ ̂r
, dM̂

d ̂r
= ̂r2 ̂ε, (7)

where P̂ = P/εc, ̂ε = ε/εc, ̂r = r/Q and M̂ =M/W. The general
smallness of

X ≡ ϕc ≡ P̂c ≡ Pc/εc, (8)

together with the smallness of

μ ≡ ̂ε− ̂εc = ̂ε− 1, (9)

near NS centers enable us to develop effective/controllable
expansion of a relevant quantityU over X and μ as Cai et al. (2023b),
(Cai et al., 2023a), Cai and Li (2024a), (Cai and Li, 2024b):

U/Uc ≈ 1+ ∑
i+j≥1

uijXiμj, (10)

Here, Uc is the quantity U at the center. Because both GR and its
Newtonian counterpart with small ϕ and X are nonlinear, the TOV
equations are also nonlinear. One often solves the more involved
nonlinear TOV equations by adopting numerical algorithms via a
selected εc and an input-densematter EOS (Cai and Li, 2016; Li et al.,
2022) as well as the termination condition:

P (R) = 0↔ P̂(R̂) = 0, (11)

which defines the NS radius R. The NS mass is given as

MNS = M̂NSW, with M̂NS ≡ M̂(R̂) = ∫
R̂

0
d ̂r ̂r2 ̂ε ( ̂r) . (12)

Starting from the scaled TOVEquation 7, we can show that both
P̂ and ̂ε are even under the transformation ̂r↔− ̂r, while M̂ is odd
(Cai and Li, 2024a). Therefore, we can write the general expansions
for ̂ε, P̂ and M̂ near ̂r = 0:

̂ε( ̂r) ≈ 1+ a2 ̂r
2 + a4 ̂r

4 + a6 ̂r
6 +⋯, (13)

P̂( ̂r) ≈ X+ b2 ̂r2 + b4 ̂r4 + b6 ̂r6 +⋯, (14)

M̂( ̂r) ≈ 1
3
̂r3 + 1

5
a2 ̂r5 +

1
7
a4 ̂r7 +

1
9
a6 ̂r9 +⋯, (15)

the expansion for M̂ follows directly from that for ̂ε. As a direct
consequence, we find that s2( ̂r) = s2(− ̂r); that is, there would be no
odd terms in ̂r in the expansion of s2 over ̂r. The relationships
between {aj} and {bj} are determined by the scaled TOV Equation 7;
and the results are (Cai et al., 2023b)

b2 = −
1
6
(1+ 3P̂2

c + 4P̂c) , (16)

b4 =
P̂c

12
(1+ 3P̂2

c + 4P̂c) −
a2

30
(4+ 9P̂c) , (17)

b6 = −
1

216
(1+ 9P̂2

c)(1+ 3P̂
2
c + 4P̂c) −

a2
2

30

+( 2
15

P̂2
c +

1
45

P̂c −
1
54
)a2 −

5+ 12P̂c

63
a4, (18)

etc., and all the odd terms of {bj} and {aj} are 0. The coefficient a2
can be expressed in terms of b2 via the SSS because

s2 = dP̂
d ̂ε
= dP̂

d ̂r
⋅ d ̂r
d ̂ε
=
b2 + 2b4 ̂r2 +⋯
a2 + 2a4 ̂r2 +⋯

. (19)

Evaluating it at ̂r = 0 gives s2c = b2/a2, or inversely, a2 = b2/s2c .
Because s2c > 0 and b2 < 0, we find a2 < 0; that is, the energy density
is a monotonically decreasing function of ̂r near ̂r ≈ 0.

According to the definition of NS radius given in Equation 11,
we obtain from the truncated equation X+ b2R̂

2 ≈ 0 that R̂ ≈
(−X/b2)

1/2 = [6X/(1+ 3X2 + 4X)]1/2, and therefore, the radius
R (Cai et al., 2023b):

R = R̂Q ≈ ( 3
2πG
)

1/2
νc, with νc ≡

1
√εc
( X
1+ 3X2 + 4X

)
1/2
. (20)

Similarly, the NS mass scales as Cai et al. (2023b).

MNS ≈
1
3
R̂3 ̂εcW =

1
3
R̂3W ≈ ( 6

πG3 )
1/2

Γc, with Γc ≡
1
√εc
( X
1+ 3X2 + 4X

)
3/2
.

(21)
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Consequently, the NS compactness ξ scales as Cai and
Li (2024b).

ξ ≡
MNS

R
≈ 2
G

X
1+ 3X2 + 4X

=
2Πc

G
, with Πc ≡

X
1+ 3X2 + 4X

. (22)

For small X (Newtonian limit), ξ ≈ 2X. Relation (22) implies
that X is the source and also a measure of NS compactness
(Cai and Li, 2024b). The correlation between X and ξ is studied
and fitted numerically in the form of lnX ≈ ∑iziξ

iusing various
EOS models (Saes and Mendes, 2022). Such fitting schemes
eventually become effective as enough parameters, zi, are used.
However, the real correlation between X and ξ is somehow lost.
In particular, our correlation tells that ξ ∼ τ0 + τ1X+ τ2X2 +⋯with
τ0 ≈ 0and τ1 ≈ 2.

The maximum-mass configuration (or the TOV configuration)
along the NS M-R curve is a special point. Consider a typical
NS M-R curve near the TOV configuration from right to left,
the radius R (mass MNS) eventually decreases (increases), the
compactness ξ =MNS/R correspondingly increases and reaches
its maximum value at the TOV configuration. When going to
the left along the M-R curve even further, the stars become
unstable and may collapse into black holes (BHs). The NS at
the TOV configuration is denser than its surroundings, and the
cores of such NSs contain the densest stable visible matter in the
Universe. The TOV configuration is indicated on a typical M-R
sequence in Figure 2. Mathematically, the TOV configuration is
described as

dMNS

dεc
|
MNS=M

max
NS =MTOV

= 0. (23)

Using the NS mass scaling of Equation 21, we obtain

dMNS

dεc
= 1

2
MNS

εc
[3(

s2c
X
− 1) 1− 3X2

1+ 3X2 + 4X
− 1], where s2c ≡

dPc

dεc
.

(24)

Inversely, we obtain the expression for the central SSS
(Cai et al., 2023a; Cai and Li, 2024a),

forstableNSsalongM−Rcurve: s2c = X(1+
1+Ψ

3
1+ 3X2 + 4X

1− 3X2 ),

(25)

where

Ψ = 2
d lnMNS

d lnεc
≥ 0. (26)

We see that the SSS is in the form of Equation 4. For NSs at the
TOV configuration, we have

forNSsat theTOVconfiguration: s2c = X(1+
1
3
1+ 3X2 + 4X

1− 3X2 ).

(27)

because now, Ψ = 0. Using the s2c of Equation 27 for NSs at the
TOV configuration, we can calculate the derivative of NS radius R
with respect to εc around the TOV point, that is, Cai et al. (2023b).

dR
dεc
∼ d

dεc
( R̂
√εc
)
Rmax↔M

max
NS

= (
s2c
X
− 1) 1− 3X2

1+ 3X2 + 4X
− 1 = −2

3
,

(28)

FIGURE 2
An illustration of the TOV configuration on a typical mass-radius
sequence. The cores of NSs at the TOV configuration contain the
densest visible matter in our Universe; the compactness ξ for such NSs
is the largest among all stable NSs.

That is, as εc increases, the radius R decreases (self-gravitating
property), as expected. On the other hand, for stable NSs along
the M-R curve with a nonzero Ψ, we have dR/dεc ∼ (Ψ− 2)/3; this
means if Ψ is approximately 2, the dependence of the radius on εc
would be weak.

For verification, the scaling Rmax-νc (panel (a)) of Equation 20
and the scaling Mmax

NS -Γc (panel (b)) of Equation 21 are shown in
Figure 3 by using 87 phenomenological and 17 extra microscopic
NS EOSs with and/or without considering hadron-quark phase
transitions and hyperons by solving the original TOV equations
numerically. See Cai et al. (2023b) for more details on these EOS
samples. The observed strong linear correlations demonstrate
vividly that the Rmax-νc and Mmax

NS -Γc scalings are nearly universal.
While it is presently unclear where the mass threshold for massive
NSs to collapse into BHs is located, the TOV configuration
is the closest to it theoretically. It is also well known that
certain properties of BHs are universal and only depend on
quantities like mass, charge, and angular momentum. One
thus expects the NS mass and radius scalings near the TOV
configuration to be more EOS-independent than those for light
NSs. It is also interesting to notice that EOSs allowing phase
transitions and/or hyperon formations consistently predict the
same scalings.

By performing linear fits of the results obtained from the EOS
samples, the quantitative scaling relations are (Cai et al., 2023b;
Cai et al., 2023a; Cai and Li, 2024a)

Rmax/km ≈ 1050
+30
−30 ×(

νc
fm3/2/MeV1/2

)+ 0.64+0.25−0.25, (29)

Mmax
NS /M⊙ ≈ 1730

+30
−30 ×(

Γc

fm3/2/MeV1/2
)− 0.106+0.035−0.035, (30)

with their Pearson’s coefficients approximately 0.958 and 0.986,
respectively. Here, νc and Γc are measured in fm3/2/MeV1/2. In
addition, the standard errors for the radius and mass fittings are
approximately 0.031 and 0.003 for these EOS samples. In Figure 3,
the conditionMmax

NS ≳ 1.2M⊙ used is necessary tomitigate influences
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FIGURE 3
Panel (A): the Rmax-νc correlation using 104 EOS samples (colored symbols); see Cai et al. (2023b) for more detailed descriptions on these EOSs. The
constraints on the mass (Fonseca et al., 2021) and radius (Riley et al., 2021) of PSR J0740 + 6,620 are shown by the pink hatched bands. Panel (B):
similar to the left panel but for Mmax

NS -Γc. The orange arrows and captions nearby in each panel indicate the νc and Γc defined in Equation 20 and
Equation 21, respectively. Figures taken from Cai et al. (2023b).

of uncertainties in modeling the crust EOS (Baym et al., 1971; Iida
and Sato, 1997; Xu et al., 2009) for low-mass NSs. For the heavier
NSs studied here, it is reassuring to see that although the above
104 EOSs predicted quite different crust properties, they all fall
closely around the same scaling lines consistently, especially for the
Mmax

NS -Γc relation.

4 Gravitational upper bound on
X ≡ ϕc = Pc/εc, its generalizations, and
the impact on supradense NS matter
EOS

Based on Equation 27 and the principle of causality of SR, we
obtain immediately (Cai et al., 2023b)

s2c ≤ 1↔ X = P̂c ≲ 0.374 ≡ XGR
+ . (31)

Although the causality condition requires apparently P̂c ≤ 1, the
supradense nature of core NS matter indicated by the nonlinear
dependence of s2c on P̂c essentially renders it to be much smaller.

A small X < 1 was, in fact, indicated earlier in the literature
(Koranda et al., 1997; Saes and Mendes, 2022). For example,
in Koranda et al. (1997), the minimum-period EOS of the
form P(ε) = 0 for ε < εf and P(ε) = ε− εf for ε ≥ εf was adopted;

here, εf is a free parameter of the model. Such an EOS is
simplified and unrealistic in the following senses: (1) both the
parameter εf ≈ 2.156× 1015 g/cm3 ≈ 8.1ε0 and the central energy
density εc ≈ 4.778× 1015g/cm3 ≈ 17.9ε0 are unrealistically large for
a 1.442M⊙ NS (Koranda et al., 1997); the consequent ratio X
in this model is X = 1− εf/εc ≈ 0.55; (2) the central SSS of 1
of such model is inconsistent with Equation 27. Actually, only
with X = 1− εf/εc ≈ 0.374 or εf/εc ≈ 0.626 can one make this EOS
model consistent with Equation 27. That is, the parameter space
for εf is limited; however, a vanishing pressure up to εf/εc ≈
0.626 is fundamentally unsatisfactory. Therefore, X ≈ 0.55 is only
qualitatively meaningful.

The bound (31) is obtained under the specific condition that
it gives the upper limit for ϕ = P/ε at the center of NSs at TOV
configurations. In order to bound a general ϕ = P/ε = P̂/ ̂ε, we need
to take three generalizations of X ≲ 0.374 obtained fromEquation 31
by asking (Cai et al., 2023a).

(a) How does ϕ = P̂/ ̂ε behave at a finite ̂r for the maximum-mass
configuration Mmax

NS ?
(b) How does the limit X ≲ 0.374 modify when considering

stable NSs on the M-R curve away from the TOV
configuration?

(c) By combining (a) and (b), how does ϕ behave for stable NSs at
finite distances ̂r away from their centers?
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For the first question, because the pressure P̂ and ̂ε are both
decreasing functions of ̂r, that is, P̂ ≈ P̂c + b2 ̂r2 < P̂c and ̂ε ≈ 1+
s−2c b2 ̂r2 < 1 (notice ̂εc = 1 and a2 = b2/s2c), we obtain by taking
their ratio:

ϕ = P/ε = P̂/ ̂ε ≈ P̂c/ ̂εc +(1−
P̂c

s2c
)b2 ̂r2 = P̂c +(1−

P̂c

s2c
)b2 ̂r2

≈ P̂c −(
1+ 7P̂c

24
) ̂r2 < P̂c. (32)

Generally, 1− P̂c/s2c > 0, the small-P̂c expansions of s2c of
Equation 27 and b2 of Equation 16 are used in the last step. This
means that not only P̂ and ̂ε decrease for finite ̂r but also does
their ratio P̂/ ̂ε. Therefore, for NSs at the TOV configuration of the
M-R curves, we have ϕ = P̂/ ̂ε ≤ P̂c ≲ 0.374. Considering the second
question and for stable NSs on the M-R curve, one has Ψ > 0
(of Equation 26), and Equation 25 induces an even smaller upper
bound for X than 0.374. Furthermore, for the last question (c), the
inequality (32) still holds and is slightly modified for small P̂c as

ϕ = P̂/ ̂ε ≈ P̂c −
1
24

1+Ψ
(1+Ψ/4)2

[1+ 7P̂c +Ψ(P̂c +
1
4
)] ̂r2 < P̂c, (33)

which implies that ϕ = P̂/ ̂ε for Ψ ≠ 0 also decreases with ̂r.
Combining the above three aspects, we find

forstableNSsalongM−Rcurvenear/at thecenters: ϕ = P/ε = P̂/ ̂ε ≤ X ≲ 0.374.
(34)

Nevertheless, the validity of this conclusion is limited to small
̂r due to the perturbative nature of the expansions of P̂( ̂r) and
̂ε( ̂r). Whether ϕ = P/ε could exceed such upper limit at even larger

distances away from the centers depends on the joint analysis of s2

and P/ε, for example, by including more higher-order contributions
of the expansions (Cai et al., 2023a). The upper bound P/ε ≲ 0.374
(at least near the NS centers) is an intrinsic property of the TOV
equations, which embody the strong-field aspects of gravity in GR,
especially the strong self-gravitating nature. In this sense, there
is no guarantee a priori that this bound is consistent with all
microscopic nuclear EOSs (either relativistic or non-relativistic).
This is mainly because the latter were conventionally constructed
without considering the strong-field ingredients of gravity. The
robustness of such an upper bound for ϕ = P/ε can be checked only
by observable astrophysical quantities/processes involving strong-
field aspects of gravity such as NS M-R data, NS-NS mergers,
and/or NS-BH mergers (Baumgarte and Shapiro, 2010; Shibata,
2015; Baiotti andRezzolla, 2017; Kyutoku et al., 2021). Asmentioned
earlier, in the NS matter-gravity inseparable system, the total action
determines the matter state and the NS structure. Thus, to our
best knowledge, there is no physics requirement that the EOS of
supradense matter created in vacuum from high-energy heavy-ion
collisions or other laboratory experiments where effects of gravity
can be neglected must be the same as EOSs in NSs, as the nuclear
matter in the two situations is in very different environments.
Nevertheless, the ramifications of the above findings and logical
arguments should be further investigated.

Next, we consider the Newtonian limit where ϕ and X are small.
We can neglect 3X2 + 4X in the coefficient b2; consequently, b2 = −

1/6 is obtained (Chandrasekhar, 2010). In such case, we shall obtain
from Equation 27:

Newtonian limit: s2c ≈ 4X/3, (35)

and the principle of causality requires X ≤ 3/4 = 0.75 ≡ XN
+ . The

latter can be applied to nuclear matter created in laboratory
experiments where the effects of gravity can be neglected. Turning
on gravity in NSs, we see that the nonlinearity of Newtonian gravity
has already reduced the upper bound for ϕ from 1 obtained by
requiring s2 ≤ 1 in SR via a linear EOS of the form P = const. × ε to
3/4; the even stronger nonlinearity of the gravity in GR reduces it
further. These effects of gravity on ϕ are illustrated in Figure 4. It is
seen that the strong-field gravity inGR brings a relative reduction on
the upper bound for ϕ by approximately 100%. Though the ϕ or X
in Newtonian gravity is generally smaller, the upper bound for ϕ or
X is, however, larger than its GR counterpart. The index s2c/X, being
greater than 1 in both Newtonian gravity and in GR, implies that the
central EOS in NSs once considering the gravity effect could not be
linear or conformal.

We emphasize that all of the analyses above based on SR and
GR are general from analyzing perturbatively analytical solutions of
the scaled TOV equations without using any specific nuclear EOS.
Because the TOV equations are the results of a hydrodynamical
equilibriumofNSmatter in the environment of a strong-field gravity
from extremizing the total action of the matter-gravity system,
features revealed above from SR and GR inherent in the TOV
equations must be matched by the nuclear EOS. This requirement
can then put strong constraints on the latter. In particular, the upper
bound for ϕ as ϕ ≲ XGR

+ ≈ 0.374 of Equation 31 enables us to limit
the density dependence of nuclear EOS relevant for NS modeling.

In the following, we provide an example illustrating how the
strong-field gravity can restrict the behavior of superdense matter
in NSs. For simplicity, we assume that the energy per baryon takes
the following form:

E (ρ) = BFFG(
ρ
ρ0
)

2/3
+B(

ρ
ρ0
)
σ
, (36)

where the first term is the kinetic energy of an FFG of neutrons
in NSs with BFFG ≈ 35 MeV being its known value at ρ0, and the
second term is the contribution from interactions describedwith the
parametersB and σ.Thepressure and the energy density are obtained
fromP(ρ) = ρ2dE/dρ and ε(ρ) = [E(ρ) +MN]ρ, respectively.The ratio
ϕ = P/ε and the SSS s2 = dP/dε could be obtained correspondingly.
After denoting the reduced density ρ/ρ0, where s2→ 1 and ϕ→ X→
XGR
+ , as ℓ (e.g., ℓ ≲ 8 for realistic NSs), the following constraining

equation for σ is obtained:

σ(XGR
+ σ− 1) + ℓ

2/3

3
(
BFFG

MN
)(σ− 2

3
)[(3σ+ 2)XGR

+ − 2σ− 3] = 0.

(37)

Thus, XGR
+ effectively restricts the index σ characterizing the

stiffness of nuclear EOS.There are two solutions of Equation 37, with
one being greater than 1 (denoted as σlarge) and the other smaller
than 1 (denoted as σsmall). They can be explicitly written as
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FIGURE 4
An illustration of the gravitational effects on supradense matter EOS in NSs: The nonlinearity of Newtonian gravity reduces the upper bound for ϕ from
1 (obtained by requiring s2 ≤ 1 in SR via a linear EOS of the form P = const. × ε for supradense matter in vacuum) to 3/4 = 0.75, and the even stronger
nonlinearity of the gravity in GR further refines it to be approximately 0.374.

FIGURE 5
Gravitational impact on the EOS of supradense matter and the
underlying strong interaction in NSs: the general XGR

+ -dependence of
σlarge and σsmall of Equation 38, based on the nuclear
EOS model of Equation 36; here BFFG ≈ 35MeV, MN ≈ 939MeV, and ℓ =
ρ/ρ0 ≈ 6.

σ = 1
2
(XGR
+ +Λ(X

GR
+ −

2
3
))
−1

{{
{{
{

1+ 5
9
Λ±√1+ 16Λ

9
[(XGR,2
+ −

3XGR
+
2
+ 5

8
)+Λ(XGR

+ −
13
12
)
2
]
}}
}}
}

,

(38)

where

Λ ≡ ℓ2/3(
BFFG

MN
) ≪ 1. (39)

The expression for the coefficient B is

B = (
1+ 5Λ/9
σ2 − 1

1
ℓσ
)MN, (40)

which depends on XGR
+ through σ. As a numerical example, using

MN ≈ 939 MeV, BFFG ≈ 35 MeV, and ℓ ≈ 6 leads to σlarge ≈ 3.1

and Blarge ≈ 0.45 MeV or σsmall ≈ 0.06 and Bsmall ≈ −906 MeV
(this second solution is unphysical because B > 0 is necessarily
required to make E(ρ) > 0 at NS densities). If one artificially takes
XGR
+ = 1, then the two solutions (38) approach

σsmall→
2
3

1
1+ 3/Λ

= 2
3
(1+ 3

ℓ2/3
(
MN

BFFG
))
−1
≪ 1, and σlarge→ 1 fromabove.

(41)

Now, neither solution is physical because Bsmall < 0 for
σsmall, while Blarge→+∞ for σlarge→ 1 from above, according to
Equation 40. The general XGR

+ -dependence of σlarge and σsmall of
Equation 38 is shown in Figure 5. It is seen that only as XGR

+ → 1 does
the EOS approach a linear form E(ρ) ≈ Bρ/ρ0 ∼ ρ (so P ≈ Bρ2/ρ0
and ε ≈ Bρ2/ρ0 +MNρ) at large densities (magenta line), which is
consistent with our general analyses and expectation.

Because the parameterization (36) is over-simplified, more
density-dependent terms should be included for general cases;
that is, B(ρ/ρ0)

σ→∑Jj=1Bj(ρ/ρ0)
σj . We may then obtain two related

equations from ϕ→ X→ XGR
+ and s2→ 1 as (for either XGR

+ = 1 or
XGR
+ ≠ 1):

J

∑
j=1
(

Bj

MN
)(σj −X+GR)ℓσj + ℓ2/3(

BFFG

MN
)(2

3
−X+GR)−X+GR = 0,

J

∑
j=1
(

Bj

MN
)(1− σj2)ℓ1/3+σj − ℓ1/3(1+ 5

9
ℓ2/3(BFFG

MN
)) = 0.

These constraints for Bj and σj should be taken appropriately
into account when writing an effective NS EOS based on density
expansions. For example, when extending Equation 36 to be
E(ρ) = BFFG(ρ/ρ0)

2/3 +B1(ρ/ρ0)
σ1 +B2(ρ/ρ0)

σ2 under two conditions
E(ρ0,δ) ≈ E0(ρ0) +Esym(ρ0)δ

2 ≈ 15 MeV for pure neutron matter
with δ = 1 and P(ρ0) ≈ 3 MeV/fm3, using ℓ ≈ 6 together with
XGR
+ ≈ 0.374, we may obtain σ1 ≈ 0.3 and σ2 ≈ 3.0 (as well as

B1 ≈ −20.5 MeV and B2 ≈ 0.5 MeV), respectively. This example
quantitatively shows that the gravitational bound naturally
leads to a constraint on the nuclear EOS and the underlying
interactions in NSs.
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5 Gravitational lower bound on trace
anomaly Δ in supradense NS matter

After the above general demonstration on the gravitational
upper limit for ϕ near NS centers given by (31) or (34), we
equivalently obtain a lower limit on the dimensionless trace anomaly
Δ = 1/3−ϕ as

Δ ≥ ΔGR ≈ −0.04. (44)

It is very interesting to notice that such a GR bound on Δ is
very close to the one predicted by perturbative QCD (pQCD) at
extremely high densities owning to the realization of approximate
conformal symmetry of quarkmatter (Bjorken, 1983; Fujimoto et al.,
2022), as shown in Figure 6 using certain NS modelings. A possible
negative Δ in NSs was first pointed out by Fujimoto et al. (2022).
Since then, several studies have been made on this issue. In the
following, we summarize themain findings of these studies by others
and compare them with what we found above when possible.

The analysis in Ecker and Rezzolla (2022) using an agnostic
EOS showed that Δ is very close to 0 for MTOV ≳ 2.18 ∼ 2.35M⊙
and may be slightly negative for even more massive NSs (e.g.,
Δ ≳ −0.021+0.039−0.136 for MTOV ≳ 2.52M⊙); the radial dependence of
Δ is shown in the upper panel of Figure 7 from which one
finds the Δ for NS at the TOV configuration is much deeper
than that in a canonical NS. Moreover, incorporating the pQCD
effects (ΔpQCD→ 0) was found to effectively increase the inference
on Δ. An updated analysis of Ecker and Rezzolla (2022) was
given in Musolino et al. (2024), where Δ ≳ −0.059+0.162−0.158 or Δ ≳
0.019+0.100−0.129 was obtained under the constraint MTOV ≳ 2.35M⊙
without or with considering the pQCD effects; see the lower
panel of Figure 7 for the PDFs. Similarly, if MTOV ≳ 2.20M⊙
was required, these two limits become Δ ≳ −0.046+0.167−0.166 and Δ ≳
0.029+0.108−0.133 (Musolino et al., 2024), respectively. In Takátsy et al.
(2023), the central minimum value of Δ is found to be about
0.04 using the NICER data together with the tidal deformability
from GW170817, and a value of Δmin ≈ −0.04

+0.11
−0.09 was inferred

considering additionally the second component of GW190814 as
an NS with mass approximately 2.59M⊙ (Abbott R. et al., 2020)
using two hadronic EOS models (Takátsy et al., 2023); see the
upper panel of Figure 8. By incorporating the constraints from
AT2017gfo (Abbott et al., 2017b), it was found (Pang et al.,
2024) that the minimum of Δ is very close to 0 (approximately
−0.03 to 0.05), as shown in the lower panel of Figure 8. Using
similar low-density nuclear constraints as well as astrophysical data,
including the black widow pulsar PSR J0952-0607 (Romani et al.,
2022), Brandes et al. (2023a) predicted Δ ≳ −0.086+0.07−0.07 taken at
ε ≈ 1 GeV/fm3. Another analysis within the Bayesian framework
considering the state-of-the-art theoretical calculations showed
that Δ ≳ −0.01 (Annala et al., 2023) (where MTOV ≈ 2.27

+0.11
−0.11M⊙ is

assumed). Furthermore, by considering the slope and curvature of
energy per particle in NSs, Marczenko et al. (2024) showed that
Δ is lower bounded for MTOV to be approximately −0.02+0.03−0.03. In
addition, Cao and Chen (2023) found that the Δ should be roughly
larger than about −0.04+0.08−0.09 in self-bound quark stars while that in a
normal NS is generally greater than zero.

A very recent study classified the EOSs by using the local and/or
global derivative dMNS/dR of the resulting mass-radius sequences

FIGURE 6
Trace anomaly Δ as a function of energy density ε/ε0. Here, the Δ in
NSs tends to be negative, although the pQCD prediction on it
approaches zero, and ε0 ≈ 150MeV/fm3 is the energy density at nuclear
saturation density. Figure taken from Fujimoto et al. (2022).

(Ferreira and Providência, 2024). Limiting the sign of dMNS/dR to
positive on the M-R curve for NS masses between about 1 M⊙ and
MTOV, it was found that Δ ≳ 0.008+0.133−0.160 (Ferreira and Providência,
2024). On the other hand, if dMNS/dR < 0 is required for all NS
masses, then Δ ≳ −0.057+0.119−0.119 is found; see the upper left panel
of Figure 9. Our understanding of this behavior is as follows: A
negative slope dMNS/dR along thewholeM-R curvewithMNS/M⊙ ≳
1 (Ferreira and Providência, 2024) implies the radius of NS at
the TOV configuration is relatively smaller than the one with a
positive dMNS/dR on a certain M-R segment, as indicated in the
upper right panel of Figure 9. Thus, the NS compactness ξ in
the former case is relatively larger, which induces a larger X via
Equation 22 and, correspondingly, a smaller Δ (Cai and Li, 2024b).
The smaller radius also implies that the NS is much denser, so
the maximum baryon density is correspondingly larger (Ferreira
and Providência, 2024). The dense matter trace anomaly in twin
stars satisfying relevant static and dynamic stability conditions was
recently studied (Jiménez et al., 2024). The Δ was found to be deeply
bounded roughly as Δ ≳ −0.035 (Jiménez et al., 2024), as shown in
the bottom panel of Figure 9. A deep negative Δ implies a large
ϕ or X, so the compactness is correspondingly large according to
Relation (22). We notice that the radii obtained in Jiménez et al.
(2024) for certain NS masses (e.g., approximately 2M⊙) may be
small compared with the observational data, for example, PSR
J0740 + 6,620 (Riley et al., 2021).

The above constraints on the lower limit of Δ (realized in NSs)
are summarized in the upper panel of Figure 10. Clearly, assuming
all results are equally reliablewithin their individual errors indicated,
there is a strong indication that the lower bound of Δ is negative in
NSs. Moreover, except for the prediction of Jiménez et al. (2024), the
lower bounds of Δ from various analyses are very close to the pQCD
(ΔpQCD = 0) or GR limit (ΔGR ≈ −0.04). It is interesting to note that
the ΔGR and ΔpQCD have no inner relation, to our best knowledge
currently. However, we speculate that the matter-gravity duality in
massive NSs mentioned earlier may be at work here. Certainly, this
speculation deserves further study.

How relevant are the GR or pQCD limits for understanding the
trace anomaly Δ in NSs? The Δ and its energy density dependence
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FIGURE 7
Upper panel: radial dependence of Δ with the constraint MTOV/M⊙ ≳ 2.35. Figure taken from Ecker and Rezzolla (2022). Lower panel: PDF for Δ
with/without considering the pQCD limit at extremely high densities. The first (second) line in the lower panel is for non-rotating (Kepler rotating) NSs.
Figure taken from Musolino et al. (2024).

are crucial for studying the s2 in NSs (Fujimoto et al., 2022). For
instance, one can explore whether there would be a peaked structure
in the density/radius profile of s2 in NSs. Sketched in the lower panel

of Figure 10 (Cai et al., 2023a) are two imagined Δ functions versus
the reduced energy density ε/ε0; here, ε0 ≈ 150 MeV/fm3, around
which the low-energy nuclear theories constrain the Δ quite well.
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FIGURE 8
Two typical inferences on the energy density (or baryon density) dependence of Δ. Figures taken from Takátsy et al. (2023) (upper panel) and Pang et al.
(2024) (lower panel).

We notice that these two functions are educated guesses, certainly
with biases. In fact, it has been pointed out that applying a particular
EOS in extracting Δ from observational data may influence the
conclusion (Musolino et al., 2024). In the literature, there have
been different imaginations/predictions/speculations on how the Δ
at finite energy density may vary and finally reach its pQCD limit
of Δ = 0 at very large energy densities ε ≳ 50ε0 ≈ 7.5 GeV/fm3

(Fujimoto et al., 2022; Kurkela et al., 2010) or equivalently ρ ≳
40ρ0. The latter is far larger than the energy density reachable
in the most massive NSs reported so far based on our present
knowledge. The pQCD limit on Δ is thus possibly relevant (Zhou,

2024) but not fundamental for explaining the inferred ϕ = P/ε ≳ 1/3
from NS observational data based on various microscopic and/or
phenomenological models. On the other hand, we also have no
confirmation in any way that the causality limit is reached in any
NS.Themagenta curve is based on the assumption that the causality
limit under GR is reached in the most massive NSs observed so far.
Based onmost model calculations, in the cores of these NSs, the ε/ε0
is roughly around 4∼8.However, if thematter-gravity inmassiveNSs
is indeed at work, we have no reason to expect that the GR limit is
reached at an energy density lower than the one where the pQCD is
applicable.
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FIGURE 9
Upper left panel: density dependence of Δ inferred under the constraint dMNS/dR < 0 for all NS masses (blue) or dMNS/dR ≥ 0 for a certain mass range
(red); inference in the bottom figure with astrophysical constraints. Figure taken from Ferreira and Providência (2024). Upper right panel: two types of
M-R curves classified by using the derivative dMNS/dR for NS masses between about 1M⊙ and MTOV to help understand the behavior of trace anomaly
Δs shown in the left panel. Bottom: The trace anomaly for twin stars satisfying static and dynamic stability conditions. Figure
taken from Jiménez et al. (2024).

Keeping a positive attitude in our exploration of a completely
uncharted area, we make a few more comments below on how
the trace anomaly may reach the pQCD limit. As a negative

Δ is unlikely to be observed in ordinary NSs, the evolution of
Δ is probably more like the green curve in the lower panel of
Figure 10. An (unconventional) exception may come from light
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FIGURE 10
Upper panel: Summary of current constraints on the lower bound of trace anomaly Δ in NSs from different analyses with respect to the pQCD
(dot-dashed line) and GR (black solid line) predictions. See the text for details. Lower panel: Sketch of two imagined patterns for Δ = 1/3−P/ε in NSs. The
Δ is well constrained around the fiducial density ε0 ≈ 150MeV/fm3 by low-energy nuclear theories and is predicted to vanish due to the approximate
conformality of the matter at ε ≳ 50ε0 (or equivalently ρ ≳ 40ρ0) using pQCD theories. Figure 1 The magenta curve is based on the assumption that the
causality limit is reached in the most massive NS observed, where ε/ε0 being roughly around 4∼8. Figure taken from Cai et al. (2023a).

but very compact NSs; for example, a 1.7M⊙ NS at the TOV
configuration with radius approximately 9.3 km has its Δc ≈ −0.02
because εc ≈ 1.86 GeV/fm3 together with Pc ≈ 654 MeV/fm3

should be obtained via the mass and radius scalings of (30) and
(29), and soX = P̂c ≈ 0.351.On the other hand,massive and compact
NSs (masses ≳ 2M⊙) are most relevant to observing a negative Δ
(as indicated by the magenta curves) and how it evolves to the

pQCD bound, thus revealing more about properties of supradense
matter (Cai et al., 2023a). Interestingly, both the green and magenta
curves for the Δ pattern are closely connected with the density
dependence of the SSS using the trace anomaly decomposition of
s2 (Fujimoto et al., 2022) (we do not discuss these interesting topics
in the current review). Unfortunately, the region with ε/ε0 ≳ 8 is
largely inaccessible in NSs due to their self-gravitating nature.
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6 Summary and future perspectives

In summary, perturbative analyses of the scaled TOV equations
reveal interesting new insights into properties of supradense matter
in NS cores without using any input nuclear EOS. In specific, the
ratio ϕ = P/ε of pressure P over energy density ε (the corresponding
trace anomaly Δ = 1/3−ϕ) in NS cores is bounded to be below 0.374
(above −0.04) by the causality condition under GR independent of
the nuclear EOS. Moreover, we demonstrate that the NS mass MNS,
radius R, and compactness ξ =MNS/R strongly correlate with Γc =
ε−1/2c Π3/2

c , νc = ε
−1/2
c Π1/2

c and Πc = X/(1+ 3X2 + 4X) with X ≡ ϕc =
Pc/εc, respectively; therefore observational data on MNS and R as
well as on ξ via red-shift measurements can directly constrain the
central EOSPc = Pc(εc) in amodel-independentmanner. In addition
to the topics we have already investigated (Cai et al., 2023b; Cai et al.,
2023a; Cai and Li, 2024a; Cai and Li, 2024b), there are interesting
issues to be further explored in this direction. Particularly, we notice:

1. The upper limit for ϕ = P/ε near NS cores is obtained by
truncating the perturbative expansion of P and ε to low orders in
reduced radius ̂r. While the results are quite consistent with existing
constraints from state-of-the-art simulations/inferences, refinement
by including even higher-order ̂r terms would be important for
studying the radius profile of ϕ or Δ in NSs. In the Appendix, we
estimate such an effective correction.

2. Ironically, the upper bound ϕ = P/ε ≲ 0.374 from GR is very
close to that (P/ε ≲ 1/3) from pQCD at extremely high densities
(Bjorken, 1983; Kurkela et al., 2010; Fujimoto et al., 2022). While
we speculated that the well-knownmatter-gravity duality in massive
NSs may be at work, it is currently unclear whether there is
a fundamental connection between them. Efforts to understand
their relationships may provide useful hints for developing a
unified theory for strong-field gravity and elementary particles in
supradense matter.
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AppendixEstimate of an effective
correction to s2c

In this appendix, we estimate an effective correction to s2c
given in Equation 27 for NSs at the TOV configuration (Cai et al.,
2023a). When writing down MNS in Equation 21, we adopt MNS =
3−1R̂3W, which only includes the first term in the systematic
expansion (Equation 14); necessarily, we may include higher-order
terms from Equation 14 in MNS. As an effective correction, we now
include 5−1a2R̂

5 from Equation 14 to the NS mass, which modifies
Equation 21 as

MNS ≈ (
1
3
R̂3 + 1

5
a2R̂

5)W = 1
3
R̂3W(1+ 3

5
a2R̂

2) = 1
3
R̂3W(1− 3

5
X
s2c
)

∼ Γc(1−
3
5

X
s2c
), (A1)

where R̂ is given by Equation 20 through X+ b2R̂
2 ≈ 0, the

coefficient Γc ∼ R̂
3W is defined in Equation 21, and the general

relation a2 = b2/s2c is used to write 3a2R̂
2/5 = − 3X/5s2c . The factor

“1+ 3a2R̂
2/5” is actually the averaged reduced energy density ⟨ ̂ε⟩

by including the a2-term in ̂ε of Equation 13, namely, MNS/W ≈
3−1R̂3⟨ ̂ε⟩ with

⟨ ̂ε⟩ = ∫
R̂

0
d ̂r ̂r2 ̂ε ( ̂r)/∫

R̂

0
d ̂r ̂r2 = 1+ 3

5
a2R̂

2, ̂ε ( ̂r) ≈ 1+ a2 ̂r2. (A2)

Moreover, the s2c in Equation A1 is now not given by Equation 27
but should include corrections due to including the a2-term in ̂ε( ̂r).
Generally, we write it as:

s2c ≈ X(1+
1
3

1+ 3X2 + 4X
1− 3X2 )(1+ κ1X) ≈

4
3
X+ 4

3
(1+ κ1)X2 +O (X3) ,

(A3)

where κ1 is a coefficient to be determined. In addition, we have
1− 3X/5s2c ≈ (11/20)[1+ 9(1+ κ1)X/11] using the s2c of Equation A3;
taking dMNS/dεc = 0 with MNS given by Equation A1 gives the
expression for s2c (which is quite complicated). We then expanding
the latter over X to order X2 to give

s2c ≈
4
3
X+ 1

11
(38

3
− 2κ1)X2 +O (X3) . (A4)

Matching the two expressions (Equations A3, A4) at order X2 gives
κ1 = − 3/25. After that, we determine X ≲ 0.381 via s2c ≤ 1, which is
close to and consistent with 0.374 obtained in the main text; and
similarly, Δ ≳ −0.048. The magnitude of the correction “+κ1X” in
s2c is smaller than 5% while the corresponding correction on XGR

+ is
smaller than 2%. In addition, the NS mass now scales as

MNS ∼
1
√εc
( X
1+ 3X2 + 4X

)
3/2
⋅ (1+ 18

25
X). (A5)

In order to obtain the corrections to s2c more self-consistently and
improve the accuracy of XGR

+ , one may include more terms in the
expansion of P̂ over R̂ of Equation 14 (i.e., b2-term, b4-term and b6-
term, etc.), the expansion of M̂ over R̂ of Equation 15 (i.e., a2-term,
a4-term, a6-term, etc.), and in the mean while introduce corrections
“1+ κ1X+ κ2X2 + κ3X3 +⋯” in s2c as we did in Equation A3. Then,
determine the coefficients κ1, κ2, and κ3, etc. The procedure
eventually becomes involved as more terms are included.
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