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Bursty bulk flows (BBFs) play a crucial role in transporting energy, mass, and
magnetic flux from the Earth’s magnetotail to the near-Earth region. However,
their impulsive nature and small spatial scale pose significant difficulties for in-
situ observations, given that only a handful number of spacecraft operate within
the vast expanse of the magnetotail. Consequently, accurately predicting their
behavior remains a challenging goal. In this study, we employ the XGBoost
machine learning algotithm to predict the variation range of several essential BBF
properties, including duration, magnetic field, plasma moments, and specific
entropy parameters. The observed characteristics of a BBF are shaped by its
formation in the downstream tail and its journey until it reaches the spacecraft.
Therefore, we use both the background properties of the plasma sheet prior to
the arrival of the BBF and the attributes of indirectly related variables during the
BBF interval as inputs. Trained on 17 years of THEMIS data, we explore different
input configurations. One approach involves incorporating optimal parameter
combinations, utilizing as many input parameters as possible to predict upper
and lower bounds of a target variable. Within this framework, we further apply
the leave-one-feature-out method to quantitatively assess the contribution
of each input, identifying the most dominant factor influencing BBFs in
a statistical sense. Another approach involves cross-instrument prediction,
leveraging measurements from a different payload. Our findings reveal that
including observed background values enhances prediction accuracy by 10–20
percentage points. This study offers data-driven insights to improve BBF
predictability, providing valuable guidance for future space weather monitoring
and theoretical research.

KEYWORDS

parameter prediction, MultiOutputRegressor, bursty bulk flows, cross-instrument,
minimum, maximum, range

1 Introduction

The plasma sheet in Earth’s magnetosphere is a highly dynamic region that plays
a critical role in transporting energy and particles during geomagnetic active times
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(Angelopoulos et al., 1994). Within this region, bursty bulk flows
(BBFs) —localized and transient elevation in ion bulk flow speed
to the order of hundreds of km/s—are key to understanding
how energy is transferred from the magnetotail to the inner
magnetosphere (Angelopoulos et al., 1992). Numerous studies have
highlighted the critical role of BBFs in the transport of mass,
energy, and magnetic flux from the magnetotail to the near-
Earth region during geomagnetic activity. Observational analyses,
such as those by Nakamura et al. (2001), Nakamura et al.
(2002), Nakamura et al. (2005), revealed that BBFs are closely
associated with dipolarization fronts and plasma sheet thinning,
underscoring their importance in magnetotail reconfiguration.
Complementary investigations by Cao et al. (2013) and Yao et al.
(2013) further established statistical relationships between BBFs
and field-aligned currents or flow bursts, providing insight into
their spatial and temporal properties. Forsyth et al. (2008) and
Grocott et al. (2004) demonstrated how BBFs influence ionospheric
signatures and substorm dynamics, while Henderson et al. (1998)
connected BBFswith auroral intensifications. Together, these studies
underscore the importance of accurately characterizing BBFs to
improve our understanding of magnetospheric dynamics. BBFs are
the observational counterpart of plasma-sheet bubbles, which are
theoretically defined as depleted magnetic flux tubes containing
lower entropy than their neighbors (e.g., Pontius and Wolf, 1990;
Birn et al., 2004; Runov et al., 2017). The BBFs or bubbles are
often created by magnetic reconnection events (Sitnov et al.,
2005; Birn et al., 2011), but may also arise from other explosive
magnetotail processes (e.g.,Yang et al., 2011; Hu et al., 2011;
Sitnov et al., 2019).They can further lead to significant spaceweather
phenomena, such as auroral intensification (Nishimura et al., 2010;
Shi et al., 2012) and energetic particle flux enhancements in the inner
magnetosphere (Ohtani et al., 2006; Yang et al., 2011).

Although statistical studies that incorporate a set of physical
parameters and numerical simulations using advanced MHD
or kinetic models have provided invaluable insights, predicting
the characteristics of BBFs remains extremely challenging. This
difficulty arises from themultiscale nature of magnetotail dynamics,
limited observational coverage, and the complex interplay of
physical processes driving BBF formation and evolution. Statistical
analyses of BBFs involve a number of physical parameters –
such as magnetic field, plasma bulk velocity, thermal pressure,
temperature and number density – as well as other complex
quantities such as magnetic flux transport, specific entropy, electric
field and particle distribution functions (e.g., Ohtani, 2004; Liu et al.,
2013; Runov et al., 2015; Runov et al., 2017). Like many other
statistical approaches, the results often become heavily smoothed,
providing only rough estimates of likely ranges. For instance,
the left panels of Figure 1 (adapted from Ohtani, 2004) show
aggregated measurements that obscure time variations during the
BBF injection. Consequently, these statistics cannot yield reliable
prediction results for any specific event.

Numerical simulations offer an alternative approach. Certain
simulations aim to qualitatively explain the variability of BBFs
but face considerable challenges in accurately replicating actual
events. For instance, Chen and Wolf (1999) formulated an MHD
theory to simulate BBF propagation, treating the moving flux

tube as an infinitely thin filament within a 2D stationary medium
in MHD equilibrium. Meanwhile, simulations employing the
Rice Convection Model demonstrated an increase in energetic
particle flux at geosynchronous orbit due to a BBF’s deep
injection, generating a dipolarization front via coupling with
a force equilibrium solver; however, these simulations omitted
inertial effects (Yang et al., 2011). Birn et al. (2011) utilized a
3D one-fluid MHD code to study BBF propagation, observing
damped oscillations in the near-Earth region. Yet, their model was
confined to a rectangular box encompassing only the nightside
region, with perfectly conducting boundaries, and the quantitative
accuracy of their idealized simulations hinged on the selection
of scaling constants. Other simulations incorporate solar wind
conditions as inputs for global MHD codes, andmay thereby deliver
relatively satisfactory predictions (e.g., Ashour-Abdalla et al., 2011;
Merkin et al., 2019). However, these simulations are computationally
expensive, and the agreement between model and observation is
usually limited to only a few events. An example in the center
and right panels of Figure 1 [adapted from Merkin et al. (2019)]
illustrates an overall good agreement but reveals discrepancies in the
precise timing and magnitudes of key parameters.

Building upon prior research, recent advancements in artificial
intelligence (AI) technology and an ever-expanding data pool
now offer a more robust foundation for improving prediction
(Camporeale, 2019; Bortnik et al., 2018). In this study, our ultimate
goal is to provide reliable predictions of key BBF properties—such
as mean, maximum, minimum and range—once a BBF occurs. This
objective involves two main aspects.

First, we aim to maximize prediction accuracy by utilizing
as many relevant input parameters as possible. To this end,
we optimized the selection of input parameters by analyzing
their distribution and relevance to BBF prediction using Kernel
Density Estimation (Chen, 2017). We then employed eXtreme
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), a
powerful machine learning (ML) algorithm capable of modeling
complex, nonlinear relationships in high-dimensional data, to
develop a robust predictive model for the characteristics of key BBF
parameters.We further applied the leave-one-feature-outmethod to
quantitatively assess the contribution of each input, identifying the
most dominant factor influencing BBFs in a statistical sense.

Second, we focus on enabling cross-instrument prediction.
As satellites age, certain instruments may reach the end of their
operational lifespan and cease to providemeasurements. In addition,
some satellitemissions are originally designed to carry only a specific
type of payload, resulting in incomplete observational coverage
of key space weather events. For instance, the GOES satellites
in geosynchronous orbit have accumulated decades of magnetic
field data but lack plasma measurements, while the LANL satellites
provide long-term plasma data but lack magnetic field observations.
These limitations highlight the need for methods that can
compensate for missing data. To address this, our study emphasizes
cross-instrument prediction—leveraging complementary data
from different payloads to estimate unmeasured BBF-related
variables. By employing machine learning models trained on
both plasma and magnetic field parameters, we can supplement
incomplete datasets and improve the utility of existing satellite
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FIGURE 1
(Left panels, adapted from Figure 3 of Ohtani, 2004). Statistical results of a superposed epoch analysis of key quantities surrounding the arrival of BBFs
from t0 − 10min to t0 + 10min, in which t0 is the first point of sharp Bz jump [Center and right panels, adapted from Figure 14 of Merkin et al. (2019)].
The center panels show a real event which was observed by MMS-1 (Magnetospheric Multiscale Mission) on 9 August 2016 between 09:00 and 10:00
UT. The right panels are the corrseponding MHD simulation results which are sampled along the MMS spacecraft trajectory.

TABLE 1 Summary of machine learning model inputs and targets.

Dataset Structure Variables Features

inputs

BBF Magnetic parameters: Bx, By, Bz, |B|, θB, Pm;
Moments and related parameters: Vix, Viy, Viz, |Vi|, Vi⊥x, Vi⊥y, Vi⊥z,
|Vi⊥|, Ni, Ne, Ti, Te, Pp, Ti/Ni, Ti/Te, Pi/N

5/3
i , Pe/N

5/3
e ;

Other parameters: Ex, Ey, Ez, β, Φ;
Positions: x, y, z.

Mean, Median, Standard Deviation, Minimum, Maximum, Range,
1st Quartile, 3rd Quartile

background Magnetic parameters: Bx, By, Bz, |B|, θB, Pm;
Moments and related parameters: Vix, Viy, Viz, |Vi|, Vi⊥x, Vi⊥y, Vi⊥z,
|Vi⊥|, Ni, Ne, Ti, Te, Pp, Ti/Ni, Ti/Te, Pi/N

5/3
i , Pe/N

5/3
e ;

Other parameters: Ex, Ey, Ez, β, Φ;
Positions: x, y, z.

Mean

targets BBF

Duration of BBF: ∆tBBF

Magnetic parameters: Bx, By, Bz, |B|, θB, Pm;
Moments and related parameters: Vix, Viy, Viz, |Vi|, Vi⊥x, Vi⊥y, Vi⊥z,
|Vi⊥|, Ni, Ne, Ti, Te, Pp, Ti/Ni, Ti/Te, Pi/N

5/3
i , Pe/N

5/3
e ;

Other parameters: Ex, Ey, Ez, β, Φ.

Mean, Minimum, Maximum, Range

observations. This approach not only enhances the completeness
of BBF-related information but also contributes to a more accurate
understanding of magnetospheric dynamics and supports improved
space weather forecasting capabilities.

The paper is organized as follows. Section 2 describes the
data collection, the inputs and targets for the ML model.
Section 3 explores the application of ML techniques for predicting
outcomes based on these parameters. For further analysis, we
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FIGURE 2
Comparison of the probability distributions of the average values of Vi⊥x with (a) Bz, (b) Ey, (c) Ti/Te, (d) Ni, (e) Bx, and (f) log10(β) between the 3,207 BBF
events (blue) and their background environments (red).
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TABLE 2 Summary of using optimal combination of parameters to predict the mean, maximum, minimum, and range of BBF parameters.

Sequence Inputs Targets

Variables during
BBF and

background

Features Additional
variables during
background

Variables during
BBF

Features

1 Bx, By, Bz, |B|, θB, Pm, Vix,
Viy, Viz, |Vi|, Vi⊥x, Vi⊥y,
Vi⊥z, |Vi⊥|, Ni, Ne, Ti, Te,
Pp, Ti/Ni, Ti/Te, Pi/N

5/3
i ,

Pe/N
5/3
e , Ex, Ey, Ez, β (Φ,

x, y, zareexcluded.)

BBF interval: Mean,
Median, Standard
Deviation, Minimum,
Maximum, Range, 1st
Quartile, 3rd Quartile;
Background interval:
Mean

- ∆tBBF-

2 Vix, Viy, Viz, |Vi|, Ni, Ne,
Ti, Te, Pp, Ti/Ni, Ti/Te,
Pi/N

5/3
i , Pe/N

5/3
e , x, y, z

(Bx, By, Bz, |B|, θB, Pm,
Vi⊥x, Vi⊥y, Vi⊥z, |Vi⊥|, Ex,
Ey, Ez, β, Φareexcluded.)

Mean(Bz) Bz

Mean, Maximum,
Minimum,

Range

3 Mean(|B|) |B|

4 Mean(Pm) Pm

5 Bx, By, Bz, |B|, θB, Pm, Ni,
Ne, Ti, Te, Pp, Ti/Ni,
Ti/Te, Pi/N

5/3
i , Pe/N

5/3
e ,

β, x, y, z (Vix, Viy, Viz,
|Vi|, Vi⊥x, Vi⊥y, Vi⊥z,
|Vi⊥|, Ex, Ey, Ez,
Φareexcluded.)

Mean(|Vi|) |Vi|

6 Ni, Ne, Ti, Te, Pp, Ti/Ni,
Ti/Te, Pi/N

5/3
i , Pe/N

5/3
e ,

β, x, y, z (Bx, By, Bz, |B|,
θB, Pm, Vix, Viy, Viz, |Vi|,
Vi⊥x, Vi⊥y, Vi⊥z, |Vi⊥|, Ex,
Ey, Ez, Φareexcluded.)

Mean(|Vi⊥|) |Vi⊥|

7 Bx, By, Bz, |B|, θB, Pm, Vix,
Viy, Viz, |Vi|, Vi⊥x, Vi⊥y,
Vi⊥z, |Vi⊥|, Ti, Te, Ti/Te,
Ex, Ey, Ez, Φ, x, y, z (Ni,
Ne, Pp, Ti/Ni, Pi/N

5/3
i ,

Pe/N
5/3
e , βareexcluded.)

Mean(Ni) Ni

8 Mean(Ne) Ne

9 Bx, By, Bz, |B|, θB, Pm, Vix,
Viy, Viz, |Vi|, Vi⊥x, Vi⊥y,
Vi⊥z, |Vi⊥|, Ni, Ne, Ex, Ey,
Ez, Φ, x, y, z (Ti, Te,
Ti/Te, Pp, Ti/Ni, Pi/N

5/3
i ,

Pe/N
5/3
e , βareexcluded.)

Mean(Ti) Ti

10 Mean(Te) Te

11 Mean(Ti/Te) Ti/Te

12 Bx, By, Bz, |B|, θB, Pm, Vix,
Viy, Viz, |Vi|, Vi⊥x, Vi⊥y,
Vi⊥z, |Vi⊥|, Ex, Ey, Ez, Φ,
x, y, z (Ni, Ne, Ti, Te,
Ti/Te, Pp, Ti/Ni, Pi/N

5/3
i ,

Pe/N
5/3
e , βareexcluded.)

Mean(Ti/Ni) Ti/Ni

13 Mean(Pp) Pp

14 Mean(Pi/N
5/3
i ) Pi/N

5/3
i

designed two primary categories of parameter combinations.
Section 4.1 highlights the optimal parameter combination and
its corresponding prediction results, while Section 4.2 delves into
cross-instrument prediction combination and their associated
outcomes. In Section 5, we discuss the challenges and opportunities
in predicting the behavior of physical parameters, offering valuable
references and ideas for future research.

2 Dataset description

2.1 Observation data and BBF identification

This study utilizes ∼17 years of magnetic field and plasma
measurements from the five THEMIS probes (Angelopoulos,
2008), covering the period from March 2007 to December
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FIGURE 3
Input-output structure illustrated using |Vi| prediction as an example of sequence 5 of Table 2 in optimal combination. The blue dotted boxes represent
the inputs observed during the background period, the pink dashed boxes represent the inputs observed during the BBF interval. The red dashed box
represents the prediction target during BBF. Purple arrows indicate dependencies between inputs and the target variable.

2023. The data include magnetic vectors measured by the Flux
Gate Magnetometer (FGM)(Auster et al., 2008), as well as ions
(5 eV–25 keV) and electrons (5 eV–30 keV) measured by the
electrostatic analyzer (ESA) (McFadden et al., 2008), and ions
(25 keV–6 MeV) and electrons (25 eV–1 MeV) measured by the
solid-state telescope (SST). The ESA and SST data are combined to
provide ion and electronmoments such as thermal pressure, density,
temperature, and bulk flow velocity (Angelopoulos, 2008). Unless
stated otherwise, the Geocentric Solar Magnetospheric (GSM)
coordinate system is used. The moments data are interpolated to
align with the FGM data due to a timestamp offset, resulting in all
parameters having a uniform time resolution of 3 s. Additionally,
we compute magnetic field inclination angle θB (arctan Bz

|Bx|
), the

electric field E ( = −V×B, assuming frozen-in flux condition), the
amount of magnetic flux transported earthward, per unit Y, Φ ( =
∫Eydt), total plasma thermal pressure Pp (ion pressure plus electron

pressure), magnetic pressure Pm, plasma beta β = Pp/Pm, specific
entropy (Pi/N

5/3
i and Pe/N

5/3
e , whereN denotes number density, and

the subscriptions i and e denote ions and electrons), as well as the
ion-electron temperature ratio Ti/Te.

Adopting themethodology of Feng and Yang (2023), we identify
BBFs using the following traditionally employed criteria: −20 ≤
X ≤ −6RE, |Y| ≤ 10RE, plasma beta β > 0.5, Bz > 0nT, and Vi⊥x ≥
200km/s (where Vi⊥x is the X component of the ion bulk velocity
perpendicular to the magnetic field). This process yields a total of
3,207 BBF events, which are shown in Supplementary Table S1.

To determine the key features of the BBF parameters such as
mean, maximum, minimum, etc., it is essential to know the exact
start and end times of each BBF. After conducting experiments, we
decide on the following method to establish the start and end times
of BBFs, as well as the background periods. Using a three-minute
sliding window, this study requires at least one data point within
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TABLE 3 MAPE of prediction results using the optimal combination on the validation dataset and test dataset. It should be noted that the result for ∆tBBF
in the mean column represents ∆tBBF itself.

Sequence Targets Validation dataset Test dataset

Mean Max Min Range Mean Max Min Range

1 ∆tBBF 33.6% - - - 32.2% - - -

2 Bz 37.8% 17.0% 286.2% 27.2% 26.1% 17.7% 221.4% 30.7%

3 |B| 14.3% 10.8% 65.0% 22.0% 15.8% 11.5% 80.1% 25.7%

4 Pm 30.1% 22.4% 478.8% 24.8% 34.0% 25.4% 1453.7% 29.9%

5 |Vi| 19.8% 21.0% 48.4% 27.0% 21.0% 21.9% 32.2% 27.9%

6 |Vi⊥| 18.4% 21.3% 61.8% 26.2% 20.2% 21.9% 47.8% 26.3%

7 Ni 13.1% 14.5% 20.3% 31.0% 12.7% 14.4% 18.8% 31.8%

8 Ne 13.3% 15.4% 26.8% 31.4% 13.1% 14.1% 23.9% 30.4%

9 Ti 10.9% 12.0% 20.4% 34.1% 11.4% 11.9% 18.5% 34.5%

10 Te 19.9% 25.3% 25.7% 54.1% 19.6% 29.5% 26.4% 51.0%

11 Ti/Te 17.8% 23.8% 33.6% 44.8% 18.1% 22.0% 30.2% 41.4%

12 Ti/Ni 25.7% 33.0% 34.6% 56.0% 24.5% 32.9% 33.7% 60.7%

13 Pp 12.2% 10.8% 35.0% 23.7% 12.6% 11.6% 36.6% 25.3%

14 Pi/N
5/3
i 19.1% 24.2% 26.1% 51.9% 20.1% 24.8% 27.0% 53.2%

the sliding window to fulfill the aforementioned criteria of BBFs.
The BBF start time is marked by the first instance of |Vi⊥| (the ion
bulk velocity prependicular to themagnetic field) exceeding 50 km/s
during the sliding process, and the end time is determined when the
window continues to later times until finding the first instance of
|Vi⊥|≤ 50km/s . The time duration between its start time and end
time is defined as the duration of the BBF,∆tBBF . For the background
interval, its start time is defined as the first point 3 minutes prior
to the |Vi⊥| ≥ 200km/s. The end time of the background interval
coincides with the bubble (BBF) start time.

2.2 Machine learning dataset

From a physics perspective, the properties of BBFs are shaped
by both their source conditions and the ambient plasma sheet
environment through which they travel. Sergeev et al. (2012)
demonstrated that BBFs with comparable reductions in the entropy
parameter can penetrate to different locations, depending on the
entropy parameter gradient in the background plasma, driven by
interchange instability (Wolf et al., 2009). Comprehensive MHD
simulations using parameter-controlledmodeling have revealed that
both the downstream properties of BBFs in the magnetotail and
the background magnetotail configurations can lead to distinct
evolution (Birn et al., 2004). Thus, accurate predictions require
incorporating both pre-event background conditions and BBF-
specific properties as inputs.

In our machine learning (ML) model, the “input” represents
inputs or independent variables, while the “target” represents the
outputs or dependent variables. Each variable is characterized by
multiple statistical features. As listed inTable 1, we select 31 variables
as inputs. For each input variable, we extracted eight features within
the BBF interval—mean, maximum, minimum, range (maximum
minus minimum), standard deviation, median, first quartile, and
third quartile—along with one feature (mean) calculated from the
pre-BBF background interval.

The targets include the BBF duration and a subset of physical
variables considered predictable, each represented by four features:
mean, maximum, minimum, and range during the BBF period.
All predictions are conducted within this defined parameter space.
To build and evaluate the model, a total of 3,207 BBF events
are randomly split into training, validation, and test sets using a
7:1.5:1.5 ratio.

2.3 Selection of predictor variables

To address potential overfitting in the machine learning
model and ensure that the predictions reflect meaningful physical
connections, we aim tominimize the inclusion of irrelevant variables
that could introduce noise or reduce themodel’s predictive accuracy.
This is achieved by analyzing the distributions of various variables
during the background and BBF periods using kernel density
estimation (KDE). By comparing the differences between these
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TABLE 4 RMSE of prediction results using the optimal combination on the validation dataset and test dataset. It should be noted that the result for ∆tBBF
in the mean column represents ∆tBBF itself.

Sequence Targets RMSE units Validation dataset Test dataset

Mean Max Min Range Mean Max Min Range

1 ∆tBBF s 75.2 - - - 59.1 - - -

2 Bz nT 2.8 4.0 3.8 4.7 2.7 3.9 3.7 4.9

3 |B| nT 3.2 3.9 4.1 4.3 3.5 3.8 4.2 4.7

4 Pm nPa 0.070 0.118 0.064 0.095 0.075 0.103 0.058 0.093

5 |Vi| km/s 58.7 115.7 28.9 115.4 60.4 114.6 27.7 115.6

6 |Vi⊥| km/s 42.6 109.5 14.7 112.5 45.7 104.7 14.7 103.3

7 Ni cm-3 0.072 0.118 0.066 0.114 0.071 0.115 0.060 0.123

8 Ne cm-3 0.226 0.168 0.221 0.209 0.122 0.179 0.124 0.219

9 Ti eV 632.1 921.8 646.3 826.3 665.6 925.7 628.9 834.9

10 Te eV 373.7 735.6 303.8 694.4 412.6 857.3 275.5 755.3

11 Ti/Te - 2.2 3.8 1.8 3.0 3.5 5.3 3.4 3.3

12 Ti/Ni keV·cm3 5.0 9.8 3.5 9.1 4.6 9.2 3.6 9.1

13 Pp nPa 0.051 0.076 0.056 0.067 0.054 0.097 0.058 0.060

14 Pi/N
5/3
i nPa·m5 0.399 0.693 0.325 0.680 0.402 0.710 0.338 0.667

two time periods, we focus on identifying parameters that exhibit
significant changes, as these are likely to have the potential for
predictivity (i.e. relevant variables). The predictor variables in our
model were selected based on their observed variability during the
BBF period. Figure 2 illustrates the probability distribution of these
parameters, with the central panel showing the overall probability
density, and the left and top panels presenting the histogram
distributions along each axis. The horizontal axis represents the
mean value of Vi⊥x for all BBF events, which is our most critical
BBF velocity criterion. The vertical axis corresponds to the mean
value of a specific variable. In the comparison, if the histograms
along the vertical axis show that the BBF (blue) and background
(red) distributions have a similar shape, and the axes of symmetry
of this distribution overlap, we consider there to be no difference.
Otherwise, we conclude that the parameter’s distribution during the
BBF period differs from that of the background.These visualizations
provide a comprehensive view of the distributional characteristics
and help us isolate variables that deviate notably during the BBF
period. For example, panels (a) and (b) confirm increases of Bz and
Ey from during the background period to the BBF period; panels (c)
and (d) show decreases in Ti/Te and Ni during BBFs; while panels
(e) and (f) indicate no significant difference between the background
and BBF in Bx and β. Thus Bx and β can be considered as irrelevant
variables.

Using KDE, we statistically analyze the distributions of mean
values for the 28 physics parameters (excluding the three positional

parameters) across all 3,207 BBFs during both the BBF and
background periods. The analysis confirms that 19 parameters
exhibit significant changes during the BBF period compared to the
background period. Bz, |B|, θB, Pm, Vix, |Vi|, Vi⊥x, |Vi⊥|, Ti, Te,
Ti/Ni, Pi/N

5/3
i , Pe/N

5/3
e , Ey, and Φ all increase during the BBF period

compared to the values during the background periods. In contrast,
Ni, Ne, Pp, and Ti/Te decrease. The remaining 9 parameters show
little to no variation and are thus excluded from further analysis.The
complete results can be found in the Supplementary Figure S1.These
findings highlight the importance of including these 19 parameters
that show significant differences.

3 Methodology

Based on the fact that our sample size is low, we choose to
use traditional machine learning methods. Traditional machine
learning methods involve algorithms that learn patterns from data
to make predictions or decisions, and these methods typically
require manual feature extraction and selection, where domain
expertise is crucial to identify relevant attributes from raw data
(Bishop, 2006). Among these models, we evaluate three machine
learning models: Support Vector Regression (SVR) (Smola and
Schölkopf, 2004), Random Forest (Biau and Scornet, 2016), and
XGBoost (Chen andGuestrin, 2016).After assessing their prediction
performance on our test dataset, we select the XGBoostmodel as our
prediction method. It builds decision trees sequentially, with each
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FIGURE 4
Comparison results between the observed and predicted values of
BBF duration in the test set using optimal combination of parameters.

tree correcting the residuals (errors) of its predecessors. The trees
are combined in an additivemanner to enhancemodel performance,
and regularization techniques are employed to prevent overfitting
(Kakade et al., 2012). Specifically, we utilize a gradient boosting-
based regression algorithm called “XGBRegressor” to model non-
linear relationships in the data. Since we aim to predict multiple
feature values of a specific BBF variable—including the mean,
maximum, minimum, and range of the target parameter—we apply
the MultiOutputRegressor (Pedregosa et al., 2011) wrapper to
manage multiple output variables simultaneously, fitting a separate
regressor for each target to ensure flexibility and efficiency.

After establishing the model, the subsequent step is to evaluate
and compare its performance in predicting diverse target variables
under various parameter combinations. In this study, we adopt a
two-pronged approach for performance evaluation. We consider a
Mean Absolute Percentage Error (MAPE) (Hyndman and Koehler,
2006) of 35% as the threshold for acceptable prediction. We
empirically determined the 35% MAPE threshold through trial and
error and manual inspection, balancing predictive accuracy with
practical applicability. MAPE is advantageous as it represents errors
in percentage terms, offering more intuitive insights compared to
metrics like the Root Mean Squared Error (RMSE), which presents
results in physical units. However, it should be noted that MAPE
has its limitations. It can result in very large errors when the values
are small. To provide a more comprehensive assessment, in the
following results section, we will present tables for both MAPE and
RMSE. This dual - metric presentation allows for a more thorough
understanding of the model’s performance, especially considering
that our parameters, such as velocity, can range over four orders
of magnitude, from 0.1 to 103 km/s. By using MAPE as an initial
evaluation criterion and supplementing it with RMSE, we aim to
facilitate a more complete performance assessment across different
variables.

4 Results

In our study, we examine diverse variable combinations and
categorize the prediction tasks into two groups. These two groups
are “Prediction Using Optimal Combination of Parameters” and
“Cross - Instrument Prediction of Magnetic Field Parameters Using
Plasma Moments.”

4.1 Prediction using optimal combination
of parameters

In the first combination, referred to as the optimal combination
of parameters, we utilize as many variables as possible to predict
the target feature of a given variable. Our goal is to determine
the upper and lower bounds of target variables during the
BBF period. The target variable itself and any parameters that
can be derived physically must be excluded from the input
variables. For instance, when predicting the magnetic field,
magnetic pressure cannot be included in the parameters. Through
numerous attempts, we also discover that incorporating the
mean value of the background of a target variable enhances the
accuracy of its prediction, as shown in “Inputs – Additional
variables during background” column in Table 2. Additionally,
when predicting physical variables, adding positional parameters
improves the MAPE value of prediction results by approximately
one percentage point. The “Inputs – Variables during BBF and
background” column in Table 2 presents all combinations of input
physical parameters that are unrelated to the target variables and
positional parameters.

This work focuses on predicting the previously selected 19
variables, which would likely change based on the probability
distribution analysis. If the MAPE of the mean value is below 35%
and at least two of the maximum, minimum, and range MAPE
values in the test set are below 35%, we consider the prediction
to be valid. This further eliminates six variables, including θB,
Vix, Vi⊥x, Pe/N

5/3
e , Ey, and Φ. Ultimately, 13 physical variables are

deemed predictable. The BBF duration ∆tBBF and 13 other physical
parameters constitute all of our target variables, as shown in Table 2.
Taking the prediction sequence 5 as an example, the targets are
four features, the mean, maximum, minimum and range of |Vi|
during the BBF period. The inputs include 21 variables. Among
them, twenty are listed in the “Inputs – Variables during BBF
and background” column, which does not include velocity. For
each of these twenty variables, we calculate eight feature values
(mean, median, standard deviation, minimum, maximum, range,
1st quartile, and 3rd quartile) during the BBF interval and one
feature value (mean) during the background interval, yielding a
total of 180 (9 × 20) feature values. One additional input is the
mean of |Vi| during the background period. Therefore, a total of
181 feature values are used to predict four target feature values
for this case.

The data structure used in the model is illustrated in Figure 3.
This diagram illustrates how we organize the input and target
features of sequence 5 of Table 2 in optimal combination. The input
variables include magnetic components Bz, magnetic pressure Pm,
ion number density Ni, temperature Ti and other variables that are
independent of the velocity.We calculated statistical features of these
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FIGURE 5
Comparison results between the observed values and the predicted values of (a) Bz, (b) Pm, (c) Ni, and (d) Pi/N

5/3
i in the test set using optimal

combination of parameters.
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FIGURE 6
The BBF parameters observed by THD on 07 February 2008, between 01:10:49 and 01:22:49 at the position X = −8.8, Y = 3.4, and Z = − 1.9RE. The blue
vertical line indicates the start of the background period. The first magneta vertical line marks the beginning of the BBF, coinciding with the end of the
background period. The second magneta vertical line indicates the end of the BBF. The yellow shade region indicate our model prediction, with the left
(right) edge of the represents the predetermined BBF’s start (end) time [i.e., the width of the area is the predicted duration of the BBF (∆tBBF)]. The lower
(upper) boundary of the yellow shaded area is the predicted minimum (maximum) value of the corresponding variable during the BBF period. (a–n)
represent Vi⊥x, Bz, |B|, Pm, |Vi|, |Vi⊥|, Ni, Ne, Ti, Te, Ti/Te, Ti/Ni, Pp and Pi/N

5/3
i respectively.

inputs separately within the background interval (blue boxes) and
the BBF interval (pink boxes).These features are then used to predict
BBF target characteristics (red box), such as the variation of |Vi|
during the BBF period.

The statistical metric MAPE of the prediction results is
showed in Table 3. The corresponding RMSE results are shown
in Table 4.

The comparison between the observed and predicted values
for BBF duration in the test set is shown in Figure 4, while
the comparisons for Bz, Pm, Ni, and Pi/N

5/3
i are shown in

Figure 5. Comparisons for other variables are provided in
Supplementary Figure S2. Readers may notice that the MAPE for
the predicted minimum value of Pm is high in the test dataset, as
shown in Figure 5b. This is because the minimum value of Pm is
close to zero. To investigate further, we examined the predicted
RMSE for the minimum value of Pm, which is 0.058 nPa in the test
set as shown in Table 4, confirming that the small value contributes
to the large MAPE metric.

Figure 6 illustrates how well the BBF duration and the
corresponding maximum and minimum bounds of key physical
parameters are predicted using our model. Panel (a) displays the
main parameter Vi⊥x used to identify BBFs, which helps pinpoint
their occurrence. Panels (b)-(n) show the time series of physical
parameters measured by the satellite, and the yellow shaded area
indicates the predicted BBF duration and the maximum and
minimum values of target variables. The results indicate that BBF
duration is accurately predicted, differing from actual observations
by only about 20 s. The ranges for Bz, |B|, Ti, Te, Ti/Te, Ti/Ni,
Pp, and Pi/N

5/3
i are also predicted very well, with the time series

during the BBF period largely falling within the shaded area. For
Pm, |Vi|, |Vi⊥|, Ni, and Ne, the predictions for minimum values are
more accurate. This is because the maximum value errors are larger
due to sharp peaks in velocity’s time series and the mean value
of the number density in the background is higher than that in
the BBF duration. Overall, our parameter combination effectively
predicts the variation range of these parameters. If a scientist
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TABLE 5 Summary of the most influential input features for different target features.

Target featureduring BBF The most influential input feature

feature name ∆MAPE (in unit of percentage point) ∆RMSE

Mean(Bz) Mean(Bz) duing Background 31.42 2.226 nT

Max(Bz) Mean(Bz) duing Background 5.91 1.611 nT

Min(Bz) Mean(Ni) during BBF 300.72 0.045 nT

Range(Bz) Range(Vy) during BBF 1.36 0.252 nT

Mean(|B|) Mean(|B|) duing Background 16.30 3.564 nT

Max(|B|) Mean(|B|) duing Background 6.62 2.677 nT

Min(|B|) Mean(|B|) duing Background 59.10 2.944 nT

Range(|B|) Range(Pp) during BBF 1.02 0.184 nT

Mean(Pm) Mean(Pm) duing Background 53.19 0.101 nPa

Max(Pm) Mean(Pm) duing Background 22.92 0.100 nPa

Min(Pm) Mean(Pm) duing Background 1220.15 0.037 nPa

Range(Pm) Mean(Pm) duing Background 8.78 0.023 nPa

Mean(|Vi|) Range(Pm) during BBF 1.00 2.298 km/s

Max(|Vi|) Range(Pp) during BBF 0.68 3.438 km/s

Min(|Vi|) Max(Pe/N
5/3
e ) during BBF 1.87 1.396 km/s

Range(|Vi|) 1st Quartile(Pi/N
5/3
i ) during BBF 0.76 −0.735 km/s

Mean(|Vi⊥|) Max(x) during BBF 0.80 1.069 km/s

Max(|Vi⊥|) Mean(β) during Background 0.71 1.761 km/s

Min(|Vi⊥|) Standard Deviation(β) during BBF 6.10 0.327 km/s

Range(|Vi⊥|) Mean(|Vi⊥|) during Background 1.13 3.031 km/s

Mean(Ni) Mean(Ni) duing Background 10.66 0.045 cm-3

Max(Ni) Mean(Ni) duing Background 12.32 0.287 cm-3

Min(Ni) Mean(Ni) duing Background 7.10 0.022 cm-3

Range(Ni) Mean(Ni) duing Background 8.56 0.104 cm-3

Mean(Ne) Mean(Ne) duing Background 11.88 0.054 cm-3

Max(Ne) Mean(Ne) duing Background 11.17 0.048 cm-3

Min(Ne) Mean(Ne) duing Background 10.49 0.032 cm-3

Range(Ne) Mean(Ne) duing Background 6.57 0.042 cm-3

Mean(Ti) Mean(Ti) duing Background 5.73 392.490 eV

Max(Ti) Mean(Ti) duing Background 4.38 315.006 eV

Min(Ti) Mean(Ti) duing Background 6.05 250.835 eV

(Continued on the following page)
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TABLE 5 (Continued) Summary of the most influential input features for different target features.

Target featureduring BBF The most influential input feature

feature name ∆MAPE (in unit of percentage point) ∆RMSE

Range(Ti) Mean(Ti) duing Background 3.56 65.876 eV

Mean(Te) Mean(Te) duing Background 8.47 96.459 eV

Max(Te) Mean(Te) duing Background 6.76 67.769 eV

Min(Te) Mean(Te) duing Background 16.07 129.465 eV

Range(Te) Mean(Te) duing Background 3.42 −0.958 eV

Mean(Ti/Te) Mean(Ti/Te) duing Background 8.13 0.267

Max(Ti/Te) Mean(Ti/Te) duing Background 8.13 0.267

Min(Ti/Te) Mean(Ti/Te) duing Background 4.22 0.235

Range(Ti/Te) Mean(Ti/Te) duing Background 10.84 0.338

Mean(Ti/Ni) Mean(Ti/Ni) duing Background 20.38 2.556 keV·cm3

Max(Ti/Ni) Mean(Ti/Ni) duing Background 12.44 1.963 keV·cm3

Min(Ti/Ni) Mean(Ti/Ni) duing Background 42.33 2.102 keV·cm3

Range(Ti/Ni) Mean(Ti/Ni) duing Background 4.33 0.384 keV·cm3

Mean(Pp) Mean(Pp) duing Background 17.60 0.111 nPa

Max(Pp) Mean(Pp) duing Background 13.39 0.087 nPa

Min(Pp) Mean(Pp) duing Background 22.52 0.057 nPa

Range(Pp) Mean(Pp) duing Background 2.86 0.007 nPa

Mean(Pi/N
5/3
i ) Mean(Pi/N

5/3
i ) duing Background 14.02 0.217 nPa·m5

Max(Pi/N
5/3
i ) Mean(Pi/N

5/3
i ) duing Background 7.15 0.174 nPa·m5

Min(Pi/N
5/3
i ) Mean(Pi/N

5/3
i ) duing Background 22.67 0.185 nPa·m5

Range(Pi/N
5/3
i ) Median(Vi⊥z) during BBF 3.13 0.009 nPa·m5

needs to determine the variation range for a specific parameter but
encounters measurement or calibration issues with the instruments
during that period, they can refer to our parameter combinations for
potential solutions. All the results and the corresponding plots for
events in the validation and test sets can be found in https://github.
com/pinecypressfxd/Project2_MTS_Regression.

After obtaining the prediction results, we further conducted a
feature importance analysis to quantitatively assess the contribution
of each input in the prediction process. We employed the leave-one-
feature-out (LOFO) method, where one feature was removed at a
time from the selected input parameter set. The XGBoost model
was then retrained using the reduced feature set, and new prediction
results on the test set were obtained.

To evaluate the impact of removing each feature, we calculated
the differences in prediction performance compared to the baseline

(i.e., predictions using the full input set). Specifically, we defined the
performance drop as:

∆MAPE =MAPELOFO −MAPE full,∆RMSE = RMSELOFO −RMSE full

where MAPELOFO and RMSELOFO are the prediction errors after
removing a single feature, and MAPE full and RMSE full are the
baseline errors.

Inmost cases, both ΔMAPE and ΔRMSE are positive, indicating
that removing the feature degrades prediction performance.
However, for a small number of features, we observed negative
ΔMAPE or ΔRMSE values, suggesting that excluding those features
slightly improved performance, possibly due to noise or redundancy.
We ranked all features based on ΔMAPE in descending order to
identify the most influential ones in the prediction task.
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TABLE 6 Summary of cross-instrument prediction of magnetic field using plasma moments.

Sequence Inputs Targets

Variables during BBF
and background

Features Variables during BBF Features

1 Variables Mom: Vx, Vy, Vz, |Vi|, Ni,
Ne, Ti, Te, Pp, Ti/Ni, Ti/Te, Pi/N

5/3
i ,

Pe/N
5/3
e , x, y, z (Bx, By, Bz, |B|, θB, Pm,

Vi⊥x, Vi⊥y, Vi⊥z, |Vi⊥|, Ex, Ey, Ez, β,
Φareexcluded.)

BBF interval: Mean, Median,
Standard Deviation, Minimum,
Maximum, Range, 1st Quartile, 3rd
Quartile;
Background invertal: Mean

Bz

Mean, Maximum,
Minimum, Range

2 |B|

3 Pm

FIGURE 7
Similar to Figure 3. Input-output structure of cross-instrument prediction of Bz using plasma moments.

Table 5 summarizes the analysis results. The first column
lists each target parameter, while the second identifies the most
influential feature for that target. The third and fourth columns
report the corresponding ΔMAPE and ΔRMSE results, respectively.
Notably, for 42 of the 52 target parameters, the background mean
value of the same parameter emerges as the most significant
factor, determined by its highest ΔMAPE. This finding underscores

the critical role of background characteristics in predicting target
parameter behavior during BBF events. For the remaining 10 targets,
features observed during the BBF interval are the most influential
inputs. However, no clear physical explanation exists for their
primary influencing factors. Numerical simulations solving coupled
physics equations could not isolate the effect of a single input while
keeping others unchanged in self-consistentmodeling. Additionally,
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TABLE 7 MAPE of cross-instrument prediction results of magnetic field using plasma moments without additional background inputs.

Sequence Targets Validation dataset Test dataset

Mean Max Min Range Mean Max Min Range

1 Bz 102.3% 22.8% 361.9% 27.3% 42.5% 22.7% 303.5% 30.5%

2 |B| 29.8% 17.6% 122.1% 22.3% 28.5% 17.8% 135.5% 25.7%

3 Pm 77.9% 41.1% 1414.3% 34.0% 76.9% 42.6% 5517.1% 38.1%

TABLE 8 RMSE of cross-instrument prediction results of magnetic field using plasma moments without addictional background inputs.

Sequence Targets RMSE units Validation dataset Test dataset

Mean Max Min Range Mean Max Min Range

1 Bz nT 5.1 5.6 5.7 4.7 4.6 5.3 5.3 4.9

2 |B| nT 6.7 6.4 7.0 4.4 6.0 5.8 6.4 4.7

3 Pm nPa 0.140 0.180 0.099 0.126 0.128 0.152 0.103 0.110

we found that removing certain input variables improved prediction
accuracy for some target parameters. These variables typically had
small impact on the target prediction and were not listed in Table 5
as the most correlated inputs. All detailed results are available in the
“feature_selection_result” folder on the referenced website.

4.2 Cross-instrument prediction of
magnetic field parameters using plasma
moments

We categorize the physical parameters into two main groups:
plasma moment parameters and magnetic field parameters. These
two categories originate from entirely different payloads. Among
these, plasma moments—especially velocity—are critical for
identifying BBFs, making their availability a prerequisite for our
analysis. Therefore, in our cross-instrument prediction framework,
we use plasma moment parameters, along with spacecraft location
information, to predict magnetic field measurements.

Theparameter combinationsweused are summarized inTable 6,
this table outlines the structure of input and target variables.
The input variables are consistent across all sequences and
include plasma moment data, as well as positional coordinates.
These variables are statistically characterized by eight features
within the BBF interval (mean, median, standard deviation,
minimum, maximum, range, first quartile, and third quartile)
and one feature (mean) within the background interval. Each
sequence targets a different magnetic parameter during the
BBF interval.

An example of the data structure for the cross-instrument
prediction parameter combination is shown in Figure 7. This figure
corresponds to the inputs-outputs structure used for predicting Bz
in sequence 1 of Table 6. The input parameters consist of plasma
moment variables. Unlike the optimal parameter combination,

the background value of the target variable is excluded from
the inputs to enable cross-instrument prediction, even though
it has a significant impact on prediction accuracy as we will
discuss later.

Through testing, we find that the predictions for Bz and |B|
performwell, as shown in Table 7.They have relatively lowerMAPE,
and among the four features, at least two have a MAPE below
35% in the test dataset. In Table 8, the RMSE values for Bz and
|B| are around 4–7 nT, while Pm has an RMSE of approximately
0.10–0.15 nPa. Overall, the prediction accuracy for Bz and |B| is
better than for Pm. Figure 8 shows scatter plots comparing the
observed and predicted values in the test set.

An example of predicted ranges along with the measurements
is shown in Figure 9. The yellow shadow box indicates that we
can predict Bz, |B| and Pm with good accuracy. All the results and
the corresponding plots for events in the validation, and test sets
can be found in https://github.com/pinecypressfxd/Project2_MTS_
Regression.

While cross-instrument prediction without additional
background data remains challenging, adding observed background
mean values as additional inputs can significantly improve
performance. In order to illustrate the importance of using
accurate background values as ML model inputs in the cross-
instrument prediction, we add the mean values of the background
periods calculated using actual observations of the background.
The MAPE of prediction results are below the 35% MAPE
threshold which are shown in Supplementary Table S3, and the
time series with predicted bounds for the same event are shown
in Supplementary Figure S3. This highlights the importance of
background context in achieving robust predictions. The MAPE
of these two different additional background values as inputs, are
compared in Figure 10. Each bar in the figure represents the average
of the three MAPE values (the mean, maximum, and range) on
the test set. The error bars represent one standard deviation of
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FIGURE 8
Similar to Figure 5. Comparison results between the observed and predicted values of magnetic field targets (a) Bz, (b) |B|, and (c) Pm using moment
variables combination.

the MAPE of the predictions for these three features. It clearly
demonstrates that using the target variable’s mean value calculated
from actual measurements during the background period can
significantly enhance prediction accuracy. For example, for the
predicted mean, maximum, and range values during the BBF period
in the test dataset, we can see that when using observed background
values as additional inputs, the average MAPE results for Bz and
|B| decrease by five to twenty percentage points. The reduction for
Pm is even more significant.

5 Discussion and summary

Our initial objective was to predict the entire time series of target
parameters throughout the BBF period. However, this idea proved
impractical due to three primary challenges. First, data limitations
significantly constrained our analysis. Despite utilizing all available
THEMIS BBF observations, the scarcity of space weather events
resulted in only 3,207 BBFs, which was an insufficient sample
size for robust time series predictions. Second, the complexity and
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FIGURE 9
Similar to Figure 6. Predicted ranges using cross-instrument prediction of magnetic field measurements using plasma moments without additional
background variables as inputs. This event was observed by THE on 07 March 2008, between 05:49:59 and 06:01:59 at the position X = − 10.4, Y = 5.1,
and Z = − 1.7RE. (a–d) represent Vi⊥x, Bz, |B|, and Pm respectively.
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FIGURE 10
Effect of background information on BBF prediction error. The horizontal axis represents the target variables: Bz, |B|, and Pm. The vertical axis shows the
MAPE of prediction results in the test dataset. The green bars represent predictions using actual background observations as additional inputs. The red
bars indicate predictions without using additional background values of Bz, |B|, and Pm.

variability of BBF parameter fluctuations posed a major challenge.
BBFs often occurred in rapid succession, making their identification
difficult even for experienced scientists. This irregularity made
it challenging for machine learning models to detect consistent
patterns necessary for accurate time-series forecasting. Finally,
the presence of excessive microscale variations within BBF time
series further complicated prediction efforts. Even after applying
strict selection criteria, the inherent variability in parameters—due
to background fluctuations and observational noise—remained
significant.

To address these challenges, we adopted a feature-based
prediction approach, leveraging all available BBF data from 2007
to 2023. Instead of attempting full time-series reconstruction, we
focused on identifying predictable features of various parameters.
By analyzing the differences between BBF and background periods,
we identified parameters that have distinct changing patterns and
thus allow for target prediction. We tested different parameter
combinations and categorized them into two primary strategies:
(1) optimal combinations, where we used as many parameters as
possible to maximize prediction accuracy, and (2) cross-instrument
prediction, where we leveraged plasma moments parameters to
predict magnetic field parameters.

With the optimal combination, we were able to predict BBF
duration with a mean absolute percentage error (MAPE) below
35%. Furthermore, we achieved good accuracy for predictions of the
maximumandminimumranges of thirteen key physical parameters,
including Bz, |B|, Pm, |Vi|, |V⊥|, Ni, Ne, Ti, Te, Pp, Ti/Ni, Ti/Te, and
Pi/N

5/3
i , with an average prediction error also remaining below 35%.

In addition, we conducted a feature importance analysis based on
the optimal parameter combinations. The results indicate that the
mean values during the background period often play a major role
in predicting the corresponding variable’s characteristics during the
BBF interval. Among the 52 target features, the background mean

serves as the primary influencing factor for prediction accuracy in
42 of them. The physical mechanisms underlying these statistical
outcomes present a compelling avenue for future exploration
through theoretical analysis or numerical simulations.

For cross-instrument predictions, the results indicate that
including accurate target background as an additional input
significantly improves the prediction accuracy. By leveraging
improved background estimates, we can enhance the reliability of
predictions not only for individual BBF parameters but also for
broader space weather applications.

Our findings have practical implications for situations where
satellites may lack certain payloads or where instrument failures
occur. By supplementing missing BBF parameters, our model
enhances data utility for space weather research. Expanding the
dataset with more comprehensive observations is crucial for
improving prediction accuracy. Moving forward, we anticipate that
using larger and more diverse datasets (for example, augmenting
Geotail, Cluster, and MMS observations) will substantially enhance
the model’s performance, bringing us closer to a more precise
characterization of BBF dynamics.
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