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Phosphorus-bearing molecules are fundamental for life on Earth, yet their
astrochemical origins remain poorly understood. Their formation in the
interstellar medium has been challenging to elucidate due to limited
spectroscopic detections and the reliance on theoretical models that depend on
numerous kinetic parameters whose values are very uncertain. Multi-parameter
models often suffer from “sloppiness”, where many parameter combinations
exhibit negligible influence on model outcomes, while a few dominate system
behavior. In this study, we introduce the Fisher Information Spectral Reduction
(FISR) algorithm, a novel and computationally efficient method to reduce
the complexity of such sloppy models. Our approach exposes the strong
parameter hierarchy governing these systems by identifying and eliminating
parameters associated with insensitive directions in the parameter space.
Applying this methodology to the phosphorus astrochemistry network, we
reduce the number of reaction rate coefficients from 14 to 3, pinpointing
the key reactions and kinetic parameters responsible for forming PO and
PN, the main phosphorus-bearing molecules typically detected in interstellar
space. The simplified model retains its predictive accuracy, offering deeper
insights into the mechanisms driving phosphorus chemistry in the interstellar
medium. This methodology is applicable to multi-parameter models of
any kind and, specifically in astrochemistry, facilitates the development of
simpler, more realistic and interpretable models to effectively guide targeted
observational efforts.

KEYWORDS

phosphorus astrochemistry, interstellar medium, astrobiology, dynamical systems,
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1 Introduction

Phosphorus (P) is an element of significant astrobiological importance due to its
abundance in biomass and its critical role in essential biochemical functions: the backbone
of nucleic acids contains sugar-phosphates, phosphorylated molecules act as energy
carriers, and cellular membranes contain phospholipid head groups (Walton et al., 2023).
Interestingly, despite its ubiquity in life on Earth, phosphorus is far less abundant on
cosmic scales than other essential elements for life, such as hydrogen (H), carbon (C),
oxygen (O), and nitrogen (N) —a phenomenon often referred to as the phosphorus enigma.
In fact, phosphorus ranks 18th in cosmic abundance, orders of magnitude lower than
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other biogenic elements (Maciá-Barber, 2020). With regard to
the origin of terrestrial phosphorus, it is worth noting that the
chemical complexity of early Earth was augmented by the influx
of molecular compounds inherited from its parental molecular
cloud during the process of planetary formation and the subsequent
impact of asteroids and comets on its surface. Interplanetary
dust, meteorites, and large impactors may have deposited reactive,
reduced oxidation state phosphorus onto early Earth’s surface.
This process, supplemented by terrestrial P-reduction pathways,
enriched prebiotic environments with reactive P, including organic
phosphonates with carbon–phosphorus bonds, as identified in
the Murchison meteorite (Cooper et al., 1992). Furthermore, the
recent detection of PO in comet 67P/Churyumov–Gerasimenko
(Rivilla et al., 2020) and of phosphorus-rich grains in asteroid
Ryugu samples (Pilorget et al., 2024), indicates that minor Solar
System bodies can act as reservoirs for phosphorus-bearing
compounds. Therefore, the detection of phosphorus sources in
the interstellar medium (ISM) is key to trace the evolution of
phosphorus during the Solar System formation and unveil how this
element became available for the origin of life.

In recent decades, the interstellar chemistry of phosphorus
has emerged as a promising area of research driven by
high-sensitivity instrumentation such as the Atacama Large
Millimeter/submillimeter Array (ALMA). To date, more than
300 molecules have been detected in interstellar and planetary
environments, including complex organic molecules (COMs) with
potential prebiotic significance. Despite this impressive detection
capacity, only seven P-bearing molecules have been unambiguously
identified in the ISM: PO (Tenenbaum et al., 2007; Rivilla et al.,
2016), PO+ (Rivilla et al., 2022), PN (Turner and Bally, 1987;
Ziurys, 1987; Fontani et al., 2016), CP (Guelin et al., 1990),
HCP (Agúndez et al., 2007), CCP (Halfen et al., 2008), and PH3
(Agúndez et al., 2008; Tenenbaum and Ziurys, 2008). Among these,
only PO, PO+, and PN have been detected in star-forming regions,
but with low abundances (the detected abundances of PO and PN
relative to H are on the order of 10−10 and 10−11, respectively; see
e.g., Lefloch et al. (2016), Rivilla et al. (2018), Rivilla et al. (2020),
Bernal et al. (2021), Fontani et al. (2024), Lefloch et al. (2024),
Scibelli et al. (2025)). In addition, astronomical observations show
that PO is systematically more abundant than PN, with abundance
ratios of [PO]/[PN]∼1.4− 3 across various sources (Lefloch et al.,
2016; Rivilla et al., 2018; Bernal et al., 2021).

Besides the discovery of new chemical species in the ISM
through spectroscopic techniques, astrochemistry also relies
on laboratory experimental work and computational models.
Laboratory experiments replicate interstellar physical conditions
to obtain rotational spectra for known molecular compositions.
Computational models, on the other hand, integrate data from
astronomical measurements and laboratory experiments, providing
a framework to hypothesize the underlying physical-chemical
processes responsible for the observed molecular abundances.
In this context, astrochemical models such as UCLCHEM
(Holdship et al., 2017) or Nautilus (Ruaud et al., 2016) have
been developed to simulate the time evolution of abundances for
numerous interstellar species, which interact through extensive
networks of chemical reactions under various physical conditions
and energetic physical processes (e.g., UV/cosmic rays irradiation,
protostellar heating or stellar feedback in the form of high-velocity

winds inducing shock waves) in both the gas phase and on dust
grain surfaces. These models typically consist of applying the
law of mass action to all reactions in the chemical network and
solving numerically the associated systems of ordinary differential
equations. However, the precision of mass-action kinetics depends
heavily on the accuracy of the reaction rate coefficients, which
remain poorly determined for the majority of reactions.

In the past decade, it has become clear that astrochemical
models present severe limitations in reproducing the [PO]/[PN]
ratios observed across the ISM (predicted ratios < 1 versus the
observed ratios of∼1.4–3; see e.g., Aota andAikawa (2012), Jiménez-
Serra et al. (2018), Chantzos et al. (2020), Sil et al. (2021)). To
get insight into this problem, in a previous work, we conducted a
detailed analysis of the chemistry of phosphorus inmolecular clouds
(Fernández-Ruz et al., 2023). This analysis employed a theoretical
approach integrating complex networks, sensitivity analysis, and
Bayesian statistics to model 14 key chemical reactions. Unlike
traditional numerical approaches in astrochemical modeling, our
theoretical method provided deep insights into the role of each
reaction in the formation of PO and PN, resolving the discrepancies
between modeled and observed abundance ratios. Additionally,
this study revealed a strong hierarchical structure in the kinetic
parameters of the system, where the formation of PO and PN in
molecular clouds was insensitive to a large number of parameter
combinations but highly dependent on a selected few. This intrinsic
parameter insensitivity aligns very well with the concept of a “sloppy
model”, where systembehavior is governed by a few “stiff” parameter
combinations, while others, referred to as “sloppy directions”,
exhibit extreme insensitivity to large-scale fluctuations (Brown and
Sethna, 2003; Quinn et al., 2023).

Sloppy models are prime candidates for model reduction
techniques. In general, these techniques aim to simplify
large-scale dynamical systems through the elimination of
unnecessary parameters while preserving essential characteristics
(Antoulas, 2005). The primary techniques can be categorized
into (i) eigenvector projection methods (using Singular Value
Decomposition) and (ii) moment matching methods. Some
eigenvector projection methods diagonalize the system and truncate
those states that are difficult to control and observe (Moore, 1981),
while others aim to minimize an error measure of the system
(Glover, 1984) or separate fast and slow timescales (Gugercin and
Antoulas, 2004). On the contrary, moment-based methods focus
on reducing the complexity while approximating accurately some
statistics (often central moments estimated from the data). Overall,
both categories of methods strive to achieve a balance between
computational efficiency and accuracy, making them suitable
for large-scale models but relying too strongly on linearization
or on global measurements. Alternatively, M.K. Transtrum and
collaborators, following a different approach, developed a decade
ago the Manifold Boundary Approximation Method (MBAM)
(Transtrum et al., 2011; Transtrum and Qiu, 2014; Transtrum and
Qiu, 2016; Quinn et al., 2023). This elegant algorithm is based on
information geometrical arguments, balancing the data with the
complexity of the model exploiting the low sensitivity to some
combinations of parameters.

In this paper, we introduce a methodology for reducing
and simplifying models while retaining their predictive accuracy
inspired by the MBAM reduction technique and apply it specifically
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to the phosphorus astrochemistry network. The proposed method,
the Fisher Information Spectral Reduction method (hereafter, FISR
method), is conceptually simpler than the MBAM and thus can be
implemented by an easier and more efficient algorithm. It performs
iterative dimensional reduction steps, progressively decreasing the
number of model parameters. The final outcome is a reduced
model with significantly fewer parameters, in which unnecessary
complexity is removed.

Applying the FISR algorithm to the 14-reaction model of
phosphorus chemistry in molecular clouds presented in Fernández-
Ruz et al. (2023), we demonstrate that the observed abundances
of PO and PN can be explained by a much simpler model
comprising just 3 reactions and 3 parameters. This simplified
model not only identifies the key reactions governing PO and
PN formation but also offers a deeper comprehension of the
hierarchical structure of the parameter space. Therefore, the goal of
this work is not to obtain a model that improves the predictions
of existing astrochemical models, but rather to derive simpler
and interpretable models that maintain comparable predictive
accuracy while eliminating unnecessary complexities. Our findings
highlight that the complexity of a model should correspond to the
complexity of the available knowledge with which it is constructed.
This principle—also known in the sciences as Occam’s razor—, is
broadly applicable beyond astrochemistry to other disciplines reliant
on modeling.

The organization of this paper is as follows. In Section 2 we
present the mathematical foundation of the complexity reduction
method introduced here, the FISR method, and outline the
algorithmic steps for its general implementation. In Section 3
we apply the FISR method to the phosphorus chemistry in the
interstellar medium, uncovering the underlying chemical network
dynamics that governs the formation of PO and PN across short and
long timescales. In Section 4, we discuss the implications of themain
findings for future phosphorus astrochemical research and examine
the strengths and limitations of the FISR method within the context
of complexity reduction methods.

2 Methods: the FISR algorithm

The method presented in this work is inspired by the Manifold
Boundary Approximation Method (MBAM), originally developed
and published by Transtrum and Qiu (2014), and shares its basic
principles and primary objective.The reasoning behind this method
is that models often do not respond significantly to changes
in certain parameters. By applying concepts from information
geometry, this approach identifies specific trajectories across the
statistical manifold that represent meaningful combinations of the
parameters.These trajectories follow the so-called sloppy directions,
which are directions in the parameter space that are not informative
and along which large parameter changes produce only a minimal
impact on the model output. The term boundary in the name of
the method connects with the practical observation made by the
authors that, except in rare pathological cases, the topology of an
N-dimensional manifold contains boundaries of N− 1 dimensions.
This is the reason why one can drop one combination of parameters
safely when a trajectory over the manifold reaches one boundary,

while preserving the model’s predictive power (Transtrum and
Qiu, 2014).

Our proposed algorithm, the Fisher Information Spectral
Reduction (FISR) method, successfully achieves the same goals
as MBAM but differs significantly from it in its technical details
and algorithmic procedures. We name it FISR method because it
is based on the eigenspectrum of the Fisher Information Matrix
(FIM), which quantifies the amount of information a dataset carries
about the model parameters, but also provides the directions on
the statistical manifold carrying less information (the sloppiest
directions). Since high information content is associated with strong
parameter influence, the eigenspectrum of the FIM encodes the
sensitivity of model outputs to changes in parameter values. In
this Section, we present the mathematical framework of the FISR
method and outline its algorithmic implementation from a general
perspective, making it applicable to any sloppy model.

2.1 Theoretical framework and definitions

Let us consider a model y = y(θ) with a set of N parameters θ =
{θ1,…,θμ,…,θN} (see Table 1 for a summary of all the symbols
used in this Section). The M outputs of the model are y =
{y1,…,ym,…yM}, where m typically stands for time values of the
evolution of one or more quantities of interest. The optimal set of
outputs yopt is defined as the most reliable output values and can
either be (i) real data obtained from measurements or observations
or (ii) synthetic data, that is, predicted values generated by a model
that is considered sufficiently accurate by the user. For each set of
parameters θ and one output (or prediction point) ym(θ), we define
the residual rm(θ) as the difference between the optimal value yoptm
and the output ym(θ), that is,

rm (θ) = y
opt
m − ym (θ) . (1)

In addition, we define the cost function as

C (θ) =
M

∑
m=1
(yoptm − ym (θ))

2. (2)

The cost quantifies how far the outputs obtained with parameter
set θ, i.e., y(θ), are from the optimal yopt and is therefore used to
assess the reliability of a parameter set θ. Furthermore, the sensitivity
of themodel residuals to changes in the parameters is arranged in the
Jacobian matrix J, with elements

Jmμ =
∂rm
∂θμ
. (3)

Finally, the Fisher Information Matrix (FIM) g has a key role in
our method, and its elements are defined as

gμν =
M

∑
m=1

∂rm
∂θμ

∂rm
∂θν
. (4)

In matrix form, the FIM and the Jacobian are related through
g = JTJ, being J (Equation 3) a matrix of sizeM×N and g (Equation
4) a matrix of size N×N. As the FIM g is square, symmetrical and
positive semi-definite, all its eigenvalues are real and non-negative,
and quantify how strongly perturbations along the corresponding
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TABLE 1 Notation used in the FISR method description.

Description Notation

Model parameters/Parameter space θ

Element of the parameters vector θμ

Prediction y(θ)

Prediction point ym(θ)

Model y = y(θ)

Residual of a prediction point for a set of parameters rm(θ)

Cost for a set of parameters C(θ)

Time point in the path τi

Path θ(τ)

Parameter values at one point in the path θ(τi)

FIM evaluated at one point in the path g(θ(τi))

Velocity vector at one point in the path v(τi)

eigenvector directions in the parameter space affect the model
output y. Note that, as the Jacobian represents the change in the
output with respect to parameter perturbations, it is a matrix of
sensitivities (Saltelli, 2008). Thus, another interpretation of the FIM
is the matrix of second-order sensitivities (also known as parameter
synergies) (Faro et al., 2019).

In cases where the parameters are positive by definition and/or
their scales are significantly different, it will be very helpful to
calculate J and g after a re-parametrization of the model such
that ̃θμ = ln (θμ), as was already stated in the original MBAM
algorithm (see, for example, Transtrum and Qiu (2016)). This re-
parametrization is aimed at weighing the order of magnitude of the
parameter rather than its value, so the method does not necessarily
bias the elimination procedure toward smaller values.

In practice, sloppymodels are thosewhose FIMeigenvalues span
along many orders of magnitude, from eigenvalues close to zero,
whose associated eigenvectors pinpoint the parameter directions
that hardly affect the system—the sloppy directions—, to large
eigenvalues, whose eigenvectors denote directions of high parameter
sensitivity. We will exploit this feature of the FIM for parameter
reduction in the next Subsection.

2.2 Parameter reduction algorithm

The FISR algorithm is implemented through successive
dimensionality reduction steps, reducing the original model
iteratively until no further simplifications are possible. Each
reduction step takes an initial model as the input and produces
a simplified version as the output. This iterative process is carried
out by an algorithm structured in the following three stages:

Stage 1. Navigation through the parameter
space

Considering an initial model y(θ), each set of parameters θ
represents one point in the parameter space associated with y(θ).
This set has an associated FIM g(θ) and cost C(θ). The parameter
navigation consists of a path parameterized by the variable τ, θ(τ),
that starts from the initial point θ(τ0) (where the cost is minimum),
and evolves according to

θ (τi+1) = θ (τi) + v (τi)δτ, (5)

where v(τi) is the velocity vector at iteration i and v(τi)δτ denotes
a small size step. The velocity v(τi) is a L2-normalized vector
in the direction of the eigenvector corresponding to the smallest
eigenvalue of the FIM g(θ(τi)) (namely, the sloppiest direction).
Since the orientation of the eigenvectors is undefined, among the
two possible ones, in each step τi the orientation of v(τi) is chosen
such that it verifies that the angle of the velocities along the geodesic
between consecutive steps is lower than π/2, i.e., that v(τi) ⋅ v(τi−1) >
0, ensuring that the path θ(τ) does not go backward locally and
therefore allowing a fast displacement from the original point1. This
definition of v(τi) based on the FIM certifies that the small step
v(τi)δτ has the minimum possible effect on the model output and
thus on the cost. In principle, the smoothness of the model and
the lack of global conserved quantities guarantee that the path θ(τ)
reaches a boundary (Transtrum and Qiu, 2014). For instance, if a
parameter is a positive real number, the theoretical limits would be
zero and infinity (Transtrum et al., 2011), so the manifold boundary
would correspond to a region where one or more parameters take
those limiting values. In practice, the path is considered finished
when the tendency of at least one parameter toward a limit is
persistent over time. For consistency, we denote θ(τ f) as the set of
parameters after the last iteration of Equation 5.

Stage 2. Limit evaluation and generation of
a new model

As mentioned above, stage 1 ends when one or more θμ reach
a boundary (limiting value). In stage 2, a new model is constructed
by considering the physical meaning of the limiting values of these
parameters. For the typical case where parameters are positive real
numbers and only one or two parameters reach a boundary, the
possible scenarios are:

(i) A parameter approaches zero in stage 1. This may indicate that
the microscopic process it represents has become negligible in
the system with the new values of the parameters, for example,
because it is much slower than the rest of the processes.
In such cases, the new model excludes this process and the
corresponding parameter.

(ii) A parameter approaches infinity in stage 1.This is typical when
the parameters are reaction rate coefficients, and implies that

1 Note that with this criterion, the orientation of v(τ0) remains undefined,

meaning that two valid paths coexist and one can choose any of them

arbitrarily.
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FIGURE 1
Structure of the FISR algorithm to reduce model complexity. The algorithmic flow can be divided in three stages: (stage 1) navigation through the
parameter space of the initial model, constructing a path θ(τ) from the initial point θ(τ0) to the boundary θ(τ f) using the eigenvector associated with the
smallest eigenvalue of the Fisher Information Matrix g to guide the direction of change v(τi); (stage 2) limit evaluation that leads to the generation of a
new model, where limits in θ(τ f) are interpreted analytically to eliminate parameters and obtain θ′; and (stage 3) fitting of the new model, minimizing
the cost for the reduced model starting from θ′ to reach θ″. The final reduced model of this process will serve as the initial model for the next
dimensional reduction step, repeating the process until no further reductions are feasible, yielding the minimal predictive model.

a mechanism is almost instantaneous in comparison to others.
This provides an adiabatic elimination of the fast timescale, and
this mechanism can now be described by a single process with
the proper change in the initial conditions.

(iii) Two or more parameters tend to infinity or one to infinity
while the other to zero in stage 1. Here, a new parameter
that combines them but remains finite is introduced
in the model.

Note, however, that more complicated scenarios are possible,
and more than two parameters may tend to zero or infinity in the
same reduction step. In any case, the interpretation of the limit to
generate the new model is a task that cannot be automated and must
be done by hand because it requires knowledge about the processes
that are modeled and the physical meaning of the parameters. Note
that the new model is now evaluated in the parameter set θ′, which
is obtained by implementing the changes in θ(τ f) and therefore has
fewer parameters than the initial model.

Stage 3. Fitting of the new model

Once the new model is defined, it is fitted by finding the
parameter set θ″ that minimizes the cost. The initial guess is θ′.
The outcome of stage 3 is a reduced model with fewer parameters
than the initial one, but due to the methodology presented in stages
1, 2, and 3, the new reduced model achieves predictions as close as
possible to those of the initial model.

Consecutive dimensional reduction steps. The whole process of
parameter reduction starts with the original model y0 and is iterated
several times, where each loop is defined as a dimensional reduction
step s. The complete algorithm structure is shown in Figure 1. At
each step s, model ys−1 is reduced, yielding model ys

2. A reduction

2 From now on, we will refer to model ys as model s for simplicity.

step can be performed as long as there is a sloppy direction.We know
that no further reductions are possible when the cost becomes so
large that the output of the simplified model is too different from
that of the original model. The minimal model will be the one that
retains its predictive power with the smallest possible number of
parameters.

3 Results

In this Section, we apply the FISR method introduced in this
work to a phosphorus astrochemistrymodel comprising 14 chemical
reactions involving 7 P-bearing molecules proposed by Fernández-
Ruz et al. (2023). The parameters subject to reduction are the
kinetic parameters, specifically the rate coefficients kμ of the 14
reactions. Our focus is on the abundances of PO and PN, the
most abundant P-bearing molecules detected so far in star-forming
regions (Lefloch et al., 2016; Rivilla et al., 2020; Fontani, 2024). We
perform 9 dimensional reduction steps, 8 of which preserve with
high precision the model’s ability to predict the evolution of PO and
PN abundances within the time range from 104 to 105 yrs. These
timescales are typical of molecular outflows in star-forming regions
where PO and PN have been detected (e.g., Lefloch et al. (2016),
Rivilla et al. (2020), Bernal et al. (2021), Fontani (2024)), and are the
ones usually explored with astrochemical models (see e.g., Jiménez-
Serra et al. (2018)). The FISR method results in a final minimal
model with only 3 rate coefficients.

3.1 Original model for the chemical
evolution of phosphorus in the ISM

We adopt the phosphorus chemistry model for the ISM from
our recent publication (Fernández-Ruz et al., 2023) as the original
model of the complexity reduction process. We opt for this model
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FIGURE 2
Bipartite chemical network representing the 14 chemical reactions involved in the phosphorus chemistry in the interstellar medium studied in this
work. Orange circular nodes correspond to P-bearing species, whose abundance evolves over time as described by Equation 6. The rest of the species
are represented as blue circular nodes. Square nodes (labeled R1–R14) denote chemical reactions, with directed links pointing from reactants to
reaction nodes, and from reaction nodes to products.

TABLE 2 Reactions and their rate coefficients. (a) The rate coefficients of these reactions were adjusted with Bayesian inference in Fernández-Ruz et al.
(2023). (b) The Arrhenius parameters of these rate coefficients come from theoretical quantum chemical calculations.

Reaction n° Reaction kμ (cm
3 s−1) (T = 100 K) Source

1 N + PO→ P + NO 1.81× 10−12 Wakelam et al. (2012) (a)

2 N + PO→ PN + O 2.27× 10−12 Wakelam et al. (2012) (a)

3 O + PH2 → PO + H2 4.00× 10−11 Wakelam et al. (2012)

4 O + PH→ PO + H 1.00× 10−10 Wakelam et al. (2012)

5 P + O2 → PO + O 4.38× 10−16 de la Concepción et al. (2024) (b)

6 P + OH→ PO + H 1.91× 10−10 García de la Concepción et al. (2021)
(b)

7 N + PH→ PN + H 1.06× 10−10 Gomes et al. (2023) (b)

8 N + CP→ PN + C 5.55× 10−11 Wakelam et al. (2012)

9 P + CN→ PN + C 5.55× 10−11 Wakelam et al. (2012)

10 H + PH→ P + H2 3.29× 10−12 Charnley and Millar (1994) (a)

11 O + CP→ P + CO 4.00× 10−11 Wakelam et al. (2012)

12 H + PH2 → PH + H2 2.58× 10−12 Charnley and Millar (1994)

13 H + PH3 → PH2 + H2 2.89× 10−14 Charnley and Millar (1994)

14 C + PH→ CP + H 7.50× 10−11 Wakelam et al. (2012)
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TABLE 3 Initial gas-phase abundances that apply in the original model, extracted from Fernández-Ruz et al. (2023). Some initial abundances are missing
because they are not needed as they do not appear in the models’ equations. (a) In cases where the source provided two values or we considered two
sources, we used the geometric mean. (b) Up to date, CP has not been detected in the ISM, but it has been detected in a circumstellar shell envelope by
Guelin et al. (1990). Thus, in our model we consider that CP is present but we fix its initial value to 10−13 so it is sufficiently below the detection limit
(∼10−12). (c) The value is manually set to one (for H) and zero (for PO and PN) in agreement with the models’ configuration. (d) As proposed in other
works (Jiménez-Serra et al., 2018; Fernández-Ruz et al., 2023), we assume that P (cosmic abundance of 2.57× 10−7) is depleted by a factor of 100 and
that 50% is hydrogenated on the surface of dust grains forming PH, PH2 and PH3. The rest remains as atomic P. For simplicity, PH, PH2 and PH3 are
formed in equal amounts, leading to the initial abundances shown in the table.

Species Initial abundance (n/nH) Reference

C 2.69× 10−4 Jiménez-Serra et al. (2018)

CN 5.92× 10−10 Agúndez and Wakelam (2013) (a)

CO - N/A

CP 1.00× 10−13 Guelin et al. (1990) (b)

H 1 N/A (c)

H2 - N/A

N 6.76× 10−5 Jiménez-Serra et al. (2018)

NO - N/A

O 4.90× 10−4 Jiménez-Serra et al. (2018)

O2 6.04× 10−7 Larsson et al. (2007), Goldsmith et al. (2011)

OH 1.00× 10−8 Rugel et al. (2018) (a)

P 1.29× 10−9 Jiménez-Serra et al. (2018) (d)

PH 4.28× 10−10 Jiménez-Serra et al. (2018) (d)

PH2 4.28× 10−10 Jiménez-Serra et al. (2018) (d)

PH3 4.28× 10−10 Jiménez-Serra et al. (2018) (d)

PN 0 N/A (c)

PO 0 N/A (c)

because it has been proven to accurately describe the [PO]/[PN]
ratios of the whole phosphorus network predicted by UCLCHEM,
while remaining sufficiently small to apply the FISR method. The
system, whose associated chemical network is shown in Figure 2,
describes the evolution of phosphorus chemistry in a star-forming
region over 105 yrs. For the simulations, we assume constant
physical conditions with a temperature of T = 100 K and a cloud
H density of nH = 104 cm−3, typical of regions affected by shocks
associated with molecular outflows and where PO and PN have
been detected (see e.g., the works of Lefloch et al. (2016) or
Rivilla et al. (2020)). The model represents the dynamics resulting
from the application of the law of mass action to a network of
14 chemical reactions with their corresponding 14 reaction rate
coefficients kμ, listed in Table 2, and involving 17 chemical species
with initial conditions provided in Table 3. Among these species,
there are 7 P-bearing molecules: P, PH, PH2, PH3, CP, PO, and PN.
Importantly, most of the reaction rate coefficients kμ were calculated
using the Arrhenius parameters extracted from the KIDA database
(Wakelam et al., 2012). However, three of these coefficients were

later adjusted for T = 100 K using Bayesian inference to obtain PO
and PN predictions that match the observed values (see reactions
1, 2 and 10 in Table 2 and Fernández-Ruz et al., 2023). More
precisely, the model predicts [PO]/[PN] = 3.3 at t = 104 yrs, in
agreement with Lefloch et al. (2016), Rivilla et al. (2018), Bernal et al.
(2021), which reported [PO]/[PN] ratios equal to 2.8, 1.4 and 2.6,
respectively. Finally, we assume that P is initially adsorbed onto
dust grains, from which 1% is released into the gas phase (Jiménez-
Serra et al., 2018; Fernández-Ruz et al., 2023). However, note that
the actual depletion factor of P in the ISM is still a debated question
(Fontani, 2024). In addition, we set a P-hydrogenation fraction fP
of 0.5, meaning that 50% of the released P is hydrogenated, and
the rest remains as atomic P. For simplicity, PH, PH2 and PH3 are
formed in equal amounts, leading to the initial abundances shown
in Table 3, but let us remark that there are currently no observational
information about the abundance of P, PH, PH2 and PH3 in star-
forming regions, and therefore, we can only provide reasonable
guesses for these parameters. Interestingly, though, we have recently
shown that the evolution of the system is in practice independent
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of the P-hydrogenation fraction fP for T = 100 K beyond 104 yrs,
that is, in the time range of interest for this paper (Fernández-
Ruz et al., 2023).

We refer to the system of ordinary differential equations
(ODEs) with 17 variables, derived from applying the law of mass
action to the astrochemical model plotted in Figure 2, as the total
system. This system is mathematically intractable and can only
be solved using numerical methods. However, the linear effective
system is a linearized approximation of the full system that can
be theoretically solved under certain approximations for the 7 P-
bearing species. The linearization is possible when the non P-
bearing species are treated as constants, an assumption justified
by their significantly higher abundances, as shown in Table 3
(see Supplementary Section S1.1 for details). The linear effective
system solution consists of explicit equations for the time-evolving
abundances:

[Xp] =
p−1

∑
q=1
(

Cpq

rp − rq
e−rqt)+Cppe

−rpt, (6)

where [Xp], with p = 1 to 7, represents the abundance of the
P-bearing species PH3, PH2, PH, CP, P, PO, and PN, respectively.
The constants C and r depend on the reaction rate coefficients
and initial abundances, with their explicit expressions provided
in Supplementary Section S1.2. Also, note that, for p = 1, the
summation corresponds to an empty sum; thus, its value is zero.
This theoretical solution of the linear effective system approximates
the numerical solution of the total system for the P-bearing species
with average relative errors of ∼1% for T = 100 K, while being the
formermore than 5 orders ofmagnitude computationally faster than
the latter (Fernández-Ruz et al., 2023).

The sensitivity analysis presented in Fernández-Ruz et al. (2023)
revealed that the abundances of PO and PN at times t = 103, t = 104,
and t = 105 yrs and for T = 100 K exhibit negligible dependence on
some of the rate coefficients kμ and large sensitivity on a few of them.
This indicates that the model shows strong parameter hierarchy
or sloppiness, making it particularly well-suited for parameter
reduction using the FISR method, with the rate coefficients kμ as the
14 parameters and PO and PN as the outputs. We do not consider
the remaining P-bearing molecules as outputs because they have
not been detected in star-forming regions (Fontani, 2024). Based
on this, and following the notation defined in Section 2.1, we call
original model—that will act as a model 0— to y = y(θ = k), where
ym = ym(k1,…,k14) and m = 1,…,50 enumerates the abundances
of PO and PN given by Equation 6, evaluated at 25 time points
uniformly distributed between t = 104, and t = 105 yrs—the time
range typically observed in real data (see above). Finally, we need
to obtain the optimal prediction yopt used in the calculation of the
residuals and the cost (Equations 1, 2). Since we lack a temporal
series of observational data points for the abundances of PO and
PN in a molecular cloud—real data correspond to a single snapshot
of the cloud’s time evolution—, we generate synthetic data from the
original model, considering that yopt = y(koriginal), where koriginal is
the set of rate coefficients values showed in Table 2. By construction,
the cost of the original model, with koriginal as input, is zero.

3.2 Toward the simplest model compatible
with the chemical evolution of phosphorus
in the ISM

3.2.1 Dimensionality reduction steps
Here, we apply the FISR algorithm to the original model of

the phosphorus chemistry in the ISM through a series of iterative
dimensionality reduction steps. As explained in Section 2.2, each
reduction step s in the algorithm consists of (i) the parameter space
navigation in the model s− 1 until a boundary is reached, (ii) the
evaluation of the limit and model reinterpretation to obtain model s,
with less parameters, and (iii) the fitting of model s. Therefore, a new
model with fewer parameters and, in some cases, fewer variables is
derived at each reduction step s.We adopt the re-parametrization ̃kμ =
ln (kμ) justified in Section 2.1, and also the abundances of PO and
PN are log-transformed in the calculation of the cost and the FIM.
The fitting of models is done by finding the set of rate coefficients k
thatminimizes the cost with theNelder-Meadmethod (Lagarias et al.,
1998). In summary, our goal now is to evaluate the performance of
the new models and find the simplest set of reactions that can yield
time-evolution abundance curves of PO and PN from 104 to 105

yrs that are indistinguishable from those obtained from the original
model. We remind the reader that we focus on timescales between
104 to 105 yrs because these are the relevant timescales for the star-
forming regions where PO and PN have been detected (Lefloch et al.,
2016; Rivilla et al., 2020; Fontani, 2024). Figure 3 shows the evolution
of the set of rate coefficients k along the parameter space at each
reduction step, obtained in stage 1 of the FISR algorithm. Each path
has been computed for 105 iterations, far enough to appreciate a clear
tendency inwhichat leastone rate coefficientkμ goes tozeroor infinity.
The cases where a parameter kμ goes to zero are easy to interpret:
the corresponding reaction can be removed from the model since
the FISR algorithm proves that it has a negligible effect on the cost,
which ultimately means that the reaction is not relevant for the final
abundances of PO and PN. Therefore, the new model s has one less
rate coefficient and is obtained by removing that reaction frommodel
s− 1. On the contrary, the cases where a kμ goes to infinity must be
interpreted individually.

After each reduction step, a new model is built, and this
process is repeated along 9 dimensionality reduction steps.
Figure 4 shows the time evolution of the abundances for the
P-bearing species of every new model s compared to the original
model. For completeness, Supplementary Section S2 shows the
same comparison for the ratio [PO]/[PN], a relevant quantity
in phosphorus astrochemistry, and Supplementary Section S3
compiles the initial conditions and chemical reactions that constitute
every model, from the 14 reactions of the original model to the 2
reactions of model 9, the most simplified one.

As we can see in Figures 3A–C, corresponding to reduction
steps 1, 2 and 3, respectively, the reaction rate coefficients k5,
k7 and k11 tend to zero. In consequence, reactions 5 (P+O2 →
PO + O), 7 (N + PH → PN + H) and 11 (O + CP → P + CO)
can be interpreted as infinitely slow in comparison to the rest,
and can be sequentially removed, yielding models 1, 2 and 3.
For reaction 5, this is consistent with new quantum chemical
calculations of this rate constant, which show that its value at
100 K is very small (de la Concepción et al., 2024). In Figures 4A–C
we see that PN and CP curves differ between the original
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FIGURE 3
Evolution with τ of the rate coefficients kμ of the phosphorus astrochemical system in the ISM along the path θ(τ) = k(τ) obtained in stage 1 of the FISR
algorithm, for 9 dimensionality reduction steps. τ is the time step in the navigation through the parameter space. The path starts at the initial point k(0)
where the cost is minimum and tends to a boundary where one or more kμ reach zero or infinity. In steps 1, 2, 3, 7 and 9 (panels A, B, C, G, I), the rate
coefficients k5, k7, k11, k9 and k1, respectively, approach zero. In steps 4, 5 and 6 (panels D, E, F), the rate coefficients k8, k12 and k13 tend to infinity. In
step 8 (panel H), the rate coefficients k4, k10 and k14 tend to infinity in parallel. The number of iterations is 5× 104 for all reduction steps except for step
5, which only reaches ∼7,000 iterations due to computational limitations arising from exceedingly large values.

model (O.M., dashed lines) and the new models (solid lines)
for low times, but the PO and PN time-evolution abundance
profiles after t = 103 yrs remain indistinguishable. Noticeably,
reduction step 1 shows a strongly noisy behavior for k5 because
the equations of the original model present a structural non-
identifiability regarding parameters k5 and k6, as the mathematical
solutions of the system depend on these two parameters
exclusively through the sum k5[O2]0 + k6[OH]0. Structural non-
identifiability arises when the model’s equations contain redundant
parameters or symmetries, making it impossible to uniquely
determine two or more parameters from the data, regardless of its
quality.

Figure 3D shows that the rate coefficient of reaction 8 (N+CP→
PN + C) approaches infinity in the reduction step 4. This means that
we can define a newmodel—model 4, see Supplementary Section S3
—where this reaction is infinitely fast in comparison to the rest, so
the initial abundance of CP is added to the initial abundance of PN,

removing CP as a variable of the system3. Besides reaction 8, only
reaction 14 (C + PH→ CP + H) involves CP in model 3, so it can be
merged with reaction 8, yielding the new reaction 14 (C + PH + N
→ PN +H+C) that accounts for the 2-step process: C + PH→CP +
H followed by N + CP→ PN + C. Since in this case the first reaction
is the rate-determining step, the rate law of the new reaction 14 is
v = k14[C][PH]. Figure 4D shows that, despite model 4 lacking CP
(green solid line is absent), new reaction 14 can capture the growth
in the abundance of PN from the original model.

3 Recall that the non P-bearing species are assumed to be constant due

to their higher abundances and the P-bearing species become the only

dynamical variables. Therefore, for all the cases in this Subsection, we

only consider changes in the initial conditions of the P-bearing species,

as the changes in the non P-bearing species are negligible.
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FIGURE 4
Evolution with time of the abundances relative to H of the P-bearing molecules for models 1 to 9 (solid lines), obtained in stage 3 of the FISR algorithm,
and for the original model (O.M., dashed lines; Fernández-Ruz et al., 2023) of the phosphorus astrochemistry in the ISM. Models 1–9 (panels A–I) are
progressively simpler approximations of the original model. Although only abundances of PO and PN beyond 104 yrs (vertical black lines) were used as
input in the reduction algorithm, models 1-8 reproduce precisely the abundances of PO and PN of the original model beyond a few 100 years. On the
contrary, the disagreement between model 9 and the original model can be seen with the naked eye.

In reduction step 5, the rate coefficient of reaction 12
(H+PH2 → PH+H2) tends to infinity, as shown in Figure 3E. This
indicates that PH2 is consumed much faster (instantaneously relative
to the time granularity of the data) than the rest of the species.
Therefore, model 5 can do without PH2 as a variable and the
initial abundance of PH2 can be added to the initial abundance of
PH. Reaction 13 (H+PH3 → PH2+H2) produces PH2, so it can
be merged with reaction 12 to yield 2H+PH3 → PH+2H2, which
becomes new reaction 13. Similarly to the reduction step 4, the
rate law is derived from the rate-determining step, thus for the new
reaction 13, the rate law is v = k13[H][PH3]. In addition, since we are
assuming that PH2 is consumed immediately in reaction 12, reaction

3 (O+PH2 → PO+H2) is also erased. Figure 4E shows that after
these changes are applied, the evolution curves of model 5 remain
practically equivalent to those of the original model but with the
absence of CP and PH2.

Similarly to the former two steps, in the reduction step
6 (Figure 3F), the rate coefficient k13 of reaction 2H+PH3 →
PH+2H2 approaches infinity. In model 6, the initial abundance
of PH3 can, therefore, be added to the initial abundance of PH,
removing variable PH3. This reaction is not merged with any other
reaction because no reaction forms PH3, thus it is simply removed
in model 6. Figure 4F shows that in this new model, PO and PN do
notmatch the original curves for short times, but they do so for times
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longer than some 100 years. Interestingly, although PH3 disappears,
the evolution of PH does not resemble that of the original PH and,
on the contrary, plays a similar role to the original PH3. At this stage
of the dimensional reduction progression, the chemistry exerted by
PH, PH2 and PH3 has been condensed in the evolution of a single
species, PH.

The reduction step 7 is described in Figure 3G, where reaction
rate coefficient k9 tends to zero, and therefore reaction 9 (P + CN→
PN + C) can be eliminated. Figure 4G shows that this leads to a time
shiftwith respect tomodel 6 in Figure 4F: PHabundance decays over
longer timescales inmodel 7 than inmodel 6, while POandPN reach
detectable abundances (∼10−12 relative toH) later inmodel 7 than in
model 6.This represents a significant change in the newmodel for t <
103 yrs, although between t ∼ 103 − 105 yrs the abundance evolution
profiles of P, PO and PN remain indistinguishable from those of the
original model. In summary, reaction 9 plays an important role in
the dynamics at short times, but its omission does not affect the
dynamics of PO and PN within the time frame of interest.

Interestingly, the reduction step 8 shown in Figure 3H involves
3 parameters. The rate coefficients of reactions 4 (O + PH → PO
+ H), 10 (H + PH → P+H2), and 14 (C + N + PH → PN + C +
H) approach infinity at the same speed. These reactions consume
PH and transform it into PO, P, and PN, respectively. In the new
model, these reactions are instantaneous, and the initial abundance
of PH can be distributed into the initial abundances of PO, P, andPN,
as shown in Supplementary Section S4. These changes yield model
8 that, as can be seen in Figure 4H, only has P, PO and PN as
variables. Notably, at this stage of complexity reduction, the system
still predicts PO and PN abundances beyond t = 103 yrs that are
identical with the naked eye to those of the original model.

The last iteration of the FISR algorithm, reduction step 9, is
shown in Figure 3I. Reaction rate coefficient k1 tends to zero, and
consequently reaction 1 (N + PO → P + NO) is eliminated. Only
reactions 2 (N + PO → PN + O) and 6 (P + OH → PO + H)
remain. This is the first model with visible differences between its
PO and PN curves and those of the original model for t > 104 yrs
(Figure 4I). Anyway, while model 9 still predicts final abundances
of PO and PN close to the original ones, a new reduction step—as
described in Supplementary Section S5 —, yields a system with a
unique reaction andPOandPNcurves completely different from the
original model for all times, clearly warning that the model cannot
be simplified beyond model 9.

3.2.2 Predictive power and parameter sloppiness
of the reduced models

As shown in the previous Subsection, at least one parameter
tends toward an extreme value during each successive navigation
through the multi-dimensional parameter space. However, it is
important to note that the remaining parameters also undergo
minor changes. This occurs because the vector v(τi) can point in
any direction during each path iteration through the parameter
space. Additionally, the values of all parameters may change when
the new model is fitted. Figure 5A quantifies this phenomenon by
showing the evolution of the set of rate coefficients, k, throughout all
dimensional reduction steps, both after each parameter navigation
and after each parameter fitting. Notably, the rate coefficients that
persist at step 8 (k1, k2, and k6) exhibit minimal variation −0.3%—

compared to their original values from the KIDA database and
the work by García de la Concepción et al. (2021).

Figure 5B shows the cost—calculated using Equation 2— after
each parameter navigation and parameter fitting step. Since the
cost associated with model s quantifies the difference between its
predictions and those of the original model, low-cost values indicate
that the reduction steps preserve the model’s predictive power.
While the FISR algorithm identifies the path that minimizes the
cost increase, some growth in cost during the parameter navigation
stage is inevitable. However, the fitting process consistently offsets
this increase to some extent. Consistent with the observation that
the abundance plots of PO and PN at long timescales remain
indistinguishable from the original curves for models 1–8, the
cost during these steps remains very low, reaching 6× 10−7 at
the end of step 8. In contrast, the cost sharply rises to 0.55
by the end of step 9.

Finally, Figure 5C displays the eigenspectrumof eachmodel, i.e.,
the set of eigenvalues of the Fisher InformationMatrix g evaluated at
the initial point k(τ0) of each navigation step through the parameter
space. Since each eigenvalue quantifies the model’s sensitivity along
the direction of its corresponding eigenvector, and the eigenvalues of
the original model span 22 orders of magnitude, this plot highlights
the significant sloppiness and parameter hierarchy inherent in the
current models used to study the chemical evolution of phosphorus
in the ISM.

3.3 Final model for the chemical evolution
of phosphorus in the ISM

The FISR method applied in this study enabled the reduction of
the original 14-reaction model to significantly simpler models that
still accurately reproduce the chemical evolution of PO and PN in
the ISM beyond t ∼ 103 yrs—and note that only values beyond 104

yrs were used as input in the reduction algorithm. The algorithm
was initiated with rate coefficients calculated for a temperature of T
= 100 K, but note that the results presented here are not restricted
to a single temperature but are more general (see the Discussion and
Supplementary Section S6 for details). Notably, after eight reduction
steps, the chemical kinetics was simplified to include only reactions
1 (N + PO → P + NO), 2 (N + PO → PN + O), and 6 (P + OH
→ PO + H). Despite this significant reduction, the associated cost
(C ∼ 6× 10−7)was so low that the POandPNabundances beyond t ∼
103 yrs were indistinguishable from those predicted by the original
14-reaction model. As a result, model 8 provides a simplified and
interpretable framework that accurately reproduces the long-term
evolution of PO and PN formation predicted by the original model.
As illustrated in Figure 4H, P acts as a reservoir due to its much
higher abundance than other species. Since P is directly converted
into PO through reaction 6, PO becomes more abundant than PN
during the early stages of molecular cloud evolution. However, PO
is irreversibly transformed into PN via reaction 2, which accounts
for the resulting curves where [PN] > [PO] for t > 3× 104 yrs.

Model 8 was constructed through eight consecutive reduction
steps. Interestingly, while its dynamics is derived from reactions 1, 2,
and 6 with rate coefficients almost identical to those in the original
model, the overall output is not solely explained by the activity of
these reactions. It also incorporates the influence of reactions 4, 8,
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FIGURE 5
Evolution of the parameters, cost, and Fisher Information Matrix spectrum throughout the 9 dimensional reduction steps of the FISR algorithm applied
to the phosphorus astrochemical system in the ISM. (A) Values of the rate coefficients at the parameter navigation (P.N.) and fitting of the new model
(Fit.) (stages 1 and 3 of the FISR algorithm, respectively) for each reduction step. (B) Cost of the corresponding models after the parameter navigation
stage and the fitting stage of the FISR algorithm. A dashed horizontal line is displayed at cost C = 10−3 to represent a limit for tolerable cost. (C) Fisher
Information Matrix spectrum for each model s, i.e., the magnitude of all the eigenvalues of the FIM evaluated at the initial point of each navigation step.

10, 12, 13, and 14, all treated as infinitely fast, through modifications
in the initial conditions of PH, P, PO, and PN in model 8. These
adjustments account for the reactants transformed into products at
much faster rates than the remaining relevant reactions. Essentially,
these fast processes involved the cascade of PH3→ PH2→ PH, the
conversion of PH into P, PO, and CP, and the transformation of
CP into PN. The elimination of these reactions did not significantly
increase the cost, as they occur on much shorter timescales than
reactions 1, 2, and 6. Consequently, two distinct stages can be
identified in the phosphorus chemical evolution under study: an
early stage (up to t ∼ 103 yrs) and a late stage (from t ∼ 103 to 105 yrs).
Model 8 effectively describes the dynamics of P, PO, and PN during
the late stage, which accounts for themajority of the simulation time,
while accurately capturing the final outcomes of the early chemistry
without the need to reproduce its detailed dynamics. A schematic
representation of the processes governing the chemistry in both
stages is shown in Figure 6.

With one additional reduction step, reaction 1 is eliminated.
Model 9 represents the direct transformation of P into PO and
subsequently into PN, but with an associated cost of 0.55 that
is 105 times the cost of the three-reaction model. This increased
cost results in a noticeable discrepancy between the abundance
evolution profiles of PO and PN in model 9 and those of the original
model. When applying dimensionality reduction techniques, there
is always a trade-off between a model’s simplicity and the accuracy
of its results, with the choice of an appropriate minimal model
depending on the specific context and requirements. In this case,
model 8 provides highly accurate results (as evidenced by its
low cost) while remaining interpretable, making it effective for
explaining the formation of PO and PN. However, model 9 offers
an even simpler chemical network and may be suitable in situations
where a higher cost is acceptable. Finally, further parameter
reduction—step 10— leads the system to a single reaction, N +
PO → PN + O, with a cost that increases to approximately 160.
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FIGURE 6
Schematic representation of the evolution of phosphorus through the
chemical processes leading to the formation of PO and PN in the ISM
across two distinct time stages. During the early stage (up to 103 yrs),
PH forms via the dissociation of PH2 and PH3, subsequently reacting
with O, H, and C to produce P, PO, and CP, respectively. Finally, CP is
converted into PN through its reaction with N. In the late stage
(103–105 yrs), P and PO interconvert through reactions with OH and N,
respectively, while PN forms via the reaction of PO with N.

At this stage, the model can no longer accurately reproduce the
abundances of PO and PN, and this last step must be avoided. More
information on how to obtain the minimal model with the FISR
method and full details of the reduction process for step 10 are
provided in Supplementary Section S5.

4 Discussion

In this work, we introduce a novel dimensionality reduction
technique called the Fisher Information Spectral Reduction (FISR)
method. It measures the sensitivity of the output on the parameters
in any multi-parameter model, and we used it to reduce the
complexity of a system describing the chemical network of
phosphorus in the interstellar medium. This P-chemistry model,
previously studied in Fernández-Ruz et al. (2023), demonstrates
a strong parameter hierarchy, with high dependence on a few
parameter directions, while exhibiting a pronounced insensitivity
to the rest—commonly referred to as stiff and sloppy directions,
respectively. Using the FISRmethod, we have exploited this property
showing that a kinetic model with 3 chemical reactions (N + PO→
P + NO, N + PO→ PN + O, and P + OH→ PO + H, corresponding
to model 8 in Section 3) and their 3 associated rate coefficients can
predict time-evolution abundance profiles of PO and PN in the time
range between 103 and 105 yrs that are indistinguishable—with a
cost or error of approximately 10−7— from those of the original
model, which consisted of 14 chemical reactions and 14 rate
coefficients. Notably, the rate coefficients associated with these
3 chemical reactions remain nearly unchanged throughout the
reduction process, suggesting that even subtle changes in these

rate coefficients could drastically affect the system’s predictions. In
fact, their values differ by less than 0.3% between the original and
any of the reduced models, while the uncertainties associated with
them in the KIDA database correspond to a 1σ confidence interval
bounded by k/2 and 2k (Wakelam et al., 2012). In consequence,
as a key takeaway for observational and theoretical astrochemists,
our findings emphasize the importance of distinguishing between
sloppy and stiff parameters in astrochemical models to target the
key chemical reactions (the stiff parameters) whose rate coefficients
need to be determined with high accuracy either via laboratory
experiments or quantum chemical computations. A good example
is the rate coefficient of the reaction P + OH → PO + H,
found to be essential in our model and also in reproducing the
observed [PO]/[PN] ratios (Jiménez-Serra et al., 2018), and which
has recently been determined by quantum chemical calculations
(García de la Concepción et al., 2021). Other works have recently
explored the rate coefficients of the reactions N + PO → P + NO
and N + PO→ PN + O (Douglas et al., 2022), although the level of
theory of these quantum chemical computations is low.

We began this article by outlining the various challenges that
phosphorus astrochemistry and its connection to the origin of life on
Earth still present. Let us now examine how the drastic simplification
of the phosphorus astrochemical network to its fundamental core,
as presented here, enables a deeper understanding of its chemistry.
Despite the minimal model 8 having only 3 rate coefficients as
inputs, it accounts for the effects of other reactions without explicitly
including their rate coefficients in the equations. The reduction
steps in which one or more rate coefficients tend to infinity are
interpreted as the corresponding reactions being instantaneous, and
this translates into appropriate changes in the initial conditions.
As shown in Figure 4, in the original model (dashed lines), by t ∼
103 yrs all CP and PH are already depleted, in part due to the
dehydrogenation of PH2 and PH3. Therefore, the velocities of these
processes are irrelevant for the long-term dynamics of P, PO, and PN
as long as the associated reactions have reached equilibrium by t =
103 yrs. Based on this, we were able to explain PO and PN formation
as a two-step process: (i) an early stage, that can be considered
infinitely fast; and (ii) a late stage, whose dynamicsmust be explicitly
modeled with reactions 1, 2 and 6. The 2-stage interpretation of
P-chemistry in the ISM implies that the exact values of the rate
coefficients for the reactions operating on short timescales are not
necessary to accurately predict the abundance evolution profiles of
PO and PN on long timescales. However, the counterpart is that
nothing about the early chemistry (involving PH, PH2, PH3 and
CP) can be inferred solely from the PO and PN detections, since
we demonstrated that the observed abundances of PO and PN do
not serve to constrain the values of the rate coefficients of the
early stage. A more complex description of P-chemistry on short
timescales in star-forming regions would require a more complete
set of observational data, including, for example, the abundance
of PH3 in the interstellar medium (especially toward the same
regions where PO and PN have been detected). PH3, however,
remains elusive (Agúndez et al., 2008). Recent high-sensitivity
observations carried out with ALMA toward dark molecular clouds
have not yielded any detection (upper limit to the PH3 abundance
of ≤5× 10−12; Rivilla et al. (2018), Furuya and Shimonishi (2024)),
which may be due to: i) PH3 not being sufficiently abundant
in the gas phase (e.g., it may be heavily frozen-out onto ices
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or converted very rapidly into other P-bearing molecules), or ii)
PH3 being very difficult to observe from the ground given that
its lowest energy transitions appear at sub-millimeter wavelengths
(Agúndez et al., 2008).

It is worth noting that, although the FISR algorithm was
applied using rate coefficients calculated for T = 100 K, the
resulting reduced models remain good approximations (i.e., with
low associated cost) over a certain temperature range. This is due
to the system’s inherent sloppiness, which confers robustness to
variations in the rate coefficients and, consequently, to changes
in temperature. In Supplementary Section S6, we analyze the
generalization of models 1–9 —originally obtained at T = 100 K—to
temperatures ranging from 40 K to 160 K, without reapplying the
full algorithm at each temperature. This robustness is advantageous,
as it removes the need to re-run the computationally expensive
FISR algorithm for every temperature. We find that the dynamics
of phosphorus chemistry in the 40–160 K range can still be
interpreted as a two-stage process, being the approximation
of the early stage as instantaneous particularly accurate at
higher temperatures. At very low temperatures, applying the full
FISR method becomes necessary to obtain precise predictions.
Accordingly, Supplementary Section S8 shows the costs of models
1–9 at T = 40, 70, 100, 130, and 160 K.

Relative to other dimensionality reduction methods currently
available in the literature, the FISR method proposed here is
significantly simpler. Specifically, in comparison to the MBAM
algorithm (Transtrum and Qiu, 2014), upon which it is based,
the FISR algorithm employs a streamlined methodology that
is easier to implement, conceptually simpler, and admits larger
output vectors (see Supplementary Section S7). Nevertheless, it is
important to note that neither the FISR method nor the MBAM
is currently suitable for application to very large systems due to
several limitations: (i) both are based on a streamlined algorithmic
structure that cannot be parallelized, (ii) each point of the trajectory
navigating the parameter space requires the diagonalization of the
Fisher Information Matrix computed numerically from the solution
of the ODEs—in the phosphorus network, we were able to solve the
model analytically, but this will not generally be feasible—and (iii)
manual analysis of each reducedmodel is required at the end of each
reduction step. In summary, it is crucial to continue advancing this
promising line of research by developing new algorithms capable of
analyzing more complex systems. Such advancements will enable a
comprehensive study of the chemistry of the interstellar medium,
where we believe parameter sloppiness is the rule rather than the
exception.
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