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Fragmentation of young massive
clusters in binary components:
an application of Griddy Gibbs
Sampler

Abisa Sinha Adhikary* and Ankita Das

Department of Statistics, Amity University Kolkata, Kolkata, India

The study of the process of hierarchical fragmentation of molecular clouds
within Young Massive Clusters required modeling the Initial Mass Function by
considering both binary and single-star components. Components of masses
from the Gaia Early Data Release 3 (EDR3) dataset were estimated using the
mass–luminosity relationship and the contribution of each mass to the total
system was analyzed in the current research. Stochastic models describing the
contribution of each component are developed for binary as well as single
stars incorporating the escape mass theory of the assumed pair. Binary masses,
fitted to suitable bi-variate distributions, were simulated using Griddy Gibbs
sampler, aMarkov ChainMonte Carlo (MCMC) algorithm. Stellarmasses of single
stars were simulated using data from suitable uni-variate distribution. The mass
spectrum of the binary, as well as single star components, were then considered
together to determine the initial mass function. The resulting mass function
under opacity limited fragmentation scenario is further investigated at different
projected distances from the cluster core to the radius where the signature of
mass segregation is found.
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initial mass function, Izawa bi-variate gamma distribution, escape mass, Griddy Gibbs
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1 Introduction

From decades, the Initial Mass Function (IMF) has been a key point of interest to
astronomers who study the formation of galaxies as well as the expansion of the universe.
As first reported by Salpeter (1955) and Scalo (1998) and later developed by Kroupa et al.
(1993), IMF constitutes a power-law of the form ξ = dN

d log m
∝mΓ, m being the masses of a

star,N the frequency of the stars in the logarithmic mass range log m and log m+ d log m, Γ
being the slope. The existence of the various mass regimes as parts of piecewise functions of
the IMF curve has been put forward by various authors, notably by Kroupa (2002), Chabrier
(2003), and Chabrier (2005). The observed mass-regimes may be looked upon as the lower
mass-regime (for masses < 1M⊙) and the higher mass-regime (for the masses 1− 10M⊙)
with peak (popularly known as the characteristic mass (mc)) occurring around 0.3− 0.5M⊙.
The slope obtained in the various mass regimes is of primary concern to astronomers
working with the primordial origin of stellar formation. As reported by Salpeter (1955) the
slopes of these mass-regimes are denoted by Γ ∼ −1.35, for the mass range (0.4M⊙,10M⊙).
Considering the linear mass unit of the form dN

dm
∝mα with α = 1− Γ, the slopes vary from

2.30± 0.30 for masses (1M⊙,20M⊙) in the higher mass regimes (Sagar and Kumar 2012),
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Γ ∼ (0,−0.25) for the lower mass-regimes with mc approximately
0.3 M⊙. In their review article, Hannebeller and Gurdic (2024)
performed an extensive study regarding the nature of IMF, the
different mass regimes, slopes at different piecewise functions,
physical features of nebula along with themass segregation scenario.
Various authors including Sagar and Kumar (2012), Sagar and
Richtler (1991) and Sanner and Geffert (2001) determined the
average slope to be Γ ∼ −1.4± 0.3 and Γ ∼ −1.8± 0.6 for the higher
mass regimes for masses greater than 1 M⊙. Considering several
anomalies in the mass spectrum, studies have been carried out by
Chattopadhyay et al. (2011), Chattopadhyay et al. (2016) and Sinha
(2018). These authors considered the stellar masses in the form of
binary and singular components, thereby studying the contribution
of each type of fragment into final formof IMF.They also determined
the impact of opacity limited mass segregation in the YMCs.

Stars are usually formed as single, binary, or multiple systems;
they are usually viewed through their light curves observed through
their orbital planes inclined at a definite angle. In the absence of
definite observers of stars, there is considerable debate on whether
stars belong to a system. Whether a system is gravitationally
bound or not determines the name of its classification into various
types of binary or multiple components. Some authors such as
Duquennoy and Mayor (1991), Fischer and Marcy (1992), and
Kouwenhoven et al. (2007) have conventionally studied the binary
fragments and have put forward their findings. Authors like
Giovinazzi and Blake (2022), Chulkov and Malkov (2022), and
Ducati et al. (2011) have studied orbital binaries, spectroscopic
binaries, and visual binaries and their contribution to the IMF by
observing their physical features. Riaz et al. (2018) have discussed
the formation of protostellar binaries along with their physical
properties in the early stages of evolution. Sinha (2018) has studied
the contribution of binary and single components by developing a
stochasticmodel. In her finding, she has considered the contribution
of binary fragments to be 80% whereas single components as 20%.
This ratio, i.e., the percentage contribution of binary and single
components has been put forward by different authors in indefinite
forms, either by direct observation or by simulation. Resolvable
binaries thoughhave an impact on the high-mass regimes of the IMF,
whereas unresolved binaries may have a very high impact on the
low-mass regime. This point has been raised by Kroupa et al. (2019)
in their study. Hence, the distinction of a star whether it belongs
to a system or was born as single is very crucial for the IMF to be
properly measured.

The formation of stars as multiple systems has been studied
and presented by many authors (Duquennoy and Mayor, 1991;
Fischer and Marcy, 1992; Kouwenhoven et al., 2007; Malkov and
Zinnecker, 2001). In another study, various observational and
theoretical studies of stars to be formed as parts of a gravitationally
bound system have been presented. Stars that are born as multiple
systems or as single star systems (which are not gravitationally
bound) have been elaborated by (Offner et al. (2023))? On the other
hand, various hypotheses on how stars are born as a binary system
have been put forward by Malkov and Zinnecker (2001). In the
present work, we retain the claim by Malkov and Zinnecker (2001)
that all stars are initially born as a system and we carry our work
with the assumption that most of the stars are formed as binary
system. We have considered the binary data from the Gaia EDR3
database for the current study. In such a dataset, the mass of a

star is not directly observable. Therefore, at this point, the mass of
the star needs to be estimated in order to make the final form of
IMF acceptable.

The mass of a system can be determined through various
directly observable physical parameters. One such way is the use
of mass–luminosity relationship using the Russell–Vogt theorem
as introduced by Russell et al. (1923) and Hertzsprung (1923).
The calculation of masses of the binary system is often quite
challenging. Detailed information on mass ratio, orbital period,
parallax, luminosity, and average distance of each star from their
barycenter are some necessary parameters without which masses
cannot be estimated. Chulkov andMalkov (2022) derived a synthetic
mass-luminosity relationship for main-sequence stars in the G band
and used it to determine masses for the binary system, alongside
dynamical masses calculated via Kepler’s third law. While previous
studies in the field typically had access to binary masses within
their datasets, the current research faced a different scenario where
such information was not available. This necessitates the estimation
of masses using alternative methods (Chulkov and Malkov, 2022).
Notably, the concept of escape mass has been considered only
by a few authors and the impact of this on the final form of
IMF is the major aspect of this work. The present study adopts
the approach of considering the total contribution of both binary
and single stars based on escape mass considerations (refer to
Section 4 for details). The dataset used in this research was obtained
from Gaia EDR3. This dataset offers enhanced positional accuracy,
parallax measurements, and proper motion data, thus representing
a significant advancement in astrometric precision. Due to its
increasing wealth of information and improved astrometry, the
Gaia EDR3 dataset is a valuable resource for conducting this
comprehensive analysis. We estimated the stellar masses using the
relationship as described by Chulkov and Malkov (2022) who
extensively described the phenomenon for orbital binaries, resolved
binaries, optical pairs as well as unresolved binaries. We have
considered pairs having positive parallax.

As put forward by Hennebelle and Grudić (2024), the final
form of IMF depends upon various stellar parameters including
the mass of a star, gravity and turbulence, match number and
density function, protostellar jets as well as dust opacity and
molecular hydrogen physics. The impact of these factors on the
final form is highlighted in the current study. Our primary focus
is on the stochastic fragmentation of Young Massive Clusters
(YMCs) through investigation of the contribution of binary and
single components to the main population of stars resulting
through hierarchical fragmentation of molecular clouds and the
final form of IMF observed under opacity limited fragmentation
scenario. A stochastic model was developed for the fragmented
masses. The binary stars, as a part of the population, were
simulated using the Izawa bi-variate gamma distribution through
the Griddy Gibbs Sampler method. The single stars were generated
from a Pareto distribution, truncated at minimum and maximum
masses. We thoroughly investigated the patterns of the bi-variate
gamma distribution, and their percentage contribution to the total
population of stars and identified an appropriate fitting model.
The subsequent sections of this work are organized as follows:
Section 2 discusses the dataset; Section 3 presents the estimation of
the binary as well as masses of single stars, the form of the bi-variate
distribution and uni-variate distributions with their parameter
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FIGURE 1
(A) Histogram of mass of the primary components in the observed
binary system. (B) Histogram of mass of the secondary components in
the observed binary system.

estimation and simulation procedures, and Section 4 provides the
results and discussions.

2 Data

The data on binary stars were collected from Gaia Early
Data Release 3 (Gaia EDR3) (Chulkov and Malkov, 2022;
Brown et al., 2021; Vallenari et al., 2023). It contains information
of magnitudes, a″ = semi-major axis (in arc sec), ϖ = parallax(in
milli arc sec, converted to arc sec), P = orbital period(in years) and
Me = the escapemass (M⊙) of 3460 binary stars comprising of visual
binaries, spectroscopic binaries, eclipsing binaries and unresolved
binaries, but they lacked information regarding the masses of stars

FIGURE 2
(A) Histogram of mass of the primary components in the simulated
binary system. (B) Histogram of mass of the secondary components in
the simulated binary system.

within the binary systems. In fact, measurements of the mass ratios
or the cumulative masses were not present.

3 Methodology

3.1 Estimation of binary masses

For estimating the binary masses, the mass–luminosity
relationship diagram introduced by Hertzsprung (Hertzsprung,
1923) and Russell (Russell et al., 1923) is highly useful in the
estimation of mass using luminosities. However, the mass obtained
from the above relationship is the cumulative mass of the primary
and secondary components of the system. On the other hand, using
Kepler's third law, one can estimate the cumulative sum of masses
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FIGURE 3
(A) Bi-variate histogram of mass of the primary and secondary
components in the observed binary system. (B) Bi-variate histogram of
mass of the primary and secondary components in the simulated
binary system.

of the binary components using Equation 1:

Md =
a′′3

ϖ3P2 (1)

Md being the cumulative mass, popularly known as the dynamic
mass of the system, being estimated from Equation 1. Parallax
uncertainties are very common and quite problematic and are
associated with errors when dealt with. Chulkov and Malkov
(2022) discussed several methods to deal with such uncertainties.
Parallaxes with uncertainties, which make up nearly 14.5% of the
total dataset, have not been considered.Only parallaxeswith positive
values have been included. Parallaxes with zero as well as negative
values were not considered in the present research. Moreover,
the segregation of optical binaries in a physically bound system
and the unresolvable binaries that are no longer gravitationally
bound are very important. In order to find this out, is to consider

their escape velocity v measured from the relative proper motion
Δμ of components, where Δμ = √(μα1 − μα2)2 + (μδ1 − μδ2)2, μα and
μδ denote the proper motion in right ascension and declination,
respectively, as discussed by Chulkov and Malkov (2022). The
resultant escape velocity, v, popularly given by the tangential speed
of the components, is denoted as v ≈ 4.74 ⋅ Δμ

ϖ
. It provides a lower

bound for the relative speed of the components √ 2G0M
r

, where r
represents the projected distance between the binary components.
The minimum mass required for a system to be gravitationally
bound, called the escape mass (Me), can be computed with the help
of v, using the equation 2,

Me =
ρv2

2ϖG0
(2)

whereG0 is the gravitational constant. For our case, the escapemass,
as provided in the EDR3 dataset, was considered and compared
with the computed dynamic mass (Md). The masses for which
Md <Me is applicable are considered single stars and the rest are
considered as binary stars. The respective percentage contributions,
as calculated using the above criterion, of binary and single stars are
77% and 23%, respectively.We incorporate this finding in ourmodel
construction.

The apparent magnitudes (g) as provided in the dataset
with their respective parallax can be used to determine the
absolute magnitudes (G), using Pogson’s Law. This law incorporates
the concept of interstellar extinction AG corrected to MLR
uncertainty errors. In our data, the apparent magnitudes for
both components are available. In the present study, data from
the brighter components are used for the above calculation. The
interstellar extinction component AG is simulated using AG <
0.25 mag, in support of the findings by Chulkov and Malkov
(2022). The MLR uncertainties are simulated with a mean of 0
and a variance of 0.4. The absolute magnitude is thus determined
using Equation 2.

G = g+ 5+ 5 log10 (ϖ) −AG + σMLR. (3)

We use the above-obtained values of absolute magnitudes
(G) given in Equation (3) to calculate the mass of the brighter
component using the approximation formula, as proposed by
Chulkov and Malkov (2022),

log m = 0.497− 0.151G+ 0.0106G2 + 2.48× 10−4G3 − 8.55× 10−5G4

− 4.13× 10−7G5 + 1.93× 10−7G6 .

(4)

The anti-log of the mass, say m1, as obtained from the
above equation (Equation 4), serves as the mass of the primary
component. To obtain the mass of the secondary component, say
m2,m1 is deducted from the previously obtainedMd. The pair of the
masses (m1,m2) is used to find the mass distribution of the binary
components as explained in the next section.

3.2 Fitting of binary masses

First, we plot the data of the binary masses to study the
underlying distribution of masses, as displayed in Figures 1A, B.
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TABLE 1 Segmented power–law models fitted to the simulated fragments resulting from random fragmentation of young massive clusters (YMCs),
accounting for a binary fraction that makes up 77% of the cloud’s total active mass.

Name m f(M⊙) B (pc) mmin ≤m ≤mc mc ≤m ≤mmax

Γ(M⊙) α Γ(M⊙) α

NGC 330 105.8

1 1.15 −0.15 −1.136 2.136

2 1.17 −0.17 −1.304 2.304

12 1.28 −0.28 −1.388 2.388

M31 Vdb0 105

1 1.07 −0.07 −1.070 2.070

2 1.11 −0.11 −1.238 2.238

12 1.29 −0.29 −1.38 2.38

M31 B2570 105

1 1.14 −0.14 −1.150 2.150

2 1.26 −0.26 −1.382 2.382

12 1.33 −0.33 −0.412 1.412

LMCNGC2164 105.2

1 1.19 −0.19 −0.976 1.976

2 1.27 −0.27 −1.106 2.106

12 1.34 −0.34 −1.144 2.144

LMCNGC2214 105.4

1 1.23 −0.23 −1.068 2.068

2 1.27 −0.27 −1.202 2.202

12 1.302 −0.302 −1.546 2.546

NGC4038S23 105.4

1 1.22 −0.22 −1.094 2.094

2 1.29 −0.29 −1.358 2.358

12 1.35 −0.35 −1.306 2.306

NGC4038S15 105.6

1 1.22 −0.22 −1.214 2.214

2 1.34 −0.34 −1.432 2.432

12 1.36 −0.36 −1.260 2.260

NGC4038S21 106.0

1 1.21 −0.21 −0.990 1.990

2 1.34 −0.34 −1.372 2.372

12 1.39 −0.39 −1.368 2.368

Note: Column 1 represents the galaxy name. Column 2 (m f) gives the mass of the YMC in that galaxy. Column 3 (b) is the distance from the cloud center, Columns 4 and 5 are the slopes (τ and
α) of the segmented power law at different segments, respectively.

It can be observed that the binary masses are positively skewed;
therefore, a bi-variate gamma distribution suitable for our data
is proposed. To model this distribution, we fit a form of bi-
variate gamma distribution, namely, the Izawa bi-variate gamma
distribution (Izawa, 1965) to our data. The Izawa bi-variate gamma
distribution is formulated using the uni-variate gamma marginals
and permits distinct scale parameters while maintaining identical
shape parameters. The joint PDF of the Izawa bi-variate gamma

distribution is given as shown in Equation 5:

f (x1,x2) =
1

Γ (ν) (β1β2)
(ν+1)/2 (1− ρ)ρ(ν−1)/2

× (x1 × x2)(ν−1)/2 exp[− 1
1− ρ
(
x1

β1
+
x2

β2
)]

× Iν−1(
2√ρ

√β1β2 (1− ρ)
×√x1x2)

(5)
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FIGURE 4
Segmented Power–Law fit for M31Vdb0 at b = 12pc with the simulated values in asterisk (∗), m is in M⊙.

where ρ is the Pearson’s product–moment correlation coefficient;
ν is the shape parameter; β1,β2 are the scale parameters
corresponding to the primary and secondary components of the
binary masses, respectively. Is(.) is the modified Bessel function
of the first kind (Olver and Lozier, 2010), given by Is(h) =
∑∞m=0

(z/2)ν+2m

m!Γ(ν+m+1)
. We estimated the four unknown parameters ν,

β1,β2 and ρ of the distribution, using the method of moment as
suggested by Yue et al. (2001).

The method of moments involves equating the population
moments, expressed as a function of the parameters of interest, to
their corresponding samplemoments and solving for the parameters
(Bobee and Ashkar, 1991; Stedinger, 1993). The solutions are
estimates of those parameters.

As ρ denotes the Pearson’s product–moment correlation
coefficient, it signifies the correlation coefficient estimated from
the sample data. It is calculated as shown in equation (6):

ρ =
E[(X1 − μX1

)(X2 − μX2
)]

σX1
σX2

(6)

Here, (μX1
, σX1

) and (μX2
, σX2

) represent the population mean and
standard deviation of X1 and X2, respectively, where X1 and X2
represent mass of the primary component (m1) and mass of the
secondary component (m2) of the binary system.These components
(μX1

, μX2
) and (σX1

, σX2
) are substituted with the sample means ( ̄X1,

̄X2) and sample standard deviations (sX1
, sX2

). On application of
the method of moments, the estimators ν = ν1+ν2

2
, β1 and β2 are

calculated. According to the criterion of Izawa bi-variate gamma
distribution, we have considered the ν to be the average of ν1 and

ν2, where νi =
̄xi2

s2i
, βi =

s2i
̄xi
, ∀i = 1,2. Finally, the following estimators

were derived:

β1 : 0.1173508,  β2 : 5.991906

ν : 5.532023,  ρ : 0.4511818

The binary masses are simulated from the Izawa bi-variate gamma
distribution with the parameter values as obtained in Section 3.2, by
implementing the GriddyGibbs Sampler as discussed in Section 3.4.
The histogram of the primary and secondary components are
displayed in Figures 2A, B. The binary components for the observed
as well as simulated stellar masses are displayed in Figures 3A, B
respectively.

The goodness of fit test to see whether the simulated data fit our
desired distribution yields a result of χ2 = 68.39 with a p-value =
0.34. Therefore, we accept the null hypothesis which suggests that
the observed data follow the Izawa bi-variate gamma distribution.
Thereafter, we proceed with the simulation of binary masses from
our desired distribution in Section 3.4.

3.3 Fitting of single masses

The single stars are simulated from the Truncated Pareto
Distribution as given in an earlier study by Chattopadhyay et al.
(2011). The method for generating random samples from
the Truncated Power Law distribution, as described by
Chattopadhyay et al. (2015) and Chattopadhyay et al. (2016),
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involves utilizing a segmented power law of the form as given in
Equation (7):

ξIMF (m) =
dN
dm
=
{
{
{

Am−α1 if  mmin <m ≤mc

Bm−α2 if  mc <m ≤mmax

(7)

where the parameters A vide Equation 8 and B vide Equation 9 are
determined to ensure the following:

Â = B ⋅ m̂α1−α2
c (8)

B̂ = [
mα1−α2

c

1− α1
(m1−α1

c −m
1−α1
min ) +

1
1− α2
(m1−α2

max −m
1−α2
c )]

−1

(9)

The parameters mmin, mmax, mc, α1, and α2 represent minimum
mass, maximum mass, critical mass of fragments, and slopes of
segmented power laws in a low-mass regime and highmass regimes,
respectively. The efficiency factor, ϵ, representing the ratio of stellar
mass to the total mass of the parent cloud (m f), as well as the initial
values of the parameters, are taken from Sinha (2018). The estimates
and results are presented in Section 3.6.

3.4 Fragmentation and mass distribution

The hierarchical fragmentation procedure within molecular
clouds in YMCs and in other galaxies, along with the resulting
(IMF), has been a topic of significant debate over recent decades.
Chattopadhyay et al. (2011) explored the random fragmentation of
YMCs through Monte Carlo simulations and treated the number
of fragments, the mass of these fragments, and the time intervals
between successive fragmentation as the random variables. In
their research, masses of binary stars were generated from a bi-
variate Gumbel Exponential distribution, and the masses of the
single stars from a Truncated Pareto Distribution. They simulated
50% of the total stellar mass of the parent cloud as binary stars,
whereas the remaining 50% was attributed to single stars. In
Sinha (2018), 80% of the fragment masses were simulated from
the bi-variate skew normal distribution for the binary stars and
20% from the Truncated Pareto Distribution for the single stars
same as in Chattopadhyay et al. (2011).

In the present work, our primary assumption was that 100% of
the total fragments were binary stars. Subsequently, the distinction
between binary and single stars was made based on the discussion
of escape mass, as explained in the previous section. We retained
a choice of 77% of the total stellar mass comprising binary stars,
simulated using the Izawa bi-variate gamma distribution, while the
remaining 23% comprised single stars, that were simulated using the
Truncated Pareto Distribution, as stated earlier.

3.5 Simulation of binary stars

Based on our fitting of the observed masses of binary stars, the
simulation of binary masses is conducted using the Griddy Gibbs
Sampler method as given by Ritter and Tanner (1992), which is an
approximate method of Gibbs Sampling. Gibbs Sampling facilitates
generation of random samples from their corresponding conditional
density, with a 100% acceptance rate. However, if the analytic form

of the conditional distribution is not known or is of some complex
form from which direct simulation cannot be done, the method is of
limited use. The Griddy Gibbs Sampler acts as an alternative in case
of such situations. This method is used to evaluate the conditional
density on a grid of points and employ piecewise linear or piece-
wise constant functions to estimate the cumulative distribution
function (CDF) of the conditional distributions using these grid
values so that the resultant random samples generated follow the
target distribution, i.e., Izawa bi-variate gamma.

Our conditional distribution, p(Xi|Xj, j ≠ i) (say) is nonstandard,
and simulating it directly from the conditional density is not
possible. The Griddy Gibbs algorithm is applied in the following
steps, with a discrete mass of N-points:

1. Evaluate p(Xi|Xj, j ≠ i) at Xi = x1,x2,…,xn, and obtain
w1,w2,…,wn, by setting wj =

p(Xi|Xj,j≠i)
∑Nj=1p(Xi|Xj,j≠i)

.
2. Using wj, approximate the inverse CDF of p(Xi|Xj, j ≠ i)

by piece wise constant corresponding to a distribution for
x1,…,xn, with probabilities p(xi) =

wi
∑Nj=1wj

or by piece wise
linear which corresponds to a piece wise uniform distribution
on the interval [ai,ai+1], i = 1,…,n, where xi is in the interval
[ai,ai+1] and the density fi is given by wi

∑nj=1wj
, where wi =

wi(ai+1 − ai). Typically, xi is centered in the interval [ai,ai + 1].
3. Generate a random number ∼ U[0,1] and invert the

approximate CDF to get random samples from x1,x2.

Here, the mass of the primary component (m1), specified by X1,
and themass of the secondary component of the binary system (m2),
specified by X2, i, j = 1,2, requires the conditional density function
to be known up to a certain proportionality constant, of the form as
given in equation 10:

f (x1|x2) =
βν2

(β1β2)
(ν+1)/2 (1− ρ)ρ(ν−1)/2

× (x1/x2)(ν−1)/2 exp[− 1
1− ρ
(
x1

β1
+
x2

β2
)]

× Iν−1(
2√ρ

√β1β2 (1− ρ)
×√x1x2)

(10)

As previously stated, the conditional density is highly complex,
which makes direct simulation from this density unfeasible which
validates the application of the Griddy Gibbs Sampler method. We
segment them1 andm2 into several class intervals corresponding to
their range of values from which bi-variate relative frequencies for
each class interval are determined and used as weights.

3.6 Simulation of single stars

The single masses are simulated from the Truncated Pareto
Distribution as mentioned in Chattopadhyay et al. (2011). With
the choices of parameters as mentioned in Section 3.3, the
random numbers are produced using the inverse transformation
method for generating pseudo-random samples from the probability
distribution. This method involves generating random samples
based on the CDF of the distribution as given in Sinha (2018). By
combining the total stellar masses derived from binary fragments
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and single stars, we establish a segmented power law. This allows us
to determine the criticalmasses and the slopes for various segments.

4 Results and discussion

The resultant mass spectrum generated using a combination
of masses from binary fragments and single fragments is fitted to
segmented power laws in different mass regimes considering the
initial parametric values, mass of molecular cloud, efficiency, and
other parameters from Sinha (2018). The results are displayed in
Table1 along with errors, obtained after repeating each simulation
several times. Figure 4 shows the segmented power–law fit for
b = 12pc for M31Vdb0, with simulated values (given in asterisk).
As evident, the mass spectrum shows a steeper slope in all
segments compared to earlier studies (Chattopadhyay et al., 2011;
Chattopadhyay et al., 2016; Sinha, 2018), mostly in the high mass
regimes. Moreover, the signature of mass segregation can be noticed
in the form of the slopes for b = 1 and b = 2 with a considerable
increase in b = 12, b being the distance from the cloud center. Hence,
the findings may be summarized as follows.

• In the previous studies, the masses of the binary stars were
observed either from orbital binaries only or from resolvable
binaries. Non-resolvable binaries with their masses generated
in analog to the escape mass were not considered previously.
Resultantly, our previous studies may be assumed to have been
based on hypothetical figures of binary masses, whereas more
relevant observations (from Gaia EDR3) along with the type
of gravitational bound among the binary stars were applied in
the present study resulting in the steeper slopes in the high
mass regimes.
• Mass segregation appears in the envelope as one moves away

from the core, whichmay be attributed to the results influenced
by the rate of primordial binary star formation as well as
the creation and destruction of new ones during the star
formation epoch Bellazzini et al. (2002).

Hence, the changes observed in the slope of the IMF are due
to the inclusion of unresolved binaries, which are gravitationally
bound, and primarily recorded as single or high-mass stars or
resolvable binaries. Moreover, it is not unknown whether the
preliminary drivers determining the star fragmentation procedure
are rotation and turbulence Offner et al. (2023), Riaz et al.
(2018), the fragmentation procedure of small filaments in dense
cores having massive accretion disks leads to multiple or binary
system of stars born as protostars. Later, in the evaluation phase,
multiplicity or binary declines with time, the binary protostars
generally evolving as single stars for losing their gravitationally
bound pair. Keeping in view the opacity-limited fragmentation

scenario and mass segregation due to cooling from the core of
the fragmentation mechanism to the radius, combined with the
rotational speed and turbulence of the molecular gas, the presence
of smaller stars in multiple systems toward the outer part of the disk
of fragmentation is observable, which again leads to the formation
of planets and planetary system associated with each star(s) as
previously reported by Hannebeller and Gurdic (2024).

To summarize, the study sheds some light into the open
questions of star formation and evolution scenarios, when a small
number of observable quantities are available at hand.
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