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We investigated the pulsating aurora observed on 7 January 2014, by a narrow
field-of-view (FOV) high-time resolution ground-based white-light imager and
all-sky low-time-resolution imager operated at Poker Flat, AK (geographic:
65.1°N, 147.4°W). The pulsating aurora showed very notable characteristics, such
as frequency drift in their pulsation with time and drifting of the entire pulsating
auroral structure in space. We find that (i) the entire pulsating auroral patch
was observed to drift northward at a velocity of approximately 76 m/s, which
aligns closely with the local convection velocities obtained from Super Dual
Auroral Radar Network (SuperDARN) data, consistent with the idea that the patch
motion is primarily due to E×B convection. (ii) The duration of persistence
for each pulsation in the pulsating aurora is found to be ∼1 s (iii) The auroral
pulsation frequency abruptly increases from ∼0.0625 Hz to ∼0.5 Hz, closely
aligning with the broadening of the frequency band observed at the Dawson
(DAWS) ground magnetometer location. Wavelet analysis of DAWS magnetic
field data, recorded at similar magnetic local time (MLT) and L-values, reveals
the presence of Pc-1 geomagnetic pulsation (Pc-1). This connection suggests
that the drift in auroral pulsation frequency may be driven by the evolution of
Pc-1 waves, which are influenced by changes in the local plasma environment.
The broadening of the frequency band may indicate dynamic variations in
magnetospheric ion composition or plasma density. This interplay underscores
the role of Pc-1 waves andmagnetospheric dynamics in determining the auroral
pulsation characteristics.
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1 Introduction

Pulsating auroras (PAs) are unique optical phenomena that are characterized by a quasi-
periodic rise and fall in auroral intensities over a period of 2–20 s with a typical scale size
of ∼10–200 km (Royrvik and Davis, 1977; Yamamoto, 1988). These are commonly seen
in polar regions during the post-midnight hours, close to the equatorward boundary of
the auroral oval. Their occurrence is affected by geomagnetic activity, which can expand
their local time range, occasionally extending to the dayside during periods of intense
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geomagnetic disturbances (Royrvik and Davis, 1977; Oguti et al.,
1981; Jones et al., 2011). PAs typically occur as a series of pulsations
lasting approximately 30 s to a few minutes. Each pulsating auroral
structure occurs independently in terms of location, timing, lifespan,
velocity, and phase, without synchronization or connection to a
nearby pulsating auroral structure (Scourfield et al., 1972). PAs
occur most frequently during the recovery phases of the substorm
and in the morning sector. PAs are a type of diffuse aurora that
is caused by precipitation of energetic particles (Smith et al., 1980;
McEwen et al., 1981) from the plasma sheet without additional
acceleration in the low-altitude magnetosphere (Davidson, 1986a;
Davidson, 1986b; Huang et al., 1990). It is considered to be
quasiperiodic because, within a single pulsation train, the time
intervals between consecutive maxima are not uniform, often
exhibiting significant variability from one pulsation to another.
Based on rocket and low-altitude spacecraft measurements made
simultaneously with auroral imaging, such auroral pulsations are
known to be caused by quasi-periodic precipitation of electrons
with energies of tens of keV to ∼ 100s of keV into the upper
atmosphere (Johnstone, 1978; Sandahl et al., 1980; Samara et al.,
2010;Miyoshi et al., 2010).Miyoshi et al. (2015) proposed amodel to
explain that the PAs could also be the optical manifestation of sub-
relativistic electron precipitation into the middle atmosphere. The
light intensity of pulsations is often described by rapid rise and decay
times relative to the pulse duration, creating the appearance of the
aurora switching on and off. In general, there is notable variability
in the shape of pulsation trains, with on-time and off-time durations
differing between pulses, with larger variations typically observed
in off-time (Davidson and Chiu, 1991).

Several mechanisms have been proposed to explain the
precipitation of energetic electrons associated with PA. Modulation
of the rate of pitch angle scattering due to wave-particle interactions
near the equator causes the pulsations (Nishimura et al., 2010;
Nishimura et al., 2011; Coroniti and Kennel, 1970). So, the rate of
change of pitch angle scattering could directly affect the pulsation
frequency. Considering that the characteristic energy of the PA
electrons is of the order of 100s of keV, their cyclotron resonance
with whistler mode chorus waves, lower band chorus (LBC) waves
especially, is a plausible candidate to cause such high energy
electron precipitations (e.g., Thorne et al. (2010), Nishimura et al.
(2010), Nishiyama et al. (2011) showed that auroral intensity
from all-sky imager (ASI) data closely correlates with chorus wave
amplitude measurements from THEMIS spacecraft, confirming
that 100 eV to 10 keV electrons resonate with electron cyclotron
harmonic and whistler mode waves. In addition to chorus waves,
electromagnetic ion cyclotron (EMIC) waves are plasma waves that
can scatter energetic protons and electrons into Earth’s atmosphere
(e.g., Cornwall, 1965; Summers et al., 1998; Halford et al., 2016;
Yahnin et al., 2021). They are typically generated near the magnetic
equator in the inner magnetosphere by anisotropic ions, primarily
at lower L-shells, and are bounded by ion gyrofrequencies into three
primary bands: hydrogen, helium, and oxygen (e.g., Blum et al.,
2012; Gary et al., 1995). These waves are typically spatially confined
in radial extent (e.g., L-shell) in the magnetosphere but can
extend in magnetic local time (MLT) (e.g., Mann et al. (2014),
Blum et al. (2017). While H+-band and He+-band EMIC waves
are more frequently observed, O+-band EMIC waves are not rare,
particularly during geomagnetically active periods (Saikin et al.,

2015; Usanova et al., 2016; Usanova et al., 2018). These waves have
been reported in the outer plasmasphere at L = 2–5 from Van Allen
Probes Electric and Magnetic Field Instrument Suite and Integrated
Science and Electric Fields and Waves data (Yu et al., 2015).

Pickett et al. (2010) observed EMIC rising tone emissions
in association with Pc-1 waves. The characteristic of Pc-1 waves,
observed by the Cluster spacecraft on 30 March 2002, are consistent
with their identification as EMIC triggered chorus emissions.
These Pc-1-triggered chorus waves could potentially cause electron
scattering into the loss cone, leading to the generation of PAs.
Ultra-low frequency (ULF) waves, with periods ranging from tens
of seconds to a few minutes, can influence the generation of
PA by modulating whistler-mode chorus waves. Li et al. (2011)
demonstrated that these waves affect chorus wave growth by
altering electron density or the anisotropy of the resonant electrons.
This periodic modulation aligns with the pulsation period of
typical PA. Li et al. (2011) highlighted that density variations,
whether induced by ULF modulations or other mechanisms, play
a critical role in driving PA.

The dynamics of PAs often exhibit a clear post-midnight drift
pattern, moving eastward at speeds ranging from a few hundred
meters per second to a few kilometers per second. This drift is
dawnward after midnight and shifts to duskward behavior before
midnight (Nakamura and Oguti, 1987). Importantly, the speed of
patch drift has been reported to align closely with the E×B drift
speed (Nakamura and Oguti, 1987), indicating that the movement
of these auroras is influenced by the distribution of cold plasma
in the magnetosphere more than the eastward magnetic drift of
energetic electrons. The eastward drift observed before midnight
suggests that the characteristics of pulsating auroral structures are
shaped by magnetospheric conditions, emphasizing the role of cold
plasma dynamics in auroral behavior (Yang et al., 2015). In pulsating
and propagating auroras, precipitation is likely driven by pitch
angle scattering, with poleward propagation reflecting the outward
movement of strong scattering regions in the loss cone distribution.
At the ionospheric level, this propagation occurs at 10–30 km/s,
corresponding to hundreds to thousands of km/s in the distant
magnetosphere (Oguti and Watanabe, 1976).

Estimating the size of pulsating auroral patches provides
insight into the regions of chorus intensification near the magnetic
equator. Previous research has suggested that the transverse scale
of individual chorus elements varies significantly, with estimates
of approximately 100 km at L ∼ 4.4 (Santolík et al., 2004)
and about 2,800–3,200 km at L ∼ 11 (Agapitov et al., 2010).
However, in situ observations from limited satellite data may
not accurately capture the full spatial extent of these chorus
enhancements. The modulation region’s association with the
magnetic equator has been established through time-of-flight
analyses and magnetically conjugate PA observations, suggesting
that lower-band chorus waves are crucial for the precipitation of
electrons responsible for PAs (Nishimura et al., 2011).

Previous studies, such as Samara et al. (2017), have provided
valuable insights into the PA observed on 7 January 2014,
highlighting the presence of high-frequency peaks in the PA and
linking these features to electron dynamics, including electrons
that bounce back and forth between the two hemispheres.
Khazanov et al. (2017), Khazanov et al. (2021b) further suggested
that the auroral emissions are not solely driven by magnetospheric
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processes, indicating a more complex interaction. These studies
have contributed to the understanding of PAs, yet the factors
influencing the spatial and temporal drift of their pulsation
frequencies remain poorly understood for this event. Our study
builds upon these previous works by providingmore detailed spatial
and temporal characterization of the pulsating aurora through high-
resolution ground-based imaging data from Poker Flat, AK. We
incorporate additional in situ observations from the ground-based
magnetometer data from Dawson, which share similar magnetic
local time (MLT) and L-values, to offer new insights into the role
of Pc-1 waves, in modulating the pulsation frequency. Section 2
presents the event and datasets, while Section 3 provides details on
the observations and analysis. Sections 4 and Section 5 discuss the
results, and the conclusions are summarized in the final section.

2 Data and methodology

The PA event on 7 January 2014, was analyzed using the Multi-
spectral Observatory Of Sensitive EMCCD (MOOSE) imagers,
equipped with Andor Ixon DU-888 EMCCD (Electron Multiplying
Charge Coupled Device) cameras. Two white-light imagers with
varying fields-of-view (FOV) were deployed at Poker Flat, AK
(geographic: 65.1°N, 147.4°W; geomagnetic: 65.7° N, 96.6°W).
The ASI operated at 3.3 frames per second (512× 512 resolution,
∼300 ms exposure) with 2× 2 pixel binning, while the narrow
FOV imager, with a 4° FOV, captured at 56 frames per second
(128× 128 resolution, 16 ms exposure) using 1× 1 pixel binning.
This configuration was selected to balance temporal resolution at
large scales (all-sky) with high temporal and spatial resolution at
small scales (narrow FOV). The narrow FOV imager, pointed at
the magnetic zenith near the center of the all-sky images, was
used without a filter to maximize sensitivity to prompt emissions.
Previous work by Samara et al. (2012) indicated that a BG3
filter, which blocks emission at 557.7 nm and 630.0 nm, does not
significantly improve the visibility of rapid pulsations. The system
provided angular resolutions of 0.054° per pixel (∼50 m per pixel)
for the narrow FOV imager and 400–600 m per pixel for the ASI
near the zenith, assuming auroral emissions occurred at an altitude
of 100 km. More details on MOOSE EMCCD can be found in
Michell et al. (2014), Michell and Samara (2015).

The Canadian Array for Realtime InvestigationS of Magnetic
Activity (CARISMA) is a network of ground-based magnetometers
deployed across North America Mann et al. (2008). The array
includes induction coil magnetometers that monitors 3-D vector
magnetic fields and fluctuations at the Earth’s surface, which are
sensitive to EMIC wave activity. These magnetometers have a
resolution of <0.2 pT/Hz1/2 at 1 Hz and cover L-shells of L = 3.6-
6, spanning roughly 4 h of MLT. The magnetometers provide data at
20 samples per second.The closest CARISMAmagnetometer station
to the ground-based auroral imager is near Dawson city (DAWS).
The DAWS data follows the geographic coordinate system, and the
H-component corresponds to the horizontal geomagnetic direction.

The Super Dual Auroral Radar Network (SuperDARN) is
utilized to measure ionospheric plasma convection by detecting
Doppler-shifted radio signals reflected from field-aligned
irregularities in the F-region ionosphere (Greenwald et al., 1995;
Chisham et al., 2007). In this study, we use data from the Prince

George (PGR) radar, located at (53.9812°N, 122.5920°W), near the
ground-based imagers in British Columbia, Canada to analyze the
plasma flow in the region near the ground-based auroral imagers.
The radar operates by transmitting high-frequency radio waves
and measuring the Doppler shift of returned signals to determine
line-of-sight plasma velocities. For this analysis, we focus on
beams 1, 2, 12, 14, and 28 of the PGR radar, as it aligns with the
observed auroral structures and provides a clear view of the plasma
convection dynamics.Thebeamshaving a significant number of data
points during this interval have been selected. The use of a limited
number of beam ensures consistency in tracking velocity variations
along a fixed direction, minimizing uncertainties associated with
multi-beam averaging (Ruohoniemi and Baker, 1998).

3 Observation and analysis

The solar wind and geomagnetic conditions during 1,600–1,800
UT on 7 January 2014 are shown in Figure 1. The panels
represent 1-min resolution data from the OMNI database (King
and Papitashvili, 2005) for (a) solar wind velocity (Vsw), (b) the z-
component of the interplanetary magnetic field (IMF Bz), and (c)
solarwinddynamic pressure (Psw).Thegeomagnetic activity indices
shown in (d) AL-index and (e) AU-index are obtained from Davis
and Sugiura (1966). A weak substorm with AL∼-500 nT was in
action with a weak southward IMF ∼-4 nT.The yellow shaded region
highlights the time period from16:26 to 16:28UTon 7 January 2014,
during which a strong PA was observed by ground-based auroral
imagers at Poker Flat, AK.

Figure 2 presents the auroral observations that combine
the white-light images from both (a) all-sky and (b) narrow
FOV cameras, captured simultaneously during the pulsation-on
phase of the study. The keogram cut location is marked as a
colored vertical line in both images. Panel (c-f) represents the
snapshots of the PAs at different times, taken from the narrow
FOV imager. This study investigates the movement of auroral
structures to capture their spatial evolution. At the same time,
it analyzes rapid temporal variations using a narrow FOV with
high frame rates.

Figure 3 provides a multiscale view of a 3-min keogram of the
PA observed at Poker Flat, AK, on 7 January 2014. Panel (a) displays
the PA captured with a 0.33 s exposure using the all-sky white-light
imager, showing multiple patch-like features near the zenith in the
north-south keogram. Panel (b) presents a zoomed section between
the two black dashed horizontal lines in panel (a), focusing on the
region between 109 and 129 km. The black dashed horizontal lines
in panel (b) indicate the region shown in panel (c). Panel (c) depicts
a high-time-resolution keogram from the narrow FOV white light
imager at the same location, revealing quasi-periodic oscillations
beginning at 16:26:20 UT.

We observe three key dynamic features that evolve in both
space and time. The first and most prominent feature is the
northward movement of the pulsating auroral patch. The second
is the duration of persistence of each individual pulse within
the PA, and the third is the variation in the PA frequency over
time. The spatial location of the maximum intensity and a slight
time delay in pulsating aurora peaks are observed in Figures 3b,c.
The observed differences between Figures 3b,c can be attributed
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FIGURE 1
(a) Solar wind velocity (Vsw), (b) interplanetary magnetic field (IMF)
z-component (Bz), (c) solar wind dynamic pressure (Psw), (d) AL-index
and (e) AU-index for the period of between 1,600–1,800 UT on 7
January 2014. The shaded yellow region indicates the duration of the
PA observed in the ground-based auroral imager at Poker Flat, AK.

to several factors related to instrumental characteristics, viewing
geometry, and optical distortions. The temporal resolution disparity
between the two imagers plays a key role, as the 180° FOV imager
operates at 3.3 Hz, while the narrow 4° FOV imager runs at 56 Hz.
The higher frame rate of the narrow FOV imager allows it to capture
rapid variations in auroral intensity with greater precision, whereas
the lower frame rate of the wide FOV imager may introduce a small
lag in detecting peak intensities, leading to the observed∼1 s delay in
pulsating aurora variations. Additionally, the spatial resolution and
FOVdifferences contribute to discrepancies in intensity localization.
The wide FOV imager, covering a much larger area, has coarser
spatial resolution and integrates emissions from a broader region,
potentially averaging out finer details that are better resolved by
the narrow FOV imager. The exposure time difference also plays
a role, with the wide FOV imager having a longer exposure per
frame compared to the high-frame-rate narrow FOV imager, which
could smooth out intensity variations over time. Moreover, optical
distortions in the narrow FOV imager due to lens curvature may
introduce small spatial shifts in the recorded intensity patterns,
affecting the precise location of peak auroral emissions.

To calculate the drift velocity of the PA, we employ an algorithm
that systematically tracks pulsation-on patches in the imager. First,
we identify these patches by detecting pulsations with intensities
exceeding 700 counts, marked by blue dots in Figure 4 (top).
Next, we determine the maximum intensity for each pulsation

at each time instant, represented by magenta dots. To refine the
analysis, we extract the maximum values within 0.1-s intervals
and identify the corresponding pixel locations at peak intensity
for each time step. These values, shown as red data points in
Figure 4 (bottom), are then converted into distance measurements.
A regression line (blue) is fitted to these data points, and its slope
provides a drift velocity of 76.41 m/s, indicating northward motion
of the pulsating patch. Overall, the PA patch predominantly drifts
northeast, with a weaker eastward component. This eastward drift is
further evident in Figures 2c–f, where a gradual shift in the patch’s
position over time can be observed.

Figure 5 (left) provides a detailed visualization of the
observational setup, highlighting key regions and instruments
involved in the study. The map projection displays the FOV of
the PGR radar in red, overlaid with the FOV of the MOOSE ASIs
at PFRR in blue, allowing for a comparison of the areas covered by
both instruments.This layout is crucial for understanding the spatial
relationship between the two FOVs and how they complement
each other. The map also incorporates the MLT, which is essential
for contextualizing the timing of observations in relation to the
Earth’s magnetic field. Additionally, the figure marks the location
of the DAWS (green), a vital ground-based station, providing
further context for the observations. Together, these elements offer
a comprehensive understanding of the observational context and
the geographic positioning of key instruments in the study. Figure 5
(right) represents the velocity versus time plot recorded by beam
1, 2, 12, 14 and 28 of the Prince George (PGR) radar between
16:27-16:28 UT. The beams having a significant number of data
points have been selected. Negative values of the velocity indicate
westward plasma flow, while positive values represent eastward
plasma flow.During the observed period, the velocitymeasurements
show a strong eastward flow aligning well with the movement
of the PAs shown in Figure 3c. The confidence levels of these
measurements are determined by the signal-to-noise ratio (SNR)
and the fitting accuracy of the radar echoes, both of which fall within
the standard acceptable range for SuperDARN measurements. This
agreement reinforces the reliability of the velocity measurements
and supports the interpretation of the ionospheric plasma motion
during the observed interval.

Figure 6 (top) displays the keogram intercept taken ∼3.25 km
over a 2-min interval from Figure 3c. The green line represents the
intensity counts, while the red curve illustrates the smoothed version
of this data, whichwas obtained by applying a low-pass filter with the
cut-off frequency of 2 Hz and removing the background counts. Blue
circlesmark the identified peakswithin the data, andmagenta circles
indicate the Full Width at Half Maximum (FWHM) of these peaks.
The FWHM for each pulsation-on interval helps us to investigate the
magnetospheric counterpart of the observed PAs.The time duration
obtained from the FWHM gives the duration of persistence (τ) of
on-time for each pulsation of aurora. Figure 6 presents the histogram
for the duration of persistence of each pulsation observed during
16:26:00 UT-16:28:00 UT. The histogram clearly shows that the
duration of pulsation on-times varies from pulse to pulse, with the
majority having a τ value near 1 s. A couple of events with τ > 2 s
come from two ormore pulsation peaks close to each other. Figure 6
(top panel) presents the FWHM for each pulsation, with the τ >
5 pulsation resulting from overlapping peak intensities observed
between 16:27:28 and 16:27:32.3 UT.
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FIGURE 2
(a) Images of the PA event that captured at 16:26:21 UT on 7 January 2014. All sky image with 180° FOV, and (b) 4° FOV is shown. The colored vertical
line in both images represents the location of the keogram in the north-south direction. (c–f) represents the motion of the PAs with time from the
narrow FOV imagers.

To analyze the temporal evolution in the pulsation frequency,
we present Figure 7a1 which is same as the green curve in
Figure 6 (top). To investigate the temporal evolution of pulsations
we have performed wavelet transform of the data by following
the methodology of Torrence and Compo (1998). Figure 7a2
shows the continuous wavelet transform of the auroral intensity
data after applying a Butterworth band-pass filter of 0.1–8 Hz.
During 16:26:20 UT to 16:26:50 UT, the PA spans a broad
frequency range, approximately from 0.0625 Hz to 0.5 Hz. However,
during 16:26:50 UT-16:27:30 UT the frequency of the pulsation
abruptly narrows around 0.5 Hz, with no low-frequency ( <0.25 Hz)
components present.

Figure 7b1 displays the D-component of the ground magnetic
field data from the DAWS station, while Figure 7b2 presents the
correspondingwavelet after applying a band-pass filter ranging from
0.1 to 0.9 Hz. During 16:26:50–16:27:00 UT interval, a significant
wave power enhancement is observed with a broad band of
frequncies within the 0.125–0.5 Hz range. In addition to this, we
also observe strong Pc-1 waves with a dominant frequency of 4 Hz
between 16:27:15 and 16:27:30 UT, which does not appear to have
any significant impact on the observed PA. This alignment suggests
a potential connection between the Pc-1 waves and the observed
features in the auroral intensity curve.

4 Discussion

Our observations of the pulsating aurora on 7 January 2014
provide valuable insights into the spatio-temporal evolution of the
pulsating aurora and their characteristics. The frequency drift and
spatial drift observed in the pulsating aurora are suggestive of the
magnetospheric dynamics such as wave-particle interactions. The
combination of ASI and narrow FOV imagers having high time and
space resolution helps distinguish unique features of auroral forms,
identifying their locations and motion patterns, and correlating
them with the magnetospheric processes. For example, the PAs
observed on 7 January 2014 is spatially localized until 16:27:00UT as
shown in Figures 3b,c. After this, a rapid movement of the pulsating
structure appears in the northeast direction through both ASI and
narrow FOV imagers Figures 2c–f. The PA events examined in this
study occur during the recovery phase of the substorm, aligning
with the findings of Partamies et al. (2019), which reported that a
majority (64%) of events with decreasing patch sizes also take place
during this phase. The spatial drift motion of the PAs, with speeds
of thousands of m/s, cannot be explained by obliquely propagating
chorus waves, which typically cause the 3±1 Hz modulation due
to their perpendicular speed exceeding the Alfven speed. Instead,
slow-mode Alfven waves could be a potential source of modulation
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FIGURE 3
Multi-scale representation of the PA that occurred on 7 January 2014. (a) N-S Keogram from the all-sky white light imager located at Poker Flat, AK,
recorded at 0.33 s exposure. (b) Magnified keogram from the black dashed lines in panel (a) showing the PA signature. The black dashed rectangle
shows the zoomed section shown in (c). (c) Simultaneous observation of PA recorded by the narrow FOV white light imager at 56 fps frame rate at the
same location.

responsible for generating these rapid motions Fukuda et al.
(2016), Chaston et al. (2002). Semeter et al. (2008) captured the
horizontal distributions and temporal variations of discrete auroras,
particularly in the context of Alfvén wave propagation. Their study
identified that the variations in auroral intensity and structures
are linked to Alfvén wave dynamics and quasi-electrostatic parallel
potential drops.

We estimate that the FWHM for most pulsations is close to 1 s.
The duration of the pulsation observed in this study closely aligns
with previous findings on the precipitation time of electrons with
5 keV–500 keV at L = 6 in the dipole magnetic field model used
by Saito et al. (2012). They found that the precipitated electrons
resonate with whistler waves with ω = 0.4∗| Ωe,eq |, where ω is
the wave angular frequency, and Ωe,eq is the electron cyclotron
frequency at the equator where whistler chorus elements are
launched in the model. Nishimura et al. (2010), Nishimura et al.
(2011) discovered a one-to-one correspondence between in situ
chorus intensity observed near the equator and pulsating auroral
luminosity at the ionospheric footprint. Simultaneous ground-
based observations of VLF waves and optical images also shows
correspondence between them (Tsuruda et al., 1981; Hansen
and Scourfield, 1990; Tagirov et al., 1998; Ozaki et al., 2012).
Humberset et al. (2016) found that the on-time of pulsations
did not show a strong correlation with the maximum intensity
of the patches, suggesting that the energy deposition in a single
pulsation fluctuates and is not constant throughout the lifetime of
the patch.They proposed that the highest-energy electrons reach the
ionosphere first, creating an energy dispersion pattern that governs
the temporal dynamics of PAs. Scourfield et al. (1983) demonstrated
that pulsating auroral forms drift with the same E×B velocity
as the background cold plasma, as confirmed by observations

from the Scandinavian Twin Auroral Radar Experiment
(STARE), which monitors electron flow and ionospheric
plasma drifts.

During 16:26:50–16:27:00 UT, the PAs exhibited a distinct
frequency drift from 0.0625 Hz to 0.5 Hz (Figure 7a2). This
frequency increase coincidedwith an intensification and broadening
of wave power in the D-component of the magnetic field, which
falls within the Pc-1 range. Since EMIC waves are a key source
of Pc-1 waves and are typically generated near the magnetic
equator (Sakaguchi et al., 2013; Pickett et al., 2010; Nomura et al.,
2016), understanding their role in modulating PA characteristics
is important. Unfortunately, the absence of conjugate satellite
observations for this event limits our ability to determine the exact
location and mechanism of wave-particle interactions and their
propagation in the magnetosphere. Investigating these processes
remains an important subject for future studies.

Although the white-light auroral imagers used in this study
do not distinguish between proton and electron precipitation, the
observed Pc-1 activity suggests a possible connection between
the pulsating aurora and proton precipitation (Sakaguchi et al.,
2008; Nomura et al., 2012; Yahnin et al., 2007; Yahnin et al.,
2016). Since PAs exhibit quasi-periodic intensity variations on
timescales of seconds (Yamamoto, 1988; Nishiyama et al., 2014),
their modulation could be driven by (i) chorus wave intensity
(Trakhtengerts, 1999; Li et al., 2011), (ii) electron cyclotron
harmonic waves (Meredith et al., 2009; Liang et al., 2010), or
(iii) EMIC waves (Yahnin et al., 2007; Sakaguchi et al., 2008;
Nomura et al., 2012). Our findings align with Nomura et al. (2016),
who observed proton auroral pulsations using an all-sky imager
and a ground magnetometer in Athabasca, Canada, showing a one-
to-one correlation with Pc-1 rising tones. However, due to limited
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FIGURE 4
Top panel: N-S keogram from the narrow FOv imager showing the 2-min interval of the PA. The blue dots on each pulsations at the top indicates the
identified peaks, while the magneta dots represnts the maximum intensity points at each time interval. Bottom panel: Distance versus time obtained
from the ASI data showing the drift in the pulsating auroral patch after 16:27:00 UT. The red data points refer to the points of maximum intensity at a
given instant of time inside the pulsating patch. The blue line is the best fit for the data points.

observational detail, clear rising tone signatures are not evident in
our event, making the association between the waves and PAs less
conclusive. These rising tones intermittently scatter magnetospheric
protons in the equatorial region, supporting the hypothesis that Pc-1
waves modulate auroral pulsation frequencies.

Another possible explanation involves Pc-1 wave interactions
with energetic protons, which may trigger chorus emissions
(Pickett et al., 2010), similar to the non-linear VLF chorus
generation mechanism proposed by Omura et al. (2008),
Omura et al. (2009). EMIC-triggered emissions can result from
a non-linear absolute instability of L-mode EMIC waves interacting
with energetic protons (Omura et al., 2010). The subsequent
modulation of chorus waves could enhance electron scattering,
producing high-frequency PAs. Figure 8 provides a schematic
representation of the observed Pc-1 waves and their conjugate
pulsating aurora signatures on the ground. Previous studies
have demonstrated that wave modes, such as Pc-1 waves, can
modulate the precipitation of energetic electrons and influence
auroral dynamics. Specifically, Pc-1 waves have been shown to
trigger chorus waves that could scatter electrons into the loss

cone, leading to the generation of PAs (Pickett et al., 2010;
Nishimura et al., 2010). Our findings of the modulation of the
pulsating aurora’s frequency drift align with the hypothesis that
interactions between Pc-1 waves and chorus waves drive electron
precipitation (Thorne et al., 2010; Li et al., 2011). This connection
reinforces the notion that the modulation of chorus waves by Pc-
1 waves could drive the observed drift in pulsation frequency,
offering a deeper understanding of the mechanisms governing
highly structured auroral precipitation.

Samara et al. (2017) demonstrated that the peaks in PAs
are caused by electrons that bounce back and forth between the
two hemispheres. Although our and Samara et al. (2017) studies
analyze the same event and utilize similar imaging data, our
focus differs from that of Samara et al. (2017) in exploring the
role of structured primary precipitation in shaping these features.
Khazanov et al. (2017), Khazanov et al. (2021b) suggested that
the aurora is not only driven by pure magnetospheric processes.
The magnetosphere-Ionosphere-Atmosphere (MIA) coupling of the
precipitated electrons and their interplay between the northern and
southern hemispheres is also an additional mechanism that proves
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FIGURE 5
left: A comprehensive view of the observational setup showing the map projection of the PGR radar FOV (red), overlaid with the FOV of the MOOSE
ASIs at PFRR (blue). The map provides a clear context for the observed region, showing the magnetic local time (MLT) alongside the location of DAWS
(green). right: Velocity plots for diffreent beam numbers of the SuperDARN PGR, Canada HF radar for the time during which the PAs were observed to
be drifting.

FIGURE 6
Top: A green line plot shows the keogram intercept taken at 3.25 km over a 2-min interval. The red curve represents the smoothed green line plot after
applying a low-pass filter and removing the background counts. Blue circles indicate the identified peaks, while magenta circles represent their FWHM.
bottom: Histogram of the pulsation-on time for the PAs that occurred between 16:26:00 UT-16:28:00 UT.
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FIGURE 7
(a1) Auroral intensity versus time, and (a2) continuous wavelet transform of the north-south cut of the keogram centered at zenith from the narrow
FOV MOOSE imager. (b1) the magnitude of the D-component of the magnetic field, and (b2) its wavelet from the DAWS station on the ground.

FIGURE 8
Schematic shows a connection between the Pc-1 waves observed by
DAWS with the Pulsating auroral intensity variation observed by the
MOOSE EMCCD at AK.

to be an important contributor in the formation of different kinds
of aurora (Khazanov et al., 2020; Khazanov et al., 2021a). While
this mechanism explains the presence of high-frequency faint peaks,
our study investigates whether the observed low-frequncy main
peaks in PAs are driven by temporally structured wave-particle
interactions.

5 Conclusion

This study has presented high-speed, narrow FOV imaging
observations of auroras in the zenith associated with a weak
substorm. The observations were made with a narrow FOV camera
incorporating an electron-multiplying CCD (EMCCD) detector and
a prompt emission filter. The high resolution of the instrument has
allowed for a quantitative analysis of spatial and temporal phase
coherence in the elemental pulsating auroral patch. The strength of
EMCCD lies in its ability to resolve signals that are both faint and
highly short-lived. To complement the bigger picture of the observed
auroral emission, we also employed data analysis from the ASI at the
same location.

Weobserved that the auroral frequency suddenly increased from
approximately 0.0625 Hz–0.5 Hz, whereas the pulsating auroral
patch itself spatially drifted in the northern direction at a velocity
of 76.41 m/s. The persistence of each pulsation was calculated to be
around 1 s, which is consistent with electron precipitation driven by
chorus waves.

Wavelet analysis of the ground magnetometer data from DAWS
station suggests that the observed waves in the Pc-1 band. This
alignment suggests that EMIC waves in equatorial region could
be influencing the auroral modulation. Thus, the results indicate a
potential interaction between PAs and Pc-1 waves.

In conclusion, the observed PAs’s frequency drift and spatial
movement, along with the wavelet analysis of magnetometer data,
suggest that the Pc-1 frequency band, play a significant role in
modulating the auroral emissions.This interaction likely contributes
to the observed pulsation frequency drift, providing important
insights into the dynamic coupling between magnetospheric waves
and ionospheric auroral processes.
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