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General features of the stellar
matter equation of state from
microscopic theory, new
maximum-mass constraints, and
causality

Francesca Sammarruca* and Tomiwa Ajagbonna

Physics Department, University of Idaho, Moscow, ID, United States

The profile of a neutron star probes a very large range of densities, from the
density of iron up to several times the density of saturated nuclear matter,
and thus no theory of hadrons can be considered reliable if extended to
those regions. We emphasize the importance of taking contemporary ab initio
theories of nuclear and neutron matter as the baseline for any extension
method, which will unavoidably involve some degree of phenomenology. We
discuss how microscopic theory, on the one end, with causality and maximum-
mass constraints, on the other, set strong boundaries to the high-density
equation of state. We present our latest neutron star predictions where we
combine polytropic extensions and parametrizations guided by speed of sound
considerations. The predictions we show include our baseline neutron star
cooling curves.
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1 Introduction

A fully microscopic equation of state (EoS) up to central densities of the most massive
stars–potentially involving phase transitions and non-nucleonic degrees of freedom–is not
within reach. Nevertheless, neutron stars are powerful natural laboratories for constraining
theories of the EoS (Abbott et al., 2017a; Abbott et al., 2017b; Abbott et al., 2018; Abbott et al.,
2019; Miller et al., 2019; Miller et al., 2021). One must be mindful of the theory’s limitations
and the best ways to extract and interpret information from observational constraints.
Recently, detection of gravitational waves from merging of binary neutron star systems
provided constraints on both their radius and tidal deformability.

Large Bayesian interference analyses have become popular as a tool to constrain the
properties of neutron-rich matter. An example is Huth et al., (2022), where the authors
sample 15,000 EoSs, together with observational constraints and heavy ion collision (HIC)
data. These analyses are important, but one must be careful about interpretation–relating
HIC observables to parametrizations of the EoS is not a model-independent process.
It is therefore not surprising that the authors of Huth et al. (2022). find that the HIC
constraints tend to prefer stiffer EOSs than those favored by astrophysical observations, and,
we add, stiffer than those generated by ab initio theory. The reasons can be found in the
phenomenological density functionals inspired by QuantumHydrodynamics (QHD), often
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used to relate HIC observables to the EoS parameters. This point
will be discussed in sect. III. Recent empirical determinations of the
stellar matter EoS from data and observations have been reported
(Tsang et al., 2024; Davis et al., 2024a). A Bayesian inference study
aimed at assessing the performance of the Skyrme energy density
functionals can be found in Klausner et al. (2025).

When using sophisticated statistical techniques, it’s important
not to lose sight of basic physics arguments, such as the
importance of a realistic description of few-body data.
An extensive discussion on this point can be found in
Sammarruca (2024).

In this paper, keeping a firm foot in themicroscopic theory–that
is, with no adjustments of nuclear forces in the medium–we wish
to illustrate general features of the EoS in different density regions,
based only on theory (for normal to moderately-above-normal
densities), and a few robust constraints, such as causality and the
most recent maximum-mass constraints (Romani et al., 2022) (for
high and superhigh densities).

The cooling properties of neutron stars, observationally
accessible in terms of temperature (or luminosity) vs. age relations,
are also an important tool to obtain a glimpse on the internal
structure and composition of these exotic systems. Ages and thermal
luminosities of neutron stars, inferred from observations, can be
interpreted with the aid of the neutron star cooling theory to gain
information on the properties of superdense matter in the interior
of the star. We present our first results of cooling simulations,
and compare with available observational estimates of thermally
emitting isolated neutron stars (INS) (Potekhin et al., 2020). We
recall that rapid cooling signals large proton fractions, which
render the direct Urca (DU) process possible at lower densities
in comparison with softer models. Thus, rapid cooling signals a
steep symmetry energy.

This paper is organized as follows. In sect. II, we review our
theoretical ingredients, omitting details that have been published
elsewhere. In sect. III, we discuss continuations of the EoS above
the microscopic predictions. In sect. IV, we show preliminary
predictions of cooling curves. A robust analysis of neutron star
cooling, including superfluid gaps and more, will appear in a
later work.

2 The equation of state at normal to
moderately high density

2.1 Theoretical framework

The theoretical framework we use to obtain the ab initio
part of the equation of state has been published in detail
elsewhere (Sammarruca and Millerson, 2021a; Sammarruca
and Millerson, 2021b; Sammarruca and Millerson, 2022), and
thus we will not repeat a lengthy presentation here. We will,
however, briefly recall the spirit of chiral effective field theory
(EFT), on which our nuclear forces are based. A comprehensive
and detailed review of our theoretical tools can be found in
Machleidt and Sammarruca (2024).

Given an energy scale and degrees of freedom appropriate at
that scale, an EFT comprises all interactions consistent with the
symmetries that govern those degrees of freedom. For the nuclear

problem, relevant degrees of freedom are pions (Goldstone bosons),
nucleons, and Δ(1232) isobars. We use the delta-less chiral EFT.
To begin with, one writes the most general Lagrangians describing
all interactions between pions, nucleons, and pions with nucleons.
Because pion interactions must vanish at zero momentum transfer
and in the chiral limit, where the pion mass, mπ, goes to zero,
the corresponding Lagrangian is expanded in powers of spatial
derivatives or pion masses. From these Lagrangians, an infinite
number of Feynman diagrams can be generated, which seems to
make the theory unmanageable. The strategy is then to design a
scheme for ordering the diagrams according to their importance–the
essence of Chiral Perturbation Theory (ChPT). Nuclear potentials
are defined by the irreducible types among these graphs. (By
definition, an irreducible graph is a diagram that cannot be separated
into two by cutting only nucleon lines.) These graphs are then
analyzed in terms of powers of Q, with Q = p/Λb, where p is
generic for a momentum, (nucleon three-momentum or pion four-
momentum), or the pionmass, and Λb ∼mρ ∼ 0.7 GeV (withmρ the
mass of the ρmeson) is the breakdown scale (Furnstahl et al., 2015).
Determining the power ν has become known as power counting.
For a recent review of nuclear forces based on chiral EFT and their
applications in nuclear and neutron matter, the reader is referred to
Machleidt and Sammarruca (2024).

The neutron star crust is composed of metals in crystalline
structure and cannot be described as a homogeneous fluid of
nucleons, which is an appropriate system for our microscopic
approach. Instead, a realistic crustal EoS (Negele and Vautherin,
1973) is joined to our previously described EoS via cubic spline
interpolation. The crust is a Coulomb lattice of bound neutrons
and protons clusters surrounded by a dilute neutron gas. We
are aware of recently developed tools to construct unified core-
crust EoS (Davis et al., 2024b; Davis et al., 2025). Given a β-
equilibrated EoS and its isoscalar nuclear matter parameters, this
tool derives the isovector parameters and reconstructs the crustal
EoS using a model for inhomogeneous matter. The relative error
for the M(R) relation is very small–less than 0.1% for M > 0.5M⊙
– compared with using the original EoS matched to a realistic crust
(Davis et al., 2024b).

2.1.1 Quantifying errors in chiral EFT
A reliable determination of the truncation error is a crucial

aspect of chiral EFT. If observable X has been calculated at order ν
and at order ν+ 1, a simple estimate of the truncation error at order
ν is

ΔXν = |Xν+1 −Xν|, (1)

which is a measure for what is neglected at order ν. A suitable
prescription is needed, in addition to Equation 1, to estimate the
uncertainty at the highest (included) order. For that purpose, we
follow the prescription of (Epelbaum et al., 2015). If p is of the order
of the typical momentum involved in the system, the dimensionless
parameterQ is defined as the largest between p

Λb
and mπ

Λb
, where Λb is

the breakdown scale, taken to be about 600 MeV. Before proceeding,
some comments are in place to avoid confusion. In the pion-nucleon
sector, it’s natural to set the scale to the chiral symmetry breaking
scale, Λχ, about 4πFπ ≈ 1 GeV, where Fπ is the pion decay constant,
equal to 92 MeV [see Davis et al. (2025)] of Epelbaum et al. (2015).
However, in the nucleon sector, it is common practice to apply
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FIGURE 1
Pressure as a function of density in β-stable matter at N2LO (red) and
at N3LO (blue), with the respective truncation errors. In both cases, the
predictions are based on the high-quality NN potential of Entem et al.
(2017) and include all 3NFs required at the respective order.

a so-called breakdown scale, Λb, chosen around 600 MeV. This
scale is smaller than Λχ because the non-perturbative resummation,
necessary for nucleons, fails for momenta larger than approximately
600 MeV.

Throughout the paper, we will show results at the (fully
consistent) third order (N2LO), and at the highest order which
we have considered (fourth order, or N3LO). In Figure 1,
we show the pressure as a function of density in β-stable
matter at N2LO (red) and at N3LO (blue), with the respective
truncation errors. In both cases, the predictions are based on
the high-quality nucleon-nucleon (NN) potential of Entem et al.
(2017) and include all three-nucleon forces (3NF) required
at that order. For details on how our EoS are built, see, for
instance, Sammarruca and Millerson (2021a); Sammarruca and
Millerson (2022). They are available upon request from the
corresponding author.

The uncertainty in the value of observable X at N3LO as
derived in Epelbaum et al. (2015). can be understood with the
following arguments. If N3LO (ν = 4) is the highest included order,
the expression

ΔX4 = |X4 −X3|Q = (ΔX3)Q, (2)

is a reasonable estimate for ΔX4 in absence of the value X5,
because Q to the power of one takes the error up by one order,
the desired fourth order. To avoid accidental underestimations, a
more robust prescription, instead of Equation 2, is to proceed in
the same way for all the lower orders (ν = 0, 2, 3) and define, at
N3LO (Epelbaum et al., 2015):

ΔX =max{Q5|XLO|,Q3|XLO −XNLO|,Q2|XNLO −XN2LO| ,

Q|XN2LO −XN3LO|} . (3)

In infinite matter, p can be identified with the Fermi momentum at
the density being considered.

Cutoff variations have sometimes been used to estimate
contributions beyond truncation. However, they do not allow
to estimate the impact of neglected long-range contributions.
Also, due to the intrinsic limitations of the EFT, a meaningful
cutoff range is hard to estimate precisely, and often very limited.
The method of Equation 3 allows to determine truncation errors
from predictions at all lower orders, without the need to use cutoff
variations.

2.1.2 Chiral orders and three-nucleon forces:
unresolved issues

While the predictions at N2LO are fully ab initio, a warning
is in place for current N3LO calculations. As pointed out in
Epelbaum et al. (2020), there is a problem with the regularized
3NF at N3LO (and higher orders) in all present nuclear structure
calculations. The N3LO 3NFs currently in use are regularized by
a multiplicative regulator applied to the 3NF expressions derived
from dimensional regularization.This approach leads to violation of
chiral symmetry atN3LO and destroys the consistency between two-
and three-nucleon forces (Epelbaum et al., 2020; Epelbaum et al.,
2023). Consequently, none of the current calculations that include
3NFs at N3LO (and beyond) can be considered truly ab initio.
An appropriate symmetry-preserving regulator (Epelbaum et al.,
2020) should be applied to the 3NF at N3LO from Bernard et al.
(2008); Bernard et al. (2011). At the present time, reliable
predictions exist only at N2LO, NLO, and LO. However, for
the few fully ab initio calculations, the precision at N2LO is
unsatisfactory. A first step towards deriving consistently regularized
nuclear interactions in chiral EFT has been proposed in Krebs
and Epelbaum (2023a); Krebs and Epelbaum (2023b). It requires
the cutoff to be introduced already at the level of the effective
Lagrangian. A path integral approach (Krebs and Epelbaum, 2023a)
can then be applied to the regularized chiral Lagrangian to
derive nuclear forces through the standard power counting of
chiral EFT.

Throughout the paper, we will show results at the (fully
consistent) third order (N2LO), and at the highest order which
we have considered (fourth order, or N3LO). In Figure 1, we show
the pressure as a function of density in β-stable matter at N2LO
(red) and at N3LO (blue), with the respective truncation errors. In
both cases, the predictions are based on the high-quality nucleon-
nucleon (NN) potential of Entem et al. (2017) and include all
3NFs required at that order. For details on how our EoS are built,
see, for instance, Sammarruca and Millerson (2021a); Sammarruca
and Millerson (2022). They are available upon request from the
corresponding author.

3 The equation of state at high density

It is important to emphasize that high-density EoS
continuations are not meant to be a replacement for microscopic
theories which, at this time, are not feasible in those regimes.
Nevertheless, causality and maximum-mass constraints do
pose considerable restrictions on the general features of the
high-density EoS.
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FIGURE 2
M(R) relations obtained with piecewise polytropes (Sammarruca and
Millerson, 2022). Equations of state that cannot support a maximum
mass of at least 2.01M⊙ (see text) are discarded. The dashed curves are
cut at the central density where causality is violated, whether or not
they have reached the maximummass. The black horizontal line marks
the mass of the canonical neutron star, for reference. The green and
pink shaded areas are constraints from J0740 + 6620 (Fonseca et al.,
2021) and J0952–0.607 (Romani et al., 2022), respectively.

Up to this point, we have used piecewise polytropes, which
have the form:

P (ρ) = α(
ρ
ρ0
)
γ
. (4)

where ρ0 is the density of saturated nuclear matter and γ is the
adiabatic index. The corresponding energy density can be obtained
from the basic relation between internal pressure and energy density,

P (ρ) = ρ2 d
dρ
( ϵ
ρ
), (5)

or,

ϵ (ρ) = α
γ− 1
(

ρ
ρ0
)
γ
+ cρ. (6)

For a range of γ values, the parameters α and c are determined
by matching the values of P and ϵ from Equations 5, 6 boundaries.
In the past, we accepted polytropes which can support a maximum
mass of at least 2.01M⊙, to be consistent with the lower limit of the
(2.08 ± 0.07)M⊙ observation reported in Miller et al. (2021). for the
J0740 + 6620 pulsar, along with a radius estimate of (12.35 ± 0.75)
km. Figure 2 displays results of the procedure we used in the recent
past. The M(R) relations are obtained with piecewise combinations
of two polytropes with different adiabatic index. Equations of state
that cannot support a maximum mass of at least 2.01 M⊙ (see
above), are discarded, and solutions are cut at the central density
where causality is violated (Sammarruca and Millerson, 2022).
The initial range we considered for the adiabatic index, γ, was
approximately between 2.5 and 4.0, based on guidance from the
literature, such as Read et al. (2009), where most of the EoS available
from theory or phenomenology were fitted with polytropes.

Currently, the maximum-mass constraint must account for the
record-setting PSR J0952-0,607, the heaviest neutron star found to

date, at 2.35 ± 0.17M⊙ (Romani et al., 2022). We point out that this
measurementwas based on optical lightcurvemodeling andmay not
be as accurate as those based on radio observations. For instance,
for PSR J2215 + 5,135, the optical lightcurve modeling suggests a
mass of 2.27± 0.17 M⊙ (Linares et al., 2018), while recent radio
observations yield a significantly smaller value of 1.98 ± 0.08M⊙
(Sullivan and Romani, 2024).The analysis in Fan et al. (2024). found
a maximummass of 2.25 ± 0.07M⊙ for a non-rotating neutron star.

We explored different piecewise parametrizations of the high-
density EoS that preserve causality, while supporting masses at least
as high as 2.2 M⊙. We emphasize that ab initio predictions and
most of the terrestrial constraints point to a soft symmetry energy
at normal density, while the maximum mass constraint has moved
to larger values. These considerations provide important guidance
when building the phenomenological part of the EoS.

While checking different polytropic combinations, we made the
observation that the “best” combination (with regard to preserving
causality while satisfying maximum-mass constraints) consists of a
relatively stiff polytrope attached to themicroscopic piece of the EoS,
followed by a second, softer polytrope.

Although polytropic extension, see Equation 4, is a very general
and popular method, alternative parametrizations of the high-
density EoS offer desirable features (Kanakis-Pegios et al., 2021;
Tews et al., 2018), such as those in terms of the speed of sound.
In Figure 3, the colorful curves are from selected EoS that generate
maximum masses of about 2.1–2.2 solar masses and are consistent
with causality. Table 1 provides more information about these cases.
We note that chiral uncertainties as those in Figure 1 are not shown
in the figures for theM(R) relations.This is because chiral errors are
meaningful only at the densities where the microscopic calculation
is applied, which reach up to the central densities of the lighter stars
(right-most side of the M(R) figures). The black curve is obtained
with a single parametrization in terms of the speed of sound,
constructed as follows (Kanakis-Pegios et al., 2021; Tews et al., 2018).
Assigning i = 0 to values at threshold (the density at which the EoS
parametrization has to be attached to the previous piece), we write

ρi = ρi−1 +Δρ, (7)

ϵi = ϵi−1 +Δϵ, (8)

and

Δϵ = Δρ
ϵi−1 + Pi−1

ρi−1
, (9)

where we have used Equation 5.
The speed of sound is parametrized as

(
vs
c
)
2

i
= 1− c1exp[−

(ρi − c2)
2

w2 ], (10)

where w is the width of the Gaussian curve, and the constants c1
and c2 are determined from continuity of the speed of sound and
its derivative at the threshold density. We note that the conformal
limit, ( vs

c
)2 ≤ 1/3, is not imposed in Equation 10. Clearly, a larger

value of ( vs
c
)2 signifies increased pressure gradient to counterbalance

the stronger gravitational force, and thus, larger masses. Therefore,
observations of very massive stars require large values of the speed
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FIGURE 3
Several M(R) relations. The curves in color are obtained from a
sequence of two polytropes with adiabatic indices given in Table 1.
The black curve is obtained with a single parametrization in terms of
the speed of sound, as in Equation 11.

TABLE 1 Description of the M(R) relations in Figure 3.

Curve color γ1 γ2 Mmax/M⊙ R1.4 (km)

Magenta 3.1 2.7 2.10 12.00

Cyan 3.1 2.8 2.12 12.00

Brown 3.2 2.7 2.15 12.06

Olive 3.2 2.8 2.17 12.06

Green 3.3 2.7 2.19 12.11

of sound at densities comparable to the central densities of the most
massive stars.

The pressure above the threshold is

Pi = (
vs
c
)
2

i−1
Δϵ+ Pi−1. (11)

This EoS continuation is manifestly causal at any density and
reaches a maximum mass of 2.07M⊙.

From the considerations above, we find that, for the purpose of
achieving high maximum masses while respecting causality at any
density, a better solution is to combine a relatively steep (on the
scale of Table 1) polytrope followed by a parametrization obtained
fromEquations 7–11, whichwill maintain causality by construction.
Thematching densities are ρ1 = 0.277 fm

−3 and ρ2 = 0.563 fm
−3. The

rationale for the first matching density is as follows. The neutron
Fermi momentum in neutron matter, knF, at ρ1 is equal to 2.02 fm−1.
Of course, this is larger than the momentum in beta-stable matter at
the same density due to the presence of a proton fraction,

ksnmF < k
β
F < k

n
F, (12)

where ksnmF and kβF are the Fermi momentum in symmetric nuclear
matter and in beta-stable matter, respectively. Recalling that the

average momentum is given by Equation 13:

Pav = √
3
5
knF, (13)

we take Equation 13 as the typical momentum of the system,
p, in defining the chiral expansion parameter, Q = p

Λb
, where

Λb was previously defined. We obtain Q = 51%, which is well
below 1, and actually a pessimistic estimate, see Equation 12.
For these reasons, we are comfortable applying the EFT up to
this density. The density ρ2 is about two units of ρ0 from the
first matching point, a choice guided by Read et al. (2009), see
section VB of that citation. We have tested the sensitivity of the
M(R) results to moving this point out by one-half of saturation
density, and found it to be negligible. Moving that point toward
lower densities brings down the maximum masses, which is
not desirable.

The resulting M(R) curves are shown on the LHS of Figure 4
for both N3LO (blue) and N2LO (red). For the dashed curves, the
first extension is done with a polytrope with γ = 3.3, followed
by pressure values given by Equation 11 with the speed of sound
(SoS) as in Equation 10. The solid curves (same color convention)
have been obtained with γ = 3.8, a value beyond which the EoS
begins to violate causality. On the RHS, we show the dimensionless
speed of sound squared corresponding to the curves on the left.The
parametrization given in Equation 10 seems robust with respect to
both changes in the matched EoS and in the chiral order. Table 2
displays the maximum mass, its radius, the central density, and the
radius of the canonical mass neutron star, for the curves in Figure 4.
We recall that the radius of a 1.4 M⊙ is sensitive to the pressure at
normal densities and thus it can pose constraints on microscopic
theories of the EoS at those densities where such theories
are applicable.

We conclude that a polytrope which bridges the chiral EFT
predictions with a causality-maintaining parametrization, has a
limited range of powers.Weunderline that this scenario is inherently
related to the softness of the chiral predictions. In other words,
the nature of the predictions at normal density have a far-reaching
impact, which extends to densities up to a few times normal density.

In the QCD limit of deconfined quarks in the presence of
asymptotic freedom, quarks should behave like free fermions.
Some perturbative QCD calculations (Brandes et al., 2023) support
the conformal limit, (vs/c)2 = 1/3. We are in the process of
implementing the conformal limit in our EoS. We observed that an
EoS that’s subconformal at all densities (that is, Equation 10 with the
asymptotic limit replaced by 1/3), cannot generate sufficiently large
masses. On the other hand, the speed of sound can be asymptotically
conformal and non-monotone. A scenario where the speed of sound
peaks around few to several times nuclear density and then falls
back to approach the QCD limit for deconfined quark matter
would signify some sort of phase transition with the conformal
limit reached well beyond central densities of the heaviest observed
neutron stars. The superconformality condition satisfied on the
average in neutron stars, < ( vs

c
)2 > 1/3, may have fundamental

implications on the trace of the energy-momentum tensor at the
center of rotating neutron stars (Mendes et al., 2024).

Of course, what we have presented is not the only option
for building EoS that are consistent with current astronomical
obervations. We maintain, though, that an EoS must be “bounded
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FIGURE 4
Left: M(R) curves at fourth order (N3LO, blue) and at third order (N2LO, red) of ChPT. Dashed curves: the first extension is done using a polytrope with γ
= 3.3, followed by pressure values given by Equation 11 together with Equation 10; Solid curves: obtained with γ = 3.8, a value beyond which the EoS
begins to violate causality. Right: Dimensionless speed of sound squared corresponding to the curves on the left. Same color and pattern conventions.

TABLE 2 Some neutron star properties corresponding to the red and the blue M(R) relations shown in Figure 4.

γ Chiral order Mmax/M⊙ RMmax
(km) ρc( fm

−3) R1.4 (km)

3.3
N2LO 2.19 10.39 1.09 11.84

N3LO 2.27 10.68 1.03 12.11

3.8
N2LO 2.43 11.06 0.93 12.09

N3LO 2.50 11.32 0.88 12.30

from below” by free-space few-nucleon data (which, in turn,
have a strong impact on the symmetry energy and the pressure
in neutron-rich matter at normal densities). Typical examples
of the other end of the spectrum are phenomenological EoS,
such as those from Relativistic Mean Field (RMF) models.
With no constraints from microscopic few-nucleon forces, new
parametrizations can be constructed using different nonlinear,
self- and inter-couplings among meson and nucleon Dirac fields
(Kumar et al., 2023). Isovector mesons carry isospin dependence,
with the main contribution to the symmetry energy coming from
the pion (Sammarruca, 2011). In the RMF (pionless) framework, the
interplay between the isovector ρ and δ mesons is described as the
equivalent, in the isovector channel, of the σ−ωmeson interplay in
the isoscalar channel. This approach, and the resulting couplings,
have little to do with free-space NN interactions (Sammarruca,
2011). Not surprisingly, parametrizations can be found to cover a
huge range of EoS “stiffness,” most recently incorporating CREX
and/or PREX-II constraints (Kumar et al., 2023). Findings from
RMFmodels concerning, especially, isovector quantities, such as the
symmetry energy, must be interpreted with caution.

Before closing this section, we like to offer a few comments
on EFT-inspired energy-density functionals (EDFs) that have been
proposed in recent years. Traditional EDFs are based on the
mean-field (MF) approximation and built on empirical ingredients,

which clearly prevent them from having truly predictive power.
Furthermore, they do not follow a power-counting scheme, which
prevents a reliable estimation of theoretical uncertainties. Attempts
have been made to render EDFs less empirical, trying to directly
link them to microscopic ingredients so as to reduce their intrinsic
uncertainties (Grasso, 2019; Burrello et al., 2020). While this
is potentially an improvement over traditional EDFs, it is our
understanding that these schemes are perturbative in dilutedmatter.
In fact, the YGLO (Yang-Grasso-Lacroix-Orsay) (Yang et al., 2016)
functionals are suitable at very low densities. Were they not
perturbative at all, a connection with power counting would not
be possible.

4 Cooling of neutron stars

4.1 General considerations

To create context, we review here some basic facts about
INS cooling.

Accurate modelling of neutron star cooling with account of all
possible effects is a complex problem. Cooling can be affected, for
instance, by the presence of free hyperons or deconfined quarks
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(see Wei et al. (2020) and references therein), and pion or kaon
condensation (see Yakovlev et al. (2001)) and references therein).

The internal structure of the neutron star can be taken, to a good
approximation, to be spherically symmetric, except for fast rotating
INS or strong magnetic fields. It is also reasonable to expect that
the temperature distribution is spherically symmetric at sufficiently
high densities. Under these assumptions, the mechanical structure
and temperature distribution are determined by a set of differential
equations (Richardson et al., 1982) which involve only one spatial
coordinate, the radial coordinate r.

Neutron stars cool down mainly via neutrino emission from
their cores and photon emission from their atmospheres. They
are relativistic objects, and thus one needs to be careful about
the coordinate system. The local temperature at some distance
r from the center is related to the temperature, T∞, measured
by a distant observer, via the gravitational redshift between the
coordinate systems:

T∞ = eϕ(r)T (r) , (14)

where ϕ is the metric function.
The outermost layer of a neutron star is the atmosphere,

consisting of gas elements which emit thermal photons that can be
observed on the Earth. Surface luminosity and temperature can be
inferred by fitting this photon flux, and is a major source of cooling
for older neutron stars. Below the atmosphere, there is a thin region
called envelope, whose chemical composition is uncertain.

Although the distribution of the surface temperature over the
surface can be non-uniform, it is customary to approximate the
surface photon emission as the blackbody radiation from the
entire surface. To that end, one introduces the overall surface
effective temperature of the star, Ts,e f f , related to the photon
luminosity, Lγ, by

Lγ = 4πσSBR2T4
s,e f f , (15)

where σSB is the Stefan-Boltzmann constant. The quantities in
the above equation refer to a local reference frame at the
neutron-star surface. Those detected by a distant observer are
redshifted,

L∞γ = Lγ (1− rg/R) = 4πσSBR2
∞(T
∞
s,e f f)

4
, (16)

T∞s,e f f = Ts,e f f√1− rg/R, R∞ = R/√1− rg/R, (17)

where rg is the Schwarzschild radius, rg =
2GM
c2

, with G the
gravitational constant.

Either surface temperatures or photon luminosities can be used
to compare neutron-star observations with the cooling theory. Both
can be obtained with spectral analysis, but accurate determination
is usually a challenge. One of the problems with obtaining accurate
data suitable for testing the theory of cooling is that the vast majority
of neutron stars, including INS, emit intense radiation of non-
thermal origin. Neutron star binary systems are usually surrounded
by an accretion disk, whose emission is orders of magnitude more
powerful than the thermal emission from the neutron star surface
(Das et al., 2024). Non-thermal emission of INS can also be
produced by other processes, and thus a careful analysis is required
to extract the thermal component of the observed spectrum.

Another problem is that obtaining the ages of neutron stars from
observation is difficult, and thus ages are only estimates. Neutron
stars that are estimated to be old have lost their initial heat, and
therefore their thermal luminosity is very low, and could have been
produced by reheating (Gonzalez-Jimenez et al., 2015; Gonzalez-
Caniulef et al., 2019).

In summary, the “standard” cooling theory, which neglects
reheating, can only be tested against observations of a small fraction
of INS, using estimated ages.

4.2 Proof of concept results

In this section, we perform cooling simulations employing
the two EoS used to generate the red and blue M(R)
dashed curves in Figure 4. Our beta-stable EoS include protons,
electrons, and muons. We emphasize that these are preliminary
curves, to have a first look at the mass dependence in relation
to the available data. In other words, these are proof of concept
calculations, to build upon.

From Figures 5, 6, one can see the mass dependence of
the effective temperature and the closely related luminosity, see
Equations 14–17. The more massive INS correspond to faster
cooling, suggesting that enhanced neutrino emission due to DU
reactions operates in those stars, where the proton fraction
in the interior reaches values sufficient to enable the process.
Pairing, not included here, could suppress DU processes. The
data are from Potekhin et al. (2020).

Thedifference between Figures 5, 7 is themodel for the envelope.
In Figure 5, the envelope contains light elements up to densities
where they can still be present, and heavier elements, including
iron, at the higher densities (Potekhin et al., 1997). More precisely,
blanketing envelopes are composed, from surface to bottom, of
hydrogen, helium, carbon, and iron shells, in a stratified structure.
In Figure 7, older iron models for the envelope (Nomoto and
Tsuruta, 1987) are employed to gauge the sensitivity to the chemical
composition of the envelope. We find the latter to have a significant
impact on the cooling curves, especially for low to medium mass
neutron stars. The envelope acts as a thermal insulator between the
surface and the hot interior, thus relating interior temperature to
the star’s effective surface temperature. There is a large temperature
gradient between the top and bottom layers of the envelope,
determined by the amount of light elements such as Hydrogen or
Helium. Therefore, the composition of the envelope impacts its
photon cooling.

Some investigations (Das et al., 2024) have concluded that an
EoS allowing DU cooling for a wide enough mass range of neutron
stars, combined with some quenching by the proton1S0 BCS gap,
agrees best with the cooling data, while the neutron pairing gap in
the triplet P-wave seems to generate overly rapid cooling. Others
(Krotscheck et al., 2024) find that pairing in the triplet P-states
prevail in neutron matter, but essentially disappear if the spin-orbit
interaction is turned off. Overall, the contribution from pairing is
reported to be quite sensitive to the characteristics of the model. In
fact, the sensitivity of the gap to the input interaction and medium
effects can be dramatic, which calls for further investigations. We
will introduce short-range correlations (SRC) by replacing in the
gap equation the bare potential with the G-matrix. The latter will be
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FIGURE 5
Effective temperature as a function of time, for different masses (colors). Left: N2LO; Right: N3LO. The envelope from Potekhin et al. (1997). is applied.

FIGURE 6
Photon luminosity as a function of time, for different masses (colors). Left: N2LO; Right: N3LO. All conditions as in Figure 5.

FIGURE 7
As in Figure 5, but with envelope model from Nomoto and Tsuruta (1987).

calculated self-consistently with the single-particle potential, which
we will use in the single-particle spectrum. Typically, one would
expect SRC to reduce the gap by introducingmore high-momentum
components and thus removing strength around the Fermi level and
depleting the gap (Rios et al., 2017). As SRC are the most model-
dependent part of an interaction, they certainly contribute to the
gap’s model dependence. At the same time, availability of more and
more accurate data from INS is crucial to constrain all important
aspects of the theoretical input.

5 Conclusions and work in progress

The intrinsic and strong relation between the EoS and the
maximum mass of a neutron star sequence is a remarkable feature.
In fact, knowledge of one is essential to access the other. In
our observations, the maximum-mass constraint moving to higher
values, togetherwith the causality requirement at any central density,
poses significant restrictions on the high-density EoS. The softness
of the microscopic predictions at normal density brings up the
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need for a (first) steeper extension. A scenario such as the one
we have described, where the first part of a piecewise extension
needs to become stiffer in order to support current maximum mass
constraints, while the next piece must soften to maintain causality,
is consistent with evolving maximum-mass constraints.

A monotone behavior of the speed of sound approaching the
conformal limit seems to be excluded by mass constraints, which
require a rapid growth to allow masses of 2 M⊙ or above. We are
currently investigating various scenarios where the speed of sound
is not a monotone function of density.

In closing, we reiterate that a microscopic theory of the nuclear
many-body problem must start from quantitative descriptions of
few-nucleon interactions. Those constraints have implications at
normal density and well beyond it.

We also took the opportunity to display cooling curves as the
foundation of a forthcoming comprehensive analysis, including
gaps and medium effects. Based on the available literature, one
may conclude that the impact of including 3NFs or other medium
effects in calculations of the triplet pairing gap in neutron matter
vary wildly, both quantitatively and qualitatively, depending on the
specifics of the input. Systematic studies with robust two- and three-
nucleon forces are called for.
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