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Collisional thermalization of
minor ions in the solar wind

E. Johnson* and B. A. Maruca

Department of Physics and Astronomy, University of Delaware, Newark, DE, United States

Introduction: As the solar wind transits through the heliosphere, Coulomb
collisions among constituent particles drives it toward local thermodynamic
equilibrium. Prior studies of ion collisions in the solar wind have focused on the
two most abundant solar wind ions: protons (ionized hydrogen) and α-particles
(fully ionized helium).

Methods: Some of the studies have used the technique of collisional analysis
to incorporate the effects of collisions and expansion, to extrapolate the
evolution of solar-wind ion temperature ratios. This study is the first to apply
collisional analysis to the minor ions in the solar wind: carbon, oxygen and iron.
Observations of ion temperature ratios in the near-Earth solar wind (r = 1.0 au)
are used to predict their values closer to the Sun (r = 0.1 au).

Results: Ion measurements from the Advanced Composition Explorer (ACE)
mission were used as individual boundary conditions for the equations of
collisional analysis, which were solved numerically to make predictions of
the temperature ratios. By using a large dataset spanning twelve years, the
distributions of ion temperature ratios measured at r = 1.0 au can be compared
to those predicted at r = 0.1 au.

Discussion: The predicted distributions suggest that the ratio of minor-ion
temperatures to that of protons is significantly higher closer to the Sun, which is
consistent with expectations for a zone of preferential minor-ion heating in/near
the solar corona.
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1 Introduction

While the solar wind is primarily composed of protons, α-particles and electrons
(Verscharen et al., 2019), trace amounts of minor ions are also present (Isenberg and
Hollweg, 1983; Schmelz et al., 2012). Energy and momentum are exchanged among
solar wind particles through collisions, which move the system toward thermodynamic
equilibrium (Griem, 1963). These collisions are Coulomb collisions, which are “soft”, small-
angle, electrostatic deflections (Marsch, 2006). The rate of these Coulomb collisions in the
solar wind is low due to the plasma’s high temperature and low density (Verscharen et al.,
2019). As a result, departures from local thermodynamic equilibrium (LTE; Griem, 1963)
are often persist well into the solar wind’s expansion through the heliosphere.

A commonly studied non-LTE features of the solar wind is unequal ion temperatures,
which can be quantified by the ratio

θji =
Tj

Ti
, (1)
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where Tj and Ti are the scalar temperatures of two ion species,
j and i, respectively. The temperature ratio of the solar wind’s
most abundant ions, protons (i = p) and α-particles (j = α) have
received the most attention in the literature (Feldman et al.,
1974; Marsch et al., 1982; Neugebauer, 1976; Kasper et al., 2008;
Maruca et al., 2013; Kasper et al., 2017). This study, though, focuses
on the temperature ratios of minor ions with protons and in
particular considers carbon (C5+; j = C), oxygen (O6+; j =O), and
iron (Fe10+; j = Fe). The effects of collisions on the temperature
ratios of these and other minor ions have been considered in some
previous studies (Hefti et al., 1998; Tracy et al., 2015; Tracy et al.,
2016), though this work has primarily focused on using Coulomb
number (see, e.g., Verscharen et al., 2019, Section 3.2.6) to quantify
the thermalization process. However, as detailed in the following,
this study for the first time applies collisional analysis, a more
sophisticated tool, to analyze the thermalization ofminor ions in the
solar wind.

Section 2 provides an overview of collisional analysis applied to
ion temperature ratios. The data used in this study are described
in Section 3. Section 4 describes the results of applying collisional
analysis to these data, and Section 5 summarizes the study’s
key findings.

2 Methodology

Collisional analysis, which was first introduced by Maruca et al.
(2013), is an analytical method for quantifying the effects of
collisions on the non-LTE features of an individual parcel of solar-
wind plasma. The work of Maruca et al. (2013) and Johnson et al.
(2023) focused on the unequal temperature of α-particles relative
to protons, as quantified by the ratio θαp (Equation 1), while the
work of Johnson et al. (2024) elected to focus on differential flow.
This study broadens those earlier works to consider the temperatures
of additional minor ion species relative to protons: θjp. The ion
temperatures, densities, and velocities of a given parcel of plasma
are measured in-situ by a spacecraft located at a given distance, r,
from the Sun. Collisional analysis uses the appropriate collisional
operator to determine the radial evolution of a particular non-
LTE feature. Maruca et al. (2013) showed that the radial gradient
in θjp due to Coulomb collisions is

dθjp
dr
= (2.6× 107  cm

3 K3/2 km
sau

) (
np (r)

vp, r (r)T
3/2
p (r)
)

×(
μ1/2
j Z2

j (1− θjp)(1+ ηjpθjp)

(μj + θjp)
3/2

) ln λjp, (2)

where nj and np are respectively the number densities of j-particles
and protons, vp, r is the radial component of the proton bulk
velocity, and μj and Zj are respectively the mass and charge of a
j-particle relative to those of a proton. Additionally,

lnλjp = 9+ ln[

[
( 1
cm3/2K3/2

)
Tj + μjTp

Zj (μj + 1)
(
np

Tp
+
njZ

2
j

Tj
)
−1/2

]

]
, (3)

is the Coulomb logarithm and

ηjp =
nj
np
. (4)

Equation 2, after substituting Equation 3 can be numerically
integrated using a set of in-situ measurements as a boundary
condition to find the radial evolution of the temperature ratio:
θjp(r). A notable advantage of collisional analysis (versus, e.g.,
Coulomb number) is that solar wind’s expansion can be directly
accounted for by allowing proton density, radial speed, and
temperature to scale radially. This study used the average scales
reported by Hellinger et al. (2011):

np (r) ∝ r−1.8 ,vp, r (r) ∝ r−0.2 ,andTp (r) ∝ r−0.74. (5)

The scaling relationships from Hellinger et al. (2011) and
shown in Equation 5, were selected to ensure consistency with
previous applications of collisional analysis (e.g., Maruca et al.,
2013; Johnson et al., 2023; Johnson et al., 2024). However, more
recent studies, such as (i.e., Maruca et al., 2023), have suggested that
the radial solar wind speed between 0.1− 1.0 au may increase or
remain approximately constant. Preliminary tests using alternative
scalings (e.g., vp, r(r) ∝ r0) produced qualitatively similar results for
θjp(r), indicating that the key trends are not highly sensitive to the
exact velocity profile. These other scaling relationships have been
found to give comparable results, although a detailed sensitivity
study is planned for future work.

3 Data

This study used data from the Advanced Composition Explorer
(ACE; Stone et al., 1998), which is maintained at the first Lagrange
(L1) point of the Sun-Earth system. In-situmeasurements of plasma
parameters were derived from the Solar Wind Electron, Proton
and Alpha Monitor (SWEPAM; McComas et al., 1998) and the
Solar Wind Ion Composition Spectrometer (SWICS). Observations
are taken from 1998 August 19 through 2011 August 20. This
end data was chosen to avoid the complications of a SWICS
hardware anomaly (Shearer et al., 2014).

The minor ion data (Gloeckler, 2023) had a 2-h cadence
and consisted of 59,179 data points while the proton data
(McComas, 2022) had a 1-h cadence and consisted of 104,939
data points. The original data products used in this research
are listed in Table 1. The proton data, originally recorded at a 1-
h cadence, were resampled to match the 2-h timestamps of the
SWICS data. This was done by averaging all available SWEPAM
measurements within ±1 hour of each SWICS time bin. This
method was verified by repeating the averaging using 64-s cadence
Level-2 SWEPAM data and found negligible differences in the
resulting θjp distributions, confirming the temporal matching was
robust despite occasional data gaps. After the resampling was
performed the data set contained 52,469 data points. Filtering
was then performed to remove data with low quality or large
uncertainties. Specifically, for SWICS ion data, the only retained
points had a quality flag of “0,” indicating good data. Records
containing fill values, defined as placeholder entries used when
no valid measurement was available (typically −1 or large invalid
values), were also removed. In addition, measurements with large
uncertainties in α-particle density—specifically, where the reported
uncertainty exceeded 50% of the measurement—were excluded
from the dataset. After averaging and filtering the data set contained
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TABLE 1 Data products used for proton, helium and minor ion
measurements.

Ions Data product

Protons/Helium AC_H2_SWE

Helium/Minor Ions AC_H3_SWI

37,645 data points. To ensure that this analysis reflects quiescent
solar wind conditions, time intervals associated with interplanetary
coronal mass ejections (ICMEs) were excluded. Specifically, all
measurements labeled as “ICME” in the SWICS Level-2 SW-type
parameter were removed. This approach was used to minimize
contamination from transient plasma populations known to exhibit
non-representative ion temperatures and composition profiles.

From the provided thermal speeds the scalar temperatures were
computed according to

vth = √
2kBTj

mj
, (6)

where for j- particle species Tj is the scalar temperature andmj is the
mass, kB is the Boltzmann constant. It should be noted that SWICS
thermal speeds are derived from the one-dimensional projection
of the ion velocity distribution along the bulk flow direction. This
contrasts with datasets such as Wind, where full three-dimensional
distribution functions are used to compute scalar temperatures.
While collisional analysis as applied here uses scalar temperatures
as input, the use of 1D thermal speeds may introduce modest biases
in comparison with 3D-resolved values. These biases are expected
to be consistent across the dataset and do not qualitatively affect the
trends examined in this study.

Element abundance ratios were used to compute the respective
density ratios, the number densities of minor ions (C5+, O6+, Fe10+)
were estimated using the He2+ number density from SWICS, in
combination with the elemental abundance ratios reported in the
Level-2 dataset (e.g., He/O,C/OandFe/O). Specifically, the SWICS-
derived He2+ density was used first as a reference, then applied
the reported elemental abundance ratios to infer the densities of
carbon, oxygen, and iron. It should be noted that the SWICS Level-
2 release notes include a caution regarding the use of absolute
He2+ density values and He/O ratios, particularly with respect to
their dependence on solar wind speed (SWICS Team, 2018). In
this study, the He2+ density was used only as a reference to scale
relative elemental abundances and compute ηjp ratios, and not to
draw conclusions about absolute helium abundance. As such, the
results are not expected to be sensitive to potential systematic offsets
in the He2+ values. Nevertheless, the limitations of the dataset are
acknowledged and will be taken into consideration in future work.

It was assumed that the dominant charge states for each species
were C5+, O6+ and Fe10+, respectively, based on typical solar wind
conditions, and treated these ions as representative of the elemental
population for the purposes of the collisional analysis.This approach
provides consistent relative densities for use in Equation 4, although
assumes that the dominant charge state (C5+, O6+ and Fe10+)
adequately represents the elemental abundance. It is acknowledged
that charge-state distributions can vary significantly depending on

solar wind type and conditions, for instance, the ionic fraction of
C5+ relative to the sum of C4+ −C6+ may range from 0.2 to 0.8, and
the ionic fraction of Fe10+ relative to the sum of Fe6+ − Fe20+ may
range from 0.2 to 0.3. These variations could introduce systematic
uncertainty in the estimated njp values, potentially by a factor of 2−
−5. A future version of this analysis will incorporate ionic fractions
from the ACE Level-2 AC H5 SWI data product to compute charge-
state-specific density ratios.

4 Results

Each of Figures 1–4 shows this study’s results for a different ion
species: α-particles (He2+), carbon (C5+), oxygen (O6+), and iron
(Fe10+), respectively. Each figure shows two plots.The left plot shows
the probability distribution of θjp-values as measured at r = 1.0au by
ACE (Section 3). The right plot shows the probability distribution of
θjp-values predicted for r = 0.1au by collisional analysis (Section 2)
applied to the individual ACE measurements. Key percentiles of the
distributions in Figures 1–4 are listed in Tables 2–5. Within each
figure, the range of θjp-values shown is the same for both plots,
but different ranges are used for different figures. In general, the
distribution of θjp-values increases as themass ratiomj/mp increases
due to the effects of (super-)mass-proportional heating processes
(Marsch, 2006; Kasper et al., 2017; Tracy et al., 2016). Each plot
shows its θjp-range divided into 30 equally sized bins.Theprobability
density was approximated by dividing the number of data in each
bin by the total number of data and by the θjp-width of the bin
(per Maruca et al., 2011). It is worth noting that the predicted
θjp distributions for heavier ions (Figures 1–4, Right) are broadly
distributed and do not exhibit clear modal peaks. While this trend
aligns with the expected increase in temperature ratio with mass
due to preferential heating, the lack of distinct features may reflect
limitations imposed by the time-averaged nature of the ACE dataset.
As such, caution is warranted when drawing direct comparisons
between these predicted distributions and past observational studies
from MESSENGER or PSP, which benefit from higher-cadence
measurements.

5 Discussion

The right-hand plots in Figures 1–4 show testable predictions
for the distribution of relative temperatures in the inner heliosphere
(r = 0.1 au). Each plot shows a single peak, mono-modal
distribution. The median (50th-percentile), predicted θjp-value
for each species (Tables 2–5) roughly corresponds to the mass
ratio of j-particles to protons (mj/mp), which suggests the actions
of mass-proportional and/or super-mass-proportional heating of
minor ions in the solar corona. This would be consistent with
the “zone” of preferential heating presented by Kasper et al.
(2017) and Holmes et al. (2024).

At present, the only comparison with observations that can
be made is for the α-particles as observed by PSP (Fox et al.,
2016; Kasper et al., 2016). The predicted θαp-distribution from
this study has a median value of θαp ≈ 4.8, which corresponds to
the center of the broad central plateau in Figure 1 (right plot).
While observations with PSP by Johnson et al. (2023), specifically
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FIGURE 1
Histogram of observed values of θαp ≡ Tα/Tp at r = 1.0au (Left) and of the predicted θαp-values (Right). The prediction is based on collisional analysis and
extends the measured values to the heliocentric distance r = 0.1au. Bin counts have been normalized to approximate
probability density (Maruca et al., 2011).

FIGURE 2
Histogram of observed values of θCp ≡ TC/Tp at r = 1.0au (Left) and of the predicted θCp-values (Right). The prediction is based on collisional analysis
and extends the measured values to the heliocentric distance r = 0.1au. Bin counts have been normalized to approximate
probability density (Maruca et al., 2011).

Figure 1 have shown a broad peak at θαp ≈ 5.6, predictions for r =
0.1 au made by Maruca et al. (2013) using Wind data expected
a peak at θαp ≈ 5.4. This level of agreement, while not exact, is
consistent with general expectations from collisional evolution,
considering the uncertainties in both in-situ measurements and
boundary conditions used in themodel. Note that the PSP andWind
data differ in instrument sensitivity, cadence, and sampling intervals,
and that the ACE dataset used here reflects longer integration
times that may smooth transient high-temperature features. To
date, no observations of minor ion relative temperatures have been

made close to the Sun, but Gershman et al. (2012), Figure 10 used
MESSENGER data from r ≈ 0.3 au to find a broad distribution of
θCp- and/or θOp-values ranging very roughly from 10 to 60.

The left-hand plots in Figures 1–4 show observations for the
distribution of relative temperatures in the near-Earth (r = 1.0 au)
solar wind. These plots generally show a bimodal distribution
with two distinct peaks: one at θjp ≈ 1 corresponding to local
thermodynamic equilibrium and a second at a higher θjp-value.
These observational distributions differ from those reported using
PSP and Wind, which show more distinct bimodal structures,
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FIGURE 3
Histogram of observed values of θOp ≡ TO/Tp at r = 1.0au (Left) and of the predicted θOp-values (Right). The prediction is based on collisional analysis
and extends the measured values to the heliocentric distance r = 0.1au. Bin counts have been normalized to approximate
probability density (Maruca et al., 2011).

FIGURE 4
Histogram of observed values of θFep ≡ TFe/Tp at r = 1.0au (Left) and of the predicted θFep-values (Right). The prediction is based on collisional analysis
and extends the measured values to the heliocentric distance r = 0.1au. Bin counts have been normalized to approximate
probability density (Maruca et al., 2011).

TABLE 2 Percentiles for the α-proton relative temperature
distribution from Figure 1.

r = Percentile

10th 25th 50th 75th 90th

0.1 au 1.054 2.542 4.840 7.658 10.005

1.0 au 0.660 1.508 2.951 4.840 7.624

TABLE 3 Percentiles for the carbon-proton relative temperature
distribution from Figure 2.

r = Percentile

10th 25th 50th 75th 90th

0.1 au 4.250 8.961 14.885 20.645 24.356

1.0 au 1.480 4.002 9.039 14.453 19.769
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TABLE 4 Percentiles for the oxygen-proton relative temperature
distribution from Figure 3.

r = Percentile

10th 25th 50th 75th 90th

0.1 au 4.440 9.709 16.529 23.715 28.489

1.0 au 1.646 4.767 10.632 16.882 23.496

TABLE 5 Percentiles for the iron-proton relative temperature
distribution from Figure 4.

r = Percentile

10th 25th 50th 75th 90th

0.1 au 10.251 25.092 52.491 83.591 106.772

1.0 au 5.474 14.975 32.961 56.117 84.919

especially for θαp. The ACE data in this study were collected at a
2 h cadence, which can smooth out transient temperature structures
and wash out kinetic features such as distinct modal peaks. This
limitation is particularly important when interpreting kinetic effects
like preferential ion heating or multi-population dynamics, which
evolve on much shorter timescales. Therefore, the ACE dataset
may underestimate the presence of such features, especially when
compared to the higher-cadence data.

Previous studies using proton and α-particle data from theWind
spacecraft (e.g., Kasper et al., 2008;Maruca et al., 2013; Johnson et al.,
2023) also found a bimodal distribution in θαp-values, though there
were several key differences between their θαp-distributions and that
shown in the left plot of Figure 1. First, the Wind studies found
the two peaks in their θαp-distributions to more distinct, while the
distribution in this study shows the peaks barely separated (forming
a plateau). Second, the Wind studies found the second peak to be
located at θαp ≈ 4.5 versus closer to θαp ≈ 3.5 in this study of ACE
data. Mostly like, these differences arise from the vastly different
measurement cadences for Wind and ACE datasets: approximately
90 s and 2 h, respectively. The measurement cadence on ACE is
so long to allow sufficient integration time to measure the heavy
ion species (including carbon, oxygen, and iron, which Wind does
not typically measure), but this does mean that its instruments
are averaging over short-time-scale fluctuations in ion temperature.
Future studies with higher time-resolution datasets, such as those
fromPSP or upcomingmissions, will be critical to resolvingwhether
the predicted trends persist at finer temporal scales and to further
test the assumptions underlying collisional analysis.
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