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Application of a conditional
generative adversarial network to
denoising solar observations
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1Department of Computer Science, George Mason University, Fairfax, VA, United States, 2Space
Science Division, Naval Research Laboratory, Washington, DC, United States

The Extreme Ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft
has substantially advanced our understanding of the Sun’s upper atmosphere.
Unfortunately, after being in operation since 2006, the EIS detectors have
become noisy, which poses a challenge to data analysis. This paper presents
a Conditional Generative Adversarial Network (cGAN) tailored to address the
unique noise characteristics inherent in EIS data over the mission. Generative
Adversarial Networks are deep learning models that learn to generate realistic
data by training a pair of networks in an adversarial process, a mechanism
that makes them particularly effective at capturing complex data distributions.
Our cGAN model employs a U-Net-based generator and a conditioned
discriminator, and it is trained and validated on a synthetic dataset designed
to simulate the noise characteristics of EIS observations. The model converges
quickly and produces denoised images that closely resemble the ground truth.
Application to real EIS observations produces encouraging results, with the
model effectively removing noise and largely preserving the spatial and spectral
features of the data. When comparing the results of Gaussian fits to the line
profiles, however, we find that themodel produces only a modest enhancement
over the current interpolation method.

KEYWORDS
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1 Introduction

Spectrally resolved observations of the solar atmosphere provide many important clues
to understanding the physical processes that drive the Sun’s dynamic behavior. The Extreme
Ultraviolet Imaging Spectrometer (EIS) aboard the Hinode spacecraft was developed to
provide spectrally resolved observations of the solar atmosphere in the extreme ultraviolet
(EUV) wavelength range (Culhane et al., 2007). Launched in 2006, EIS has been providing
detailed measurements of the solar corona for more than 17 years and has made many
important discoveries (e.g., Al-Janabi et al., 2019).

Over the course of the Hinode mission the EIS detectors have developed numerous
“warm pixels” (e.g., BenMoussa et al., 2013). These warm pixels are characterized
by a high dark current that accumulates along with the solar signal during an
observation. The warm pixels are likely caused by a combination of exposure to
radiation on orbit and a thermal design that does not allow the detectors to
be cooled optimally. The warm pixels are randomly distributed. Their number has
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increased over the mission, but appears to have plateaued at
approximately 30% of the detector area.

The current approach to dealing with the warm pixels is
interpolation1, 2, 3. Warm pixel maps are created by thresholding
dark images taken with the shutter closed and then interpolating
values at these locations in the observations. Because the spectral
features EIS observes are generally Gaussian, it is still possible to
infer the moments of the line profiles, at least for the strongest
emission lines. The weaker lines, however, are significantly affected
by the noise from residual warm pixels even after interpolation. The
purpose of this paper is to explore the use of machine learning
to improve the quality of EIS data by removing the effects of the
warm pixels.

Over the years, the challenge of image denoising has given
rise to a plethora of techniques (Gupta and Gupta, 2013;
Motwani et al., 2004; Fan et al., 2019; Tian et al., 2020a),
underscoring the complexity and importance of the problem.
The field has investigated diverse filtering methods (Mallat
and Hwang, 1992; Donoho, 1995; Fodor and Kamath, 2003;
Coifman and Donoho, 1995; Yang et al., 1995), various statistical
approaches (Lang et al., 1995; Bui and Chen, 1998; Baraniuk,
1999), and multiple feed-forward machine learning strategies
(Zhang et al., 2017; Tian et al., 2020b), each achieving significant
outcomes in its respective domain.

The noise patterns in EIS images are distinctive, and the level of
noise is significantly higher than in other comparable data sources.
Such complexities often result in the suboptimal performance of the
models previouslymentioned. Recognizing this, we chose to develop
a Conditional Generative Adversarial Network (cGAN), drawing
inspiration from Isola et al.‘s foundational work on image-to-image
translation (Isola et al., 2017). GANs are deep learning systems
that pit two neural networks against each other — a generator that
creates data and a discriminator that evaluates it — resulting in the
production of increasingly realistic synthetic content. GANs have
been successfully applied to a wide range of problems, including
generating photorealistic faces, converting sketches to images, and
enhancing low-resolution images.

GANs have consistently demonstrated superiority over
traditional methods in modeling complex data distributions
and producing realistic outputs (Goodfellow et al., 2020;
Creswell et al., 2018; Zahin et al., 2021). Their capacity to emulate
the underlying complexities within data distributions renders them
as prime candidates for denoising applications. A cGAN, with its
ability to utilize conditional inputs, promises a more focused and
potent approach, capitalizing on additional information during
training — in our context, the noisy EIS images.

Utilizing GANs for denoising is a well-established strategy, as
shown by Li et al. (2021) in medical image denoising. Its potential
as a robust denoising tool is further supported by several studies in
diverse scenarios (Yin et al., 2021; Li et al., 2020; Chen et al., 2020).

1 https://solarb.mssl.ucl.ac.uk/SolarB/eis_docs/eis_notes/06_HOT_

WARM_PIXELS/eis_swnote_06.pdf

2 https://solarb.mssl.ucl.ac.uk/SolarB/eis_docs/eis_notes/13_

INTERPOLATION/eis_swnote_13.pdf

3 https://solarb.mssl.ucl.ac.uk/SolarB/eis_docs/eis_notes/24_COSMIC_

RAYS/eis_swnote_24.pdf

Within the ever-evolving landscape of GANs, certain
architectures, namely, DiscoGAN (Kim et al., 2017), StyleGAN
(Abdal et al., 2019), and PC-WGAN (Cao et al., 2018),
exhibit heightened complexity. Though these architectures are
undeniably powerful and capable of producing images ex nihilo,
their application to our specific challenge could be deemed
disproportionate. Given the inherent characteristics of EIS images
and the absence of prominent macro structures, a comprehensive
reconstruction of images is not just formidable, but also potentially
superfluous. Our primary objective is to enhance the extant data
by methodically removing noise, and for this nuanced task, our
selected cGAN model appears to be the best approach.

2 The EIS instrument

The EIS instrument on Hinode provides spectroscopic
observations in two spectral ranges, 171–212 Å and 245–291 Å,
with a spectral resolution of about 22 mÅ and a spatial sampling of
1′′ along the slit. The point spread function for EIS is approximately
3′′ FWHM4 (see also Brooks et al., 2012). Solar images can be
made by stepping the slit over a region of the Sun and taking
an exposure at each position. Relatively strong emission lines
from Fe VIII–Fe XVI and Ca XIV–Ca XVII allow for excellent
temperature resolution below about 5 MK. Additional details are
provided in Culhane et al. (2007).

Central to this work are the twin EIS detectors, which are 1024×
1024 charge-coupled devices (CCDs). The detectors are typically
cooled to about −45° C, and there is some variation in temperature
over an orbit. Note that the XRT instrument onHinode (Golub et al.,
2007) has a similar detector, but is cooled to about −70° C and has
not developedwarmpixels. EIS also has a shutter that is used to block
solar signals from reaching the detectors.The shutter is used after an
exposure when the data is being read out. It is also used to take dark
images, where no solar signal is present.

Figure 1 shows examples of EIS exposures and rasters taken from
early in themission (2010) and later in themission (2020). Note that
Fe XII, Si X, and S X are all formed at about the same temperature,
but Fe XII 195.119 Å is both intrinsically stronger and is observed
where the optical surfaces have higher reflectivity than the Si and S
lines, and so producesmanymore counts above the background.The
warm pixels make it difficult to make measurements in the weaker
lines, particularly as the number of warm pixels has increased. The
horizontal banding in the rasters is due to the residual warm pixels
not removed by the current processing.

2.1 Synthetic EIS data

The development of machine learning algorithms for denoising
EIS observations is complicated by the lack of noise-free images.The
number of warm pixels early in the mission was relatively small,
but still non-trivial. To address this, we have developed synthetic
datasets with and without warm pixels that have the characteristics

4 https://solarb.mssl.ucl.ac.uk/SolarB/eis_docs/eis_notes/08_COMA/eis_

swnote_08.pdf
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FIGURE 1
Data illustrating the EIS warm pixel problem. The top panels show EIS Level 0 and Level 1 exposures from early in the mission (left, 2010) and later in
the mission (right, 2020). Level 0 data are the raw data telemetered from the spacecraft. The Level 1 data have had the warm pixels removed and
replaced with interpolated values. In these images the X dimension is wavelength and the Y dimension is position along the EIS slit. The bottom panels
show the rasters formed by integrating over the spectral dimension in the exposures. Residual warm pixels not removed in the current processing lead
to the strong horizontal banding seen in the fainter regions of the rasters.

of EIS observations. These synthetic datasets consist of two key
components: synthetic spectra that attempt to mimic the spectral
features of EIS data, and synthetic dark images that have properties
similar to what is observed on orbit, including the warm pixels.

The synthetic spectra are computed by combining active region
and quiet sun differential emission measures from Warren et al.
(2001) with the CHIANTI atomic database (Dere et al., 1997; 2023).
These synthetic spectra are then convolved with the EIS instrument
response function (see Lang et al., 2006; Warren et al., 2014 for
details) to produce synthetic EIS exposures in the sameunits as those
in the Level 0 data.We then generate a random function thatmimics

the variation of the solar signal along the slit and use this to create a
mixture of active region and quiet sun spectra at each position.

As we will see, very high intensity features proved difficult for
the model to reproduce. To help address this, we have also added
a Gaussian to the active region spectrum to mimic the presence
of bright points in the data. The Gaussian has a width of 2–4′′

and is placed at a random position along the slit. This component
is derived from the flare differential emission measure distributed
with CHIANTI.

To create some variation in the synthetic spectra we
chose different line widths for each feature: 60 mÅ for quiet
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sun, 66 mÅ for active regions, and 72 mÅ for the flare
component. Further, abundance variations will also drive
differences in relative line intensities. To mimic this we have
chosen photospheric abundances for the quiet sun and bright
point components and coronal abundances for the active
region component.

The synthetic spectra along the slit are computed using

s (λ,y) =(1− far (y)) sqs (λ) + far (y) sar (λ)+

f fl (y) s fl (λ) ,

where far(y) is the fraction of the active region spectrum at position
y, and sqs(λ) and sar(λ) are the quiet sun and active region spectra,
respectively. The functions f fl(y) and s fl(λ) represent the flare
contribution. After the synthetic spectra are computed in physical
units, they are convolved with the EIS instrument response function
(the effective area) to produce synthetic exposures in “data numbers”
— the units returned by the detector electronics. Note that the EIS
electronics return 14 bit integers (0 – 16,384). We then add Poisson
noise to the synthetic exposure.

These synthetic exposures lack two essential features of the
actual EIS data: the background and the warm pixels. The
background is the sum of the pedestal added by the analog
to digital converter of the camera electronics and the detector
dark current. The background and the warm pixels are both
included in the dark images that are taken with the shutter
closed. To mimic the dark images, we have computed histograms
from representative EIS dark observations and used the Python
SciPy.stats method rv_histogram to generate random
numbers that have the same distribution as the dark images. We
then reshape the random numbers to the same dimensions as the
synthetic exposures and add them together. Representative synthetic
dark images are shown in Figure 2. We note that each realization of
the synthetic dark images will have a histogram that is consistent
with the real dark images, but the individual warm pixels will
be in random locations. This helps the model to generalize to
arbitrary real data.

An example of the synthetic data is shown in Figure 3. For
this example we have chosen the same synthetic exposure and
combined it with synthetic darks from three different years, which
illustrates the impact of the increasing warm pixel count on the
observed spectra.

There are some differences between the synthetic and real data
that we have not addressed. Perhaps most significantly, the synthetic
data does not include strong variations in line widths or shifts.
On the Sun these properties are a function of temperature (e.g.,
Chae et al., 1998b; a) and are also likely to vary by feature. A more
subtle difference is that many physical processes and instrumental
effects are likely to produce non-Gaussian line profiles (seeMandage
and Bradshaw, 2020 and the references therein for a comprehensive
discussion of this issue). As discussed in the next section, the
model emphasizes local information and sees profiles at arbitrary
locations, suggesting that these deficiencies in the synthetic
data are acceptable. The application of the model to real data
supports this. Future studies will include more detailed analysis of
specific features.

3 Denoising architecture

3.1 Architecture

Our methodology employs the Conditional Generative
Adversarial Network (cGAN) framework, drawing significant
inspiration from the pioneering work of Isola et al. (2017).

A cGAN extends the traditional GAN framework by
incorporating additional input information, enabling the generation
of outputs conditioned on specific inputs. In our methodology, the
cGAN leverages this conditioning mechanism to denoise noisy
EIS images effectively. Unlike standard GANs, where the generator
and discriminator operate solely on the input to generate images,
the cGAN integrates auxiliary information — in this case, the
noisy EIS image — into both the generator and discriminator. This
conditioning ensures that the generator produces denoised images
aligned with the corresponding noisy input, and the discriminator
evaluates the generated outputs relative to the noisy input and
ground-truth clean images. The overall architecture and interaction
between these components are depicted in Figure 4.

In this context, a clean, noise-free image from the ground truth
dataset is denoted as a real image. A “fake” image is a denoised image
produced by the generator. The discriminator’s goal is to distinguish
between these two categories.

The generator employs a U-Net configuration, a well-
established architecture for image-to-image translation tasks
(Ronneberger et al., 2015; Zhou et al., 2019). A U-Net consists
of an encoder-decoder structure with skip connections that
preserve spatial information by directly connecting corresponding
layers in the encoder and decoder with multiple residual blocks
(He et al., 2016). Each residual block comprises a convolutional
layer followed by a max-pooling layer, enabling multi-scale feature
extraction. Batch normalization and dropout are integrated into
the generator architecture to improve stability and mitigate
overfitting, consistent with best practices in generative modeling
(Kurach et al., 2018; Srivastava et al., 2014).

Mathematically, the discriminator, denoted as D(x,y), takes
an input pair (x,y), where x is the noisy input image and y is
either the ground truth clean image or the generator’s output. The
discriminator learns a mapping D:(x,y) → [0,1], assigning a higher
score if y corresponds to a real image and a lower score otherwise.

The discriminator diverges from the conventional setup by
operating conditionally, assessing the correspondence between a
noisy input and its paired denoised image. Instead of simply
determining whether an image is real or fake, the discriminator
evaluates whether the generated denoised image is consistent with
the noisy input and comparable to the ground-truth clean image.
For each noisy input, the discriminator is presented with two pairs:
one combining the noisy input with its generator-produced output,
and another pairing the noisy input with the ground-truth clean
image. This conditional evaluation enhances the discriminator’s
ability to guide the generator toward producing realistic, high-
quality denoised outputs. The discriminator’s detailed structure is
illustrated in Figure 4.

The interplay between the generator and discriminator follows
the min-max adversarial paradigm intrinsic to GAN training.
The generator is trained to produce denoised images that are
indistinguishable from ground-truth clean images, while the
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FIGURE 2
Real and synthetic dark images from various times in the mission. The bottom panels show the histograms for real and synthetic darks, which match
very closely.

FIGURE 3
Examples of synthetic EIS exposures. The same synthetic exposure has been combined with synthetic darks from three different years. The top panels
show representative spectra, The middle panels show the contribution of the active region and flare spectra to the variation of intensity along the slit,
and the bottom panels show the exposures.
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FIGURE 4
The architecture of the proposed model.

discriminator continuously refines its capacity to distinguish
between generated and authentic images. This adversarial
dynamic drives the generator to progressively improve its
denoising performance, resulting in outputs that are visually and
quantitatively superior.

3.2 Loss

The cGANmodel employs two primary loss functions: the GAN
Loss and the Conditional Loss, which together guide the generator
and discriminator during training.

GAN Loss: The GAN Loss is the traditional adversarial loss that
drives the discriminator to distinguish between real and generated
images. Simultaneously, it incentivizes the generator to produce
outputs that are indistinguishable from real images. The adversarial
loss is given by:

LGAN (G,D) =𝔼x,y [log D (x,y)]

+𝔼x [log (1−D (x,G (x)))]

where G(x) represents the generator’s output for input x, andD(x,y)
is the discriminator’s probability that y is a real image.

Conditional Loss: To ensure that the denoised image retains
the structural and content-based characteristics of the input noisy
image, we incorporate a conditional loss. This loss penalizes
deviations between the generated denoised image and the ground-
truth clean image at the pixel level. Using the L1 distance, it
is defined as:

LConditional (G) = 𝔼x,y [‖y−G (x)‖1]

where ‖y−G(x)‖1 represents the sum of absolute pixel-wise
differences.

Total Loss: The total loss for training the cGAN model is a
weighted combination of the GAN Loss and the Conditional Loss:

LTotal (G,D) = LGAN (G,D) + λLConditional (G)

where λ is a hyperparameter that balances the two loss components.
Unlike its conventional use for wavelength notation, here λ
is a tunable weight controlling the relative contribution of
conditional loss.

3.3 Training procedure

Training a conditional GAN begins by inputting a noisy image
into the generator, which attempts to produce a denoised version.
The generated denoised image, along with the corresponding
noisy input, is evaluated by the discriminator, which determines
whether the generated output is real or fake. In each iteration, the
discriminator is also presented with pairs of the noisy input and the
ground-truth clean image.Thediscriminator’s objective is to assign a
high score to real denoised images and a low score to those produced
by the generator. Feedback from the discriminator is then used to
update the weights of both the generator and discriminator using
their respective loss functions.

TheU-Net-structured generator uses three convolutional blocks
each consisting of two convolutional layers followed by LeakyReLU
activations. LeakyReLU is an activation function similar to ReLU
but allows small negative values instead of setting them to zero,
thereby preventing dying neurons and improving gradient flow
(Maas et al., 2013; Xu et al., 2020).The architecture includes a down-
sampling block (1→ 64 channels) with a residual block (64→ 64
channels) for feature refinement, followed by an additional down-
sampling block (64→ 128 channels) (He et al., 2016). An up-
sampling block (128→ 64 channels) uses transposed convolutions
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FIGURE 5
Examples of noisy, ground truth, and cleaned images from the testing set. The bottom panels show maps of percent difference between the cleaned
and ground truth images as well as representative spectra.

to reconstruct the image, while skip-connections between down-
sampling and up-sampling layers ensure the preservation of
spatial details (Zhou et al., 2019). The final layer (64→ 1 channels)
produces the denoised image.

The discriminator used in this denoiser is a convolutional neural
network with four convolutional layers that progressively reduce
spatial dimensions. The first layer (1→ 10 channels) uses a kernel
size of 4× 4 and stride 2, followed by intermediate layers (10→ 4→
4 channels) with BatchNorm and Dropout for regularization. The
final layer (4→ 1 channels) outputs a classification score through a
Sigmoid activation, determining whether the input is real or fake.

For the EIS images, obtaining true noise-free data is not possible.
As described in Section 2.1, synthetic clean data is generated to
mimic true noise-free images, while synthetic noisy data is designed
to replicate the noise observed in warm pixels.This synthetic dataset
is divided into three parts: training, hyperparameter tuning, and
validation.

Synthetic images were generated for the full 1024× 1024 size
of the EIS detectors, but the model was trained on smaller
64× 128 patches randomly sampled from the full images. This
approach was adopted because only small regions around spectral
lines are typically saved and transmitted to the ground to
conserve telemetry. Training on small patches better reflects real
observational conditions, accelerates training, and allows the use of
GPUs with limited memory. Random patch selection ensures the
model generalizes to any part of the detector.

A total of 50,000 training pairs, 5,000 validation pairs, and 5,000
testing pairs were generated. The training set was used for regular
training, the validation set was used to tune the hyperparameters,
and the test set was used to determine the final performance. The
model was trained for 1,000 epochs with a batch size of 32, although
significant improvements were mainly observed within the first few

hundred epochs. The Adam optimizer (Kingma and Ba, 2014) was
employed with fixed learning rates of 0.00020 and 0.00025 for the
generator and discriminator, respectively. The implementation was
carried out using the PyTorch framework.

3.4 Training analysis

The inception score (IS) is a popular metric used in image
generation tasks (Chong and Forsyth, 2020). It measures the
diversity and quality of generated images by evaluating the entropy
of predictions made by a pre-trained classifier. While this metric is
useful for a general generative task, it allows high variability in the
outputs making them unsuitable for our task. Thus, we selected the
pixel-wise percent difference as our primary evaluation metric.

Pixel-wise RMSE percent difference is computed as:

PRMSE = √
1
N

N

∑
i=1
(
Igen (i) − Igt (i)

Igt (i)
)

2

× 100

where Igen(i) and Igt(i) are pixel intensities of the generated
and ground-truth images, respectively, and N is the total
number of pixels.

We monitored the model’s performance by tracking training
and validation losses across epochs. The training loss encompasses
both GAN and Conditional losses, whereas the validation loss is
determined solely through the pixel-wise percent difference between
the generated output and the real noise-free image. So, numerically
they are a bit different. However, their growth and trends offer
meaningful insights into the model. We saw a steady decline in
the training loss indicating continual model learning. Similarly, the
consistent decrease in the validation loss indicates themodel’s strong
generalization to unseen data. It is worth noting that occasionally the
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FIGURE 6
Examples of the model applied to the validation set, which was not used in model training or hyper-parameter optimization. The input noisy image, the
ground truth clean image, and the model’s output are shown. The bottom panels show the percent difference between the model’s output and the
ground truth image as well as representative spectra. The model is quite effective at removing the noise, but it does not always reproduce the sharp
peaks in the data.

validation loss is lower than the training loss due to the differences
in computing methods.

Examples of the model applied to the test set are given in
Figure 5. Here the input noisy image, the ground truth clean image,
and the model’s output are shown. The bottom panels show the
percent difference between the model’s output and the ground
truth image as well as representative spectra. The model is quite
effective at removing the noise, but it does not always reproduce
the sharpest peaks in the data. Figure 5 highlights discrepancies
in bright points. The magnitude of these discrepancies varies
depending on intensity, with errors typically within 5%–10% for
bright features. These discrepancies arise due to limited high-
intensity training samples. Future improvements could incorporate

weighted loss functions to focus more on high-intensity structures.
The number of warm pixels in EIS images varies over time
due to detector aging. Our training/validation/testing datasets are
synthetic and use variable noise levels to capture this variability,
ensuring robustness.

Finally, Figure 6 shows examples of the model applied to the
validation set, which was not used in model training or hyper-
parameter tuning. Aswould be expected from the volume of training
data, the model performs very well on the validation set, although
the discrepancies at high intensities are still present.

In Figure 6, color bars have been added to the percentage
difference panels to visualize error magnitudes. The blue spectral
curves correspond to specific y-pixel locations, and an annotation
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FIGURE 7
An example of applying the model to real EIS data. The left panels show the raster images, the middle panels show the exposures, and the right panels
show representative spectra (from the point indicated by the dot) and integrated intensities (from the region indicated by the line). “Interpolation” refers
to the current interpolation method, and “ML” refers to the machine learning model. Here the intensities are computed by simply summing over the
spectral window. The machine learning model is quite effective at removing the warm pixels. The improvement is somewhat limited for the strong Fe
XII line, but is more pronounced for the weaker Fe XI and Fe X lines.
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FIGURE 8
Comparisons of fitting Gaussians to the EIS data using the current interpolation method and the machine learning model. The line intensity, line shift,
and line width are shown. The machine learning model produces a modest improvement over the current interpolation method.

has been added to clarify whether they represent single-pixel or
averaged spectra.

4 Application to real data

The application of the model to real EIS data is complicated
by the fact that EIS observations typically consist of small spectral

windows of varying size read out from the full detector. These
windows typically contain only a single spectral line, but some
contain multiple spectral features (see Figure 1). To apply the model
to arbitrary spectral windows, we first pad the data to be a multiple
of 64× 128 (the size of the training data) and then apply the
model to each 64× 128 patch. To mitigate edge effects, we apply
the model to patches shifted by two pixels both horizontally and
vertically, resulting in 32 overlapping predictions for most pixel
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FIGURE 9
Examples of weak spectral features observed with EIS in Fe XI 180.401 Å. The top panels show a small cutout of the intensities, Doppler shifts, and line
intensities from the larger rasters in Figure 8. The bottom panels show small regions of the detector exposure as well as some representative line
profiles. The line profiles plots also show Gaussian fits and the corresponding fit parameters. The units are erg cm−2 s−1 sr−1 for the intensity, km s−1 for
the Doppler shift, and mÅ for the width. As suggested by Figure 8, the machine learning model produces a dramatic improvement in the
signal-to-noise in the profile, but only modest improvement over the current interpolation method in the final fit parameters.

positions. We choose the median of these overlapping predictions
to obtain the final result, as this approach effectively removes patch
boundary artifacts. The denoised patches are then reassembled into
the full image.

Figure 7 shows an example of the model applied to real EIS data.
This observation was chosen because it contains a mix of bright
and dark regions and has no missing exposures. These data were
taken 23-Oct-2024 using 40 s exposures and the 2′′ slit.The spectral
profiles and intensities along the slit (shown in the right panels of
this figure) clearly show a reduction in noise in both the spectral
and spatial directions. Comparing the rasters formed by simply
summing over the spectral windows shows that the model is quite
effective at removing the warm pixels. Much of horizontal banding
evident in images is removed in the ML version of the rasters. The
improvement is somewhat limited for the strong Fe XII line, but is
more pronounced for the weaker Fe XI and Fe X lines.

However, it is important to note that most EIS analysis generally
relies on fitting Gaussian profiles to the spectral lines, and not
on summing over the spectral dimension. To test the model’s
effectiveness in this context, we have created updated HDF5 data

files compatible with the EISPACsoftware (Weberg et al., 2023),
which provides the capability for spectral fitting. Figures 8, 9 shows
examples of the model applied to these data and analyzed with
EISPAC. To use the model output in EISPAC we convert the
processed data from units of DN to counts. EISPAC then applies
the pre-flight calibration to convert to physical units. In this context
the ML model shows only a modest improvement over the current
interpolation method. The ML versions of the intensity rasters are
very similar to those produced by simply summing over the spectral
dimension. The spectral fitting of the current data also produces
a similar result, with there only being a modest reduction in the
horizontal banding.Themaps of the line shift and line width are also
very similar for both the current and ML versions of the data, with
strong horizontal banding seen in both sets of images.

5 Conclusion

Our cGAN-based approach to image denoising of EIS images
has shown considerable potential in handling the complex noise
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characteristics inherent in the EIS data. The strategic integration of
the U-Net architecture and the conditional learning framework into
our cGAN model has enabled the generation of denoised images
that maintain a high degree of fidelity to the real data. While the
model excels in general noise reduction and retaining image content,
it appears to offer only a modest improvement over the current
interpolation method when it comes to Gaussian line fitting. It
is also challenged in accurately capturing high-intensity peaks in
some cases.

Since thresholding is used in the interpolation method for
denoising, the persistence of warm pixels in the current processing
pipeline is easy to understand. How these residual warm pixels
persist in the machine learning algorithm is not clear. It is possible
that at sufficiently low amplitudes, the warm pixels are difficult to
distinguish from the Poisson noise.

While the model may appear to make only modest
improvements over the current processing method, it may pave the
way for making use of longer exposures to improve the observation
of fainter features. Recall that the signal in the warm pixels increases
with time, largely negating the benefits of longer exposures. With its
improved ability to extract the signal from the warm pixel noise, it
seems likely that the model will be more effective in this context.

The fitting of the spectral features is not the final goal of EIS data
analysis.The next step in the testing of this software will be to use the
fitted profiles to infer the physical properties of the solar atmosphere.
Future work with the ML model will involve performing detailed
analysis using both the current methods and this new, machine
learning-based processing.

The ML denoising model is not publicly distributed at this time.
Since the ML model works on the Level 0 files and requires pyTorch,
we are working to distribute it as a standalone package separate
from EISPAC.
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