
TYPE Original Research
PUBLISHED 22 July 2025
DOI 10.3389/fspas.2025.1608091

OPEN ACCESS

EDITED BY

Chuanfei Dong,
Boston University, United States

REVIEWED BY

Verena Heidrich-Meisner,
University of Kiel, Germany
Donglai Ma,
University of California, Los Angeles,
United States

*CORRESPONDENCE

Vicki Toy-Edens ,
Vicki.Toy-Edens@jhuapl.edu

RECEIVED 08 April 2025
ACCEPTED 10 July 2025
PUBLISHED 22 July 2025

CITATION

Toy-Edens V, Mo W, Allen RC, Vines SK and
Raptis S (2025) Automated classification of
MESSENGER plasma observations via
unsupervised transfer learning.
Front. Astron. Space Sci. 12:1608091.
doi: 10.3389/fspas.2025.1608091

COPYRIGHT

© 2025 Toy-Edens, Mo, Allen, Vines and
Raptis. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Automated classification of
MESSENGER plasma
observations via unsupervised
transfer learning

Vicki Toy-Edens1*, Wenli Mo1, Robert C. Allen2, Sarah K. Vines2

and Savvas Raptis1

1Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States, 2Southwest Research
Institute, San Antonio, TX, United States

Our methodology demonstrates a proof of concept of the applicability
of transfer learning for heliophysics, a machine learning technique where
knowledge learned from one task is reused to perform a similar unsupervised
learning task with additional fine tuning. We applied an unsupervised clustering
algorithm, initially trained on data from the Magnetospheric Multiscale (MMS)
mission at Earth, to MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) observationsat Mercury to identify three distinct plasma
regions: magnetosphere, magnetosheath, and solar wind. While our method
requires modifications to the model from post-cleaning rules due to instrument
effects, it allows for rapid classification using just a few examples to generate
post-cleaning rules. Since there is no ground truth or standardized validation set
to compare with, we compare our model’s result with published magnetopause
and bow shock lists and find that the clustering algorithm is agreement with 67%
of bow shock crossings and 74% of magnetopause crossings. These findings
highlight the potential use of clustering algorithms across multiple planetary
environments.
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1 Introduction

Distinguishing between different plasma regimes and systems (e.g., solar wind,
magnetosheath, and magnetosphere) is important for understanding the local dynamics
and driving conditions of solar wind-magnetosphere interactions. For identifying distinct
plasma regions at Earth, Toy-Edens et al. (2024b) (hereafter T24) created an automated
in-situ plasma region classifier trained on 8 years of dayside Magnetospheric Multiscale
(MMS) mission data (for more details about MMS, see Burch et al., 2015). The T24 model
is based on an unsupervised Gaussian Mixture Model clustering method that is coupled
with a post-cleaning process. This tunable approach enables automated labeling for all
dayside plasma regimes as well as identifying each transition between plasma regimes (e.g.,
magnetopause and bow shock). We clarify here that this model is automated in the sense
that there is a pre-defined standardized set of conditions that lead to a particular label
that does not require manual review of each epoch. Combined with the straightforward
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nature of the features going into the model (simple normalized
sums and ratios created from ion spectra and magnetic field
measurements), the resulting model is lightweight and extensible.

In thiswork,we test the extensibility of theT24model to evaluate
whether themodel, trained on Earth’smagnetospheric environment,
can be extended to other planetary magnetospheres with different
available instrumentation and datasets. We are calling this process
“unsupervised transfer learning”. Transfer learning is a machine
learning techniquewhere knowledge learned fromone task is reused
to perform a similar task; in this case, knowledge gained from data-
rich Earth observations is applied to other, less extensive planetary
datasets. This usually requires fine tuning the model on the relevant
and desired dataset. While this approach does not alleviate the need
to tune the model, it requires substantially less training data and
effort than training a brand new model from scratch. More often
than not, this technique implies the use of neural networks, but here
we invoke the more general definition and denote the difference
by specifying unsupervised learning, where there are no ground
truth labels, opposed to one that includes pre-existing labels. This
problem is an unsupervised learning problem as there are no ground
truth labels.

Previous works have built specialized models based
on the characteristics of each planet and/or specific
dataset (e.g., James et al., 2020). However, the ability to train
particular models this way can be limited by the volume of data
already collected. These models cannot be trained until a critical
level of data has been amassed, which usually means late in
the lifetime of a mission. For data sparse environments, like at
planetary magnetospheres beyond Earth, it is more advantageous
to instead train, test, and refine models on existing large and
varied datasets and then perform precision tuning for different
environments with data from a desired mission. While one could
manually select boundaries in these data-sparse environments,
an automated method with minimal adjustments would allow for
consistent identification of plasma regimes acrossmultiple planetary
magnetospheric environments and quick, initial determinations of
in-situ regions and events of interest. A broadly applicable automated
method may also aid in reanalysis of historical datasets or in
statistical studies spanning multiple missions at the same system
in a more unified approach.

Therefore, there is extreme value in using an extensible
model across multiple planetary bodies to create an
automated and standardized dataset with the same underlying
methodology. A standard method also allows for studies of how
transitions are similar or different across different planetary
magnetospheric systems. Beyond applying the model across
multiple magnetospheric systems, this also demonstrates the
feasibility of applying such an algorithm to a wide range of datasets,
with their own limitations, advantages, and considerations, to reach
a mission-agnostic boundary determination scheme.

In particular, this study aims to apply the T24 model to the
magnetosphere of Mercury as a proof of concept of the applicability
of the T24 model. Mercury is a good first test case to extend
the T24 model because, similar to Earth, it is a solar wind-
driven (i.e., Dungey cycle-dominant) magnetosphere (Dungey,
1961; Slavin et al., 2021) rather than an internally-driven (i.e.,
Vasyliunas-dominant) system like the outer planets (Vasyliunas,
1983). However, while the magnetospheres of Earth and Mercury

are both solar wind-driven,Mercury’smagnetosphere has important
differences from Earth’s due to the nature of Mercury’s magnetic
field, large-scale current closure, and the lack of an extensive
atmosphere. More specifically, Mercury’s magnetosphere is smaller
and experiences stronger solar wind dynamic pressures because
of the location of Mercury at 0.307–0.467 AU, allowing for much
faster timescales for dynamics such as flux transfer events and sub-
storms (see review by Sun et al., 2022). We will apply the T24
model to MErcury Surface, Space Environment, GEochemistry, and
Ranging (MESSENGER, Solomon et al., 2007) dayside data and
evaluate the effectiveness and ease of adapting an Earth-basedmodel
to Mercury. We limit our evaluation to Mercury’s dayside because
the original T24 model was only trained and evaluated on Earth’s
dayside. The resulting plasma region labels, identified transitions,
and region identification model may prove useful for the upcoming
observations ofMercury fromBepiColombo (Benkhoff et al., 2021).

2 Materials and methods

2.1 Data

MESSENGER launched on August 2, 2004 and, after extensive
flybys, entered into a highly elliptical, polar orbit around Mercury
in March 2011. MESSENGER remained in its polar orbit until the
mission ended in April 2015. In this study, we use data from the
dayside (XMSO ≥ 0 inMercury SolarOrbital,MSO, coordinates) over
MESSENGER’s 4 years in orbit around Mercury.

For low-energy plasma data, we utilize the Energetic
Particle and Plasma Spectrometer (EPPS) Fast Imaging Plasma
Spectrometer (FIPS; Andrews et al., 2007) Level 3 calibrated scan
data.TheFIPS scan data covers the energy/charge range of <50 eV/q
to 13 keV/q with an effective 1.15π sr field-of-view. The scan data
steps through 64 energy bins in 64 s (normal mode) or 8 s (burst
mode). While FIPS is capable of resolving different ion species (e.g.,
He2+, O+, Na+), we use the proton observations for the application
of the T24 model. The FIPS data products contain a data quality
flag and we only utilize data where the good quality data flag is set.
We sample this data at 1-min resolution by taking the mean value
within each 1-min time period.

We also use the magnetometer (MAG; Anderson et al., 2007)
Level 3 calibrated data in MSO coordinates for the magnetic field
measurements reported at 0.05 s resolution. We down-sample this
data to a 1-min resolution to match the resampled FIPS resolution
by taking the mean of the resampled data in 1-min increments. We
note that we maintain the full magnetometer time resolution for
visualization purposes only.

2.2 MMS model

T24 trained and applied an unsupervised clustering model
(Gaussian Mixture Model) on generalized features generated from
MMS dayside (X > 0) 1-min resolution data. The resultant four
clusters from the model correspond to four plasma regions (i.e.,
solar wind, ion foreshock, magnetosheath, and magnetosphere).
Themain features (norm_Bt,ratio_max_width, andratio_
high_low) that are used to cluster plasma regions are ratios
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of observable quantities. The generated features are useful for
identifying patterns that are commonly used to manually identify
plasma regions. In particular, these features focus on identifying
narrow versus wide ion spectra peaks, high versus low energy
excesses in ion spectra, and high versus low magnetic field values.
norm_Bt is the totalmagnetic field normalized to 50 nT.The choice
of 50 nT for normalization is somewhat arbitrary, though was found
to be generally useful for distinguishing larger, magnetospheric
magnetic field strengths from the typically very small interplanetary
magnetic field (IMF) strength. The ratio_max_width and
ratio_high_low quantities are based on spectra of the bulk ion
populations: ratio_max_width is the width of the largest peak
in energy bins normalized to the number of available energy bins
and ratio_high_low is the ratio of the mean of the intensity for
energies >4 keV to the mean of the intensity for energies <100 eV.
T24 then performed post-cleaning of the labels using additional
information from the total ion density, temperature, velocity, and
magnetic field. See Toy-Edens et al. (2024b) for the full details of
the model, features, and post-cleaning.

Due to the general nature of the features and the data
requirements of the T24 model, we can apply this extensible
model to other planetary systems without having to retrain the
model. Essentially, this makes use of a data-rich environment
(the model utilizes 66,498 h of Earth observations) and applies it
to more data-starved observations. We extend the T24 model to
dayside orbit observations of MESSENGER data with some minor
feature alterations (Section 2.3) and post-cleaning (Section 2.4) to
identify three plasma regions around Mercury: magnetosphere,
magnetosheath, and solar wind. Figure 1 shows an example of the
T24 clustering algorithm applied to MMS and MESSENGER data
for similar plasma conditions.We note that theMMS clustering label
around 11:00 UTC has been modified from the ion foreshock label
(a subset of the solar wind population) to the more general solar
wind label for a more direct comparison to MESSENGER data. The
clustering contours in T24 (their Figure 3) show that the solar wind
and ion foreshock are closely spaced clusters in each slice of feature
space, which is expected given that the ion foreshock is by definition
a populationwithin the solar wind. Given that theMESSENGER and
MMS datasets have different temporal and energy resolutions, and a
goal of the region identification is to identify boundary transitions,
we do not attempt to distinguish ion foreshock separately from the
more “pristine” solar wind with the MESSENGER data.

2.3 Feature engineering

While MESSENGER has both an ion spectrometer and
magnetometer like MMS, FIPS does not have full-sky coverage and
the spacecraft is three-axis stabilized. Combining this with the fact
that MESSENGER’s thermal shield design also obstructs instrument
measurements in the solar direction (Gershman et al., 2012), FIPS
observations often miss the narrow solar wind beam, unlike the
MMS ion instruments. Generally, and useful for T24, the narrow
beam is a very distinct signature that the spacecraft was in the solar
wind. Likewise, the lack of full-sky coverage also may mean that
the linear increase of flux with energy in ion spectra associated
with the magnetospheric regions in T24 is not always captured
by MESSENGER data. Finally, MESSENGER observations do not

often see the elevated high-energy signature associated with the ion
foreshock. This ultimately means that while we can use the existing
clustering model, we must add additional rules in post-processing
and alter the feature generation to account for these observational
differences.

The T24 model is based upon generalized ratios of MMS
ion spectra and total magnetic field, however, different planetary
magnetosphere, mission profile, and instrument effects have to
be taken into account for feature engineering. Nevertheless, with
minimal visual inspection of a handful of examples, we can recreate
the same patterns that the T24 clustering model relies on (i.e., wide
versus narrow proton/ion energy peaks or high versus low total
magnetic field). This is possible because the plasma regimes have
distinct characteristics that can be quickly identified. For example,
solar wind plasma is usually characterized by a narrow proton/ion
beam at around 1 keV in energy, which is quite distinct from the
heated (and so broad) ion fluxes at 100s eV to 1’s keV in the
magnetosheath.

ratio_max_width (shown in Figure 1D) is calculated
similarly to the T24 method where the width in energy bins of the
most prominent peak in ion spectra identified by a peak-finding
algorithm is normalized by the number of possible energy bins.
MESSENGER FIPS data is more coarse in energy than MMS FPI-
DIS, so we can utilize the full width of the most prominent peak.We
also increase the required minimum peak intensity from 1 to 1.5 to
perform a peak fitting due to the difference in ion spectra intensities
between the magnetospheres.

The ratio_high_low (shown in Figure 1E) parameter
primarily helps distinguish between ion foreshock and solar wind.
As we do not attempt to separate out these populations in this study,
we set this feature to 1 if a peak in the ion spectra is found.Otherwise
we set this feature to 0, akin to the magnetosphere pseudo-feature
(an indirect feature that alters other features but is not included in a
clustering model) described in T24.

norm_Bt (shown in Figure 1F) follows the same definition
as done for the MMS norm_Bt feature, except that instead of
normalizing the magnetic field to 50 nT, we instead use 150 nT
for Mercury due to the difference in magnetic field strength
in each planet’s magnetosphere near dayside the magnetopause.
We note that this normalization value may at times lead to
an overly conservative feature definition, where identification of
magnetopause transitions at larger radial distancesmay be impacted.

As done in T24, we utilize a pseudo-feature to characterize the
magnetospheric plasma when a peak in the proton spectra is not
detected. This pseudo-feature sets the other three features (norm_
Bt, ratio_max_width, and ratio_high_low) to zero to
place this type of signature in a distinct location in feature space.
We note that while this worked well for MMS, it creates a need
for additional post-processing features for use with MESSENGER:
spectra_counts and high_intensity_peak. Often there
are 1-min time periods with no or few proton counts. In order
to avoid incorrectly classifying these data points (typically as
magnetosphere, as this means there is no proton spectra peak),
we have a feature to identify these times (spectra_counts)
which is the ratio of the number of non-zero proton energy bins
over the total number of proton energy bins. These are labeled as
an “unknown” plasma region out of an abundance of caution to
not mislabel a region due to lack of proton counts. As mentioned
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FIGURE 1
A side-by-side comparison of MESSENGER data from 2011 November 01 (left) and MMS data from 2020 January 18 (right). Both show the magnetic
field (A) and proton or total ion fluxes (B) alongside the unsupervised clustering labels (C) and values for each generated feature (D–F). These two time
periods show a similar trajectory of the spacecraft passing through magnetosphere (Msp) into magnetosheath (Msh), and eventually into solar wind (SW)
plasma. The T24 clustering algorithm utilizes generalized features in the magnetic field and proton/total ion spectral properties for each region (e.g.,
wide peak in proton/ion spectra in the magnetosheath versus a narrow peak in the solar wind) that can be applied to different planets and missions.
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TABLE 1 Relabeling rules.

Original label Relabel rule Resultant label

(1) Any spectra_counts < 0.2 Unknown

(2) Any besides unknown Btot ≥150 nT Magnetosphere

(3) Magnetosheath Btot ≤20 nT Solar Wind

(4) Solar Wind ratio_max_width > 0.25 Magnetosheath

(5) Magnetosheath (ratio_max_width ≤ 0.25) and (Btot ≤35 nT) Solar Wind

(6) Magnetosheath not high_intensity_peak Magnetosphere

(7) Magnetosphere Btot ≤50 nT Solar Wind

before, there is often missing information due to the lack of full-
sky coverage in the proton spectra that may cause magnetosheath
plasma to resemble magnetospheric populations when the core of
the proton distributions are not within the instrument field-of-view.
In order to address this we do an additional peak fitting that enforces
a higher minimum peak intensity threshold of 2.25 instead of 1.5
and generates a Boolean feature (high_intensity_peak) that
solely indicates if a peak was found with the higher minimum
peak intensity threshold. The use of these two additional features is
described in Section 2.4.

2.4 Post-processing and cleaning

We use the adapted feature generation described in Section 2.3
and apply the T24 model to the features to generate classification
labels at 1-min resolution. T24 describes additional post-processing
steps used to clean up the clustering identifications. We perform
a similar process using the rules outlined in Table 1. The raw
dataset has 439,329 magnetosphere, 302,739 solar wind, and
278,015 magnetosheath 1-min observations. We first identify
regions with specific classification labels (“Original” label in
Table 1) and then find where those classifications also have
the same conditions as the “relabel” rules to create a new,
“cleaned” label (the “Resultant Label” in Table 1). We note that
our dataset maintains the original raw clustering labels alongside
any “cleaned” labels so that researchers may elect to apply their own
post-cleaning rules.

We largely relied on the total magnetic field, Btot, to adjust for
situations where there were few or no proton counts in “extreme”
magnetic field regimes. However, this is still an improvement
compared to a purely magnetic field classification because we can
definitively pick out regions where there are clear plasma signatures.
This affects a large amount of data, 43.8%, that we must apply two
blanket post-cleaning rules: rules 1 and 7. These rules are to correct
for classifications that are mislabeled because there are too few
proton counts and are subsequently assigned to an “unknown” label
(rule 1 which alters 125,170 labels) or there was no detected proton
peak when there likely should have been one and there were low to
moderate spectra counts (rule 7 which alters 322,093 labels). Rule 7

is based on previous observations of magnetospheric magnetic field
strengths versus IMF magnitudes at Mercury.

The remainder of the relabeling rules alter 10% (103,014) of
the labels from their initial clustering labels. These rules were
determined from visual inspection of approximately 50 random
samples. Before applying the rules broadly, we first examined
the distributions of the rules and visually inspected 10 randomly
sampled days from a larger collection of dates with intervals that
meet the relabel rule that would alter the clustering original label.

Because this method is searching for complete transitions
between regions (and not, for example, partial magnetopause
crossings), we remove spurious points by evaluating a sequence of
three adjacent classifications (i.e., over a 3-min time window). If the
central datapoint is classified differently than the other twomatching
datapoints, we consider the central datapoint spurious and alter it to
match the classification of the other datapoints. We note that these
changes are largely driven by the fact thatMESSENGERwas a three-
axis stabilized spacecraft, leading to times where the full proton
phase space distributions weren’t observable.

We identify transitions when a plasma regime changes labels
between neighboring minutes. The allowed transition labels are
either bow shock (magnetosheath to solar wind or vice versa) and
magnetopause (magnetosphere to magnetosheath or vice versa).
We remove “unphysical” transitions (magnetosphere to solar wind
and vice versa). If such a transition is found, we evaluate the most
frequent plasma regime within ± 7 datapoints. We set that datapoint
to themost frequent plasma regime and any adjacent datapoints that
match the central datapoint are also set to the same most frequent
plasma regime.While rare, instances of sub-Alfvénic solar wind can
cause the bow shock to weaken and move away from the planet
with the formation of Alfvén wings. In the case of a highly sub-
Alfvénic solar wind, a transition from the magnetosphere to the
solar wind may be physical, but this possibility is not included in
this analysis as these events are exceedingly rare, averaging once
every 2 years at 1 AU (Chané et al., 2015; Hajra and Tsurutani,
2022) and often associated with particularly strong coronal mass
ejections (Lavraud and Borovsky, 2008). Applying the spurious
and unphysical correction changes 1.7% (17,030) labels. Overall,
the relabeling rules, spurious point corrections, and unphysical
transition corrections alters 54.8% of our clustering labels.
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There are often regions where the clustering model may
incorrectly switch back and forth out of plasma regimes beyond
our spurious point correction. This can falsely increase the number
of both bow shock and magnetopause transitions. We note that
some of these rapid back and forth transitions may be real, and so
we provide additional “cleaned” transitions along with the original
“raw” transitions for comparison and to allow for assessment against
othermethods for identifying transitions or boundaries.These clean
transitions are only assigned if MESSENGER is in the same plasma
regime for 10 consecutive minutes and then directly after the point
of transition is in a different plasma regime for 10 consecutive
minutes. Note that this follows all preceding cleaning, including the
initial correction of spurious points. We also only proceed with this
transitionmodification if less than 20% of data within either of those
10 min is missing (marked as “unknown”).

In order to allow future researchers to adjust these rules
according to their own needs, we provide three levels of clustering
labels: “raw” which is the original clustering labels, “intermediate”
which only applies the relabeling rules in Table 1 to the “raw”
clustering labels, and the final clustering labels that incorporate all
our post-processing steps outlined above.

3 Results

3.1 Plasma region dataset and transition list

Using the modified T24 model, a dataset spanning 4 years
with plasma labels at 1-min resolution is automatically created.
The dataset contains 677,338 solar wind, 129,299 magnetosheath,
and 86,715 magnetosphere 1-min observations. There are also
126,731 observations where the label is “unknown”. The “unknown”
label indicates that there were too few proton spectral counts to
definitively make a plasma region classification. While additional
criteria could be used to classify these periods, the primary purpose
of our study is to see how well the T24 clustering algorithm can
be applied to another planetary magnetospheric system with only
minor adaptations. Therefore, we leave additional analysis and
cleaning of these kinds of “unknown” regions for future work. From
the resultingmagnetosphere,magnetosheath, and solarwind plasma
labels, we report a total of 3,181 (5,325) magnetopause and 2,855
(14,925) bow shock cleaned (raw) transitions.

Figure 2 illustrates the effectiveness of the clustering algorithm
on MESSENGER data. On 2012 February 02, a bow shock
and magnetopause transition identified by the clustering
algorithm coincides with clear signatures of the passage from the
magnetosphere through the magnetosheath and into the solar wind
in the FIPS ion spectra. The 3-h span shown in Figure 2 begins
with MESSENGER on the nightside of Mercury before crossing
into the high-latitude dayside magnetosphere around 08:35 UTC
(marked by the gray-shaded region in Figures 2D–H). At that
time, MESSENGER is within Mercury’s magnetosphere and then
transitions into themagnetosheathwith an outboundmagnetopause
crossing at 09:05 UTC. The FIPS proton spectra (Figure 2E) and
non-proton spectra (Figure 2F) show an increase in the width of
the energy distribution and the intensity of the flux at energies of
100s eV, indicative of magnetosheath populations. While in the
magnetosphere (between 08:35 UTC and 09:05 UTC), the proton

spectra have much lower fluxes at 500 eV - 1 keV than in the
magnetosheath, and the peak of the flux at lower energiesmay not be
fully resolved. The magnetospheric proton spectra is distinguished
from the solar wind protons in this orbit by the lack of a “beamed”
population around 1 keV (i.e., after 09:35UTC), and, particularly, by
the higher magnetic field (Figure 2D). The spacecraft then crosses
into the solar wind, capturing an outbound bow shock crossing
at 09:40 UTC.

We include the non-proton spectrogram and multi-species
densities for context, but note that these quantities are not included
in the clustering algorithm. The non-proton spectrogram and
ion densities indicate where MESSENGER is firmly within the
magnetosphere. For example, where the Na+ density increases
to values above He2+ is an indicator of likely being within
the magnetosphere, since Na+ is a dominant heavy ion from
Mercury’s exosphere (e.g., Ip, 1990; Leblanc and Johnson, 2003;
Zurbuchen et al., 2011; Chen et al., 2024; Raines et al., 2013), while
He2+ is primarily of solar wind origin.

For reference, we also show times from the Philpott et al. (2020)
catalog of visually identified bow shock andmagnetopause crossings
(hereafter referred to as the P20 catalog, marked by the dashed
vertical lines in Figures 2D–H). Our identified magnetopause is
in good agreement with P20, where the specific crossing time
is within their magnetopause inner and outer boundary window.
However, the bow shock identified by clustering is outside of
the P20 bow shock outer boundary by ∼6 minutes. This is due
to an extended period of increased flux around 1–4 keV in the
proton spectra that is classified as magnetosheath by the clustering
algorithm (Figure 2H). After this increased flux at higher energies
drops off by ∼09:40 UTC, the clustering algorithm labels the region
as the solar wind. While MESSENGER is in the solar wind, the
clustering algorithm identifies MESSENGER transitions between
the solar wind and magnetosheath around 10:15-10:35 UTC due
to the additional high energy flux in the proton spectra being on
the cusp of magnetosheath classification. However, these incorrect
bow shock transitions are removed from the “cleaned” transition list,
but still maintained in the “raw” transition list, because the plasma
signatures do not stay consistently in the magnetosheath region for
over 10 consecutive minutes.

Figures 3A,B show the spatial extent of the three classifications
of plasma regions labeled by the clustering in MSO coordinates
when applied to the 4 years of MESSENGER data on the dayside.
To better understand how the region and transition identifications
are distributed, Figures 3A,B show different ranges of spatial
coordinates for each of the two-dimensional planes. Specifically,
for the X-Y plane (left column of Figure 3), the polar orbit of
MESSENGER allows for investigation of the dayside regions at
different latitudes. In the X-Y plane, we see that for low Z
(i.e., at equatorial latitudes) the solar wind, magnetosheath, and
magnetosphere regions are generally ordered by radial distance,
with some overlap in the regions at locations where there are likely
magnetopause andbow shock boundaries. For largerZ (i.e., at higher
latitudes), identifications are primarily of solar wind regions. On
the dayside magnetosphere, the larger Z distance corresponds to
MESSENGER being at larger dipole L shells and so more likely to
be outside of the magnetosphere. This is more clearly seen in the X-
Z and Y-Z planes, where the apoapses of the MESSENGER orbit are
around Z = − 5RM or Z = − 7RM.
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FIGURE 2
A 3-h window of MESSENGER data on 2012 February 02 from 08:00 to 11:00 UTC. Panels (A), (B), and (C) show the orbit of the spacecraft for this time
period in the X-Y, X-Z, and Y-Z MSO planes, respectively, where the color bar represents the time and the green and magneta markers represent
magnetopause and bow shock crossings respectively. For reference, the Philpott et al. (2020) crossings are shown as lines and the clustering algorithm
transitions are shown as X’s. Plotted below are the observed quantities from MESSENGER: (D) magnetic field in MSO coordinates, (E) FIPS proton
spectra, (F) FIPS spectra (excluding protons), and (G) number density of various ion species (H+, He2+, and Na+ in blue, orange, and green, respectively).
The plasma region classifications identified by the clustering algorithm are shown in Panel (H). Time periods outside of Mercury’s dayside are marked
with a gray-shaded background. The times of bow shock (magenta) and magnetopause (green) crossings identified with our criteria are shown by the
vertical dashed lines, and those from the Philpott et al. (2020) catalog are shown by the vertical dotted lines for comparison.

Figures 3C,D show the locations of the bow shock and
magnetopause crossings identified through clustering, where the
color corresponds to the location in the out-of-plane dimension
for that transition. The distribution of magnetopause crossings is
inward of the bow shock crossings, as expected. Also, most of the
magnetopause crossings identified in the MESSENGER data occur
near the poles (seenmost clearly in the X-Z plane of Figure 3D).This
is likely due to the orbit of MESSENGER having periapses near the
poles (Z ∼ 1.5 RM). On the other hand, bow shock crossings span a
wider spatial distribution than inY andZ (see Figure 3C), thoughwe

note the large range in latitude of MESSENGER observations from
the polar orbits.

3.2 Comparison to published MESSENGER
transition lists

Because this is an unsupervised learning model, there is no
standard process to validate the model (e.g., Camporeale, 2019), as
there are no ground truth labels from a training set. In lieu of this
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FIGURE 3
The spatial distribution of plasma regions and transitions identified through the clustering algorithm on Mercury’s dayside (X > 0) in MSO coordinates.
Rows (A,B): Solar wind, magnetosheath, and magnetosphere plasma region classifications (purple, pink, and green points respectively) shown for
different ranges of X, Y, and Z coordinates (i.e., high versus low latitudes, sub-solar versus flank local times, near the planet versus at larger dayside
distances). Rows (C,D): Bow shock and magnetopause crossings identified through region transitions by the clustering algorithm. For each
two-dimensional spatial plane, the colors of the datapoints represent the location along the third spatial coordinate. The MESSENGER orbits (gray lines)
are shown for reference (the collection of orbit traces appear as a gray shaded region).
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type of validation, we provide a comparison of the adapted T24
model against catalogs of manually validated MESSENGER bow
shock andmagnetopause crossing intervals.We compare our results
to P20, which used 1-s resolution magnetometer data to visually
identify 8,108 bow shock and 8,131 magnetopause crossings during
the entirety of the MESSENGER mission. They employed the same
identification approach as Winslow et al. (2013), hereafter W13, by
identifying magnetopause and bow shock crossings marked by an
increase in magnetic field magnitude, change in the magnetic field
direction or rotation, or increased variability in the magnetic field
components. For details on the identification of magnetopause and
bow shock crossings in these studies, see W13. As noted in their
study, the P20 list was visually identified and reviewed by multiple
members of the MESSENGER team.We note also that despite being
manually reviewed labels, these boundary identifications are not
necessarily equivalent to ground truth labels and also suffer biases,
as discussed in W13. However, it is of use to evaluate how these
manually reviewed lists compare to the automated clustering list.

P20 marked a start and a stop time for each bow shock and
magnetopause identified in their list. There are 3,888 bow shock
crossings and 3,990 magnetopause crossings from P20 where the
start and the stop times occur on the dayside (XMSO ≥ 0). The
median (mean) time period between the start and stop boundary
is 3 (5) minutes for bow shock crossings and 3 (4) minutes
for magnetopause crossings. Only 2% of dayside magnetopause
crossings and 13% of bow shock crossings from P20 had a duration
of more than 10 min between the start and stop time.

Since we identify a single, specific time for each magnetopause
and bow shock crossing in this work, we compare to the P20
transitions using a match window for each boundary. For each P20
transition, the match window is the time period 3 min before the
transition start to 3 min after the transition stop. A bow shock or
magnetopause from our clustering algorithm is a match with a P20
bow shock ormagnetopause if the time of the crossing occurs within
this match window. We choose a 3-min buffer around the start
and stop times to reflect the median time period between the start
and stop of a transition boundary in the P20 list and to take into
account the difference in temporal resolution between transitions
identified in the clustering algorithm versus those identified through
visual inspection in P20. We also only consider P20 transitions
for comparison when less than 20% of the clustering region labels
within the match window were labeled as “Unknown”, when there is
adequate data for the clustering algorithm to determine the region
on each side of the bow shock ormagnetopause.We determine 3,552
bow shock crossings and 3,660 magnetopause crossings from the
P20 list for comparison.

Using the match window criteria, we find that 1,923 out of
2,855 bow shock crossings (67%) matched a bow shock in the P20
list. Of those, 1,920 out of the 1,923 matched bow shock crossings
were unique matches (i.e., when only one bow shock identification
from this method was within 3 min of either the start or stop time
from a P20 bow shock). In turn, we find that 1,647 P20 bow shock
crossings do not have a match in our bow shock list (i.e., a transition
identification missed by the clustering algorithm). If we assume
the P20 list is a complete list of all bow shock crossings on the
dayside of Mercury as observed by MESSENGER, we calculate that
our bow shock identification is 54% complete. For magnetopause
crossings, 2,355 out of 3,181 magnetopause crossings (74%) were

matched to a P20 magnetopause crossing. All of the matched
crossings were unique. We calculate a magnetopause identification
completeness of 64%.

Our completeness criteria will depend on the time window
we choose as a match window. If we choose a match window
of 5 min instead of 3 min, we find that the bow shock match
rate increases to 71% and the completeness rate is 57%, while
the magnetopause match and completeness rate is 82% and 71%,
respectively. The overall median time difference between our
transition and the closest transition start or stop in the P20 list
was 67 s for bow shock crossings and 64 s for magnetopause
crossings, indicating that the majority of bow shock crossings and
magnetopause crossings identified through the clustering approach
is in good agreement with the P20 identifications. However, of
the non-matching transitions, where the nearest P20 transition
was separated by more than 3 min, we find that the median time
difference is 19 min when comparing bow shock crossings and
6 min comparing magnetopause crossings, which suggests that our
clustering approach is not as robust in identifying bow shock
crossings as they would be if identified through visual inspection.

For comparison, without the relabeling rules applied in Table 1,
there is a significant drop to 7%–22% match rates/completion rates
which further underscores the necessity of these rules as a part of the
model (comparison tables are provided in Supplementary Material).
We emphasize that these relabeling rules are an improvement from
simple rule based/threshold classifications, as they only modify the
results when there is a specific initial clustering label and a condition
that contradicts the validity of that label. A purely threshold based
approach cannot easily handle, for instance, rare solar wind driving
conditions. We note that the comparison to P20 does not serve as a
traditional machine learning validation of the adapted T24 model,
as P20 only marks the start and end times of transition regions
rather than individually classifying each 1 min plasma region of
MESSENGER’s dayside data.

We display the locations of our clustering matches
with P20 in Figure 4, shown as a function of completeness. For a
given spatial grid, we calculate the completeness as the number of P20
transitions that were also identified by clustering (e.g., completeness
of 1 means all P20 transitions matched to a transition identified in
clustering using the matching algorithm described above). For bow
shock crossings, we find that the match completeness is relatively
uniform in all spatial planes, though there is some spatial variation in
the X direction, with increasing completeness with larger X distances
and a slight asymmetry of higher completeness at larger +Y distances.
For magnetopause crossings, while we find very high completeness
throughout, the identification completeness is much lower in regions
close to X = 0 for large Y distances (i.e., near the dawn-dusk
terminator).Thismay indicate a limitation of the clustering algorithm
approaching the nightside (X < 0), likely because the original MMS
clustering algorithm was only proven for dayside observations.

3.3 Bow shock and magnetopause model
locations

We also compare the locations of the bow shock and
magnetopause crossings identified in this work with the empirical
bow shock and magnetopause models derived in W13 and P20,
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FIGURE 4
The fraction of intervals from Philpott et al. (2020) that were matched to a bow shock (top) or magnetopause (bottom) crossing identified from the
clustering algorithm, shown in three spatial planes in MSO coordinates. Only cells with more than 5 transitions are plotted.

respectively. To directly compare our results to W13 and P20,
we first correct for the aberration due to the solar wind flow and
the offset from the planetary dipole. The aberration incorporates
Mercury’s orbital velocity, which can vary based on the planet’s
location in its eccentric orbit. To correct for aberration effects in the
X and Y coordinates, we calculate the orbital velocity of Mercury
at each bow shock or magnetopause transition time and used an
average solar wind velocity of 400 km/s in the X direction only.
We choose a constant nominal value of 400 km/s, as was done for
the analysis in P20. We shifted the Z component southward by
484 km to account for the magnetic dipole offset (Johnson et al.,
2018). We denote the aberration and dipole-corrected coordinates
as X′, Y′, and Z′. Figure 5 shows the distribution of bow shock
and magnetopause locations identified through clustering after
coordinate corrections. In this case, ρ = √Y′2 + (Z′ −Zd)2 where
Zd = 484 km is the planetary dipole. The color of the bow shock
and magnetopause crossings are representative of the angle ϕ =
tan−1 (Y′/Z′).

Also shown in Figure 5 are the W13 bow shock and P20
magnetopause models as dashed-dot and dotted lines, respectively.
The functional form of the W13 bow shock is adapted from
Slavin et al. (2009) and is defined as

√(X′ −X0)
2 + ρ2 =

pϵ
1+ ϵ cos θ

, (1)

where X′ is the aberrated X coordinate and θ = tan−1 (ρ/X′). The
focal parameter, p, eccentricity, ϵ, and focal point X0 are free

parameters of the fit derived from MESSENGER observations of
bow shock locations. Using observations from the first year of
MESSENGER data, W13 found best fit values of X0 = 0.5RM, p =
2.75RM and ϵ = 1.04. From P20, the functional form describing the
shape and location of the magnetopause is

√X′2 + ρ2 = RSS(
2

1+ cos θ
)
α
, (2)

whereRSS is the subsolar standoff distance, α is the flaring parameter
of the paraboloid, and X′, ρ, and θ are the same parameters as used
for Equation 1. Using the entirety of the MESSENGER mission, the
best-fit values from P20 (Equation 2) were found to be RSS = 1.4RM
and α = 0.5, following a similar parameterization by Shue et al.
(1998) for the Earth’s magnetopause.

Figure 5 also includes fits to the bow shock (solid line) and
magnetopause (dashed line) locations derived from our identified
transitions using a least-squares method to compare to theW13 and
P20 model fits. The bow shock crossings identified by the clustering
algorithm lead to a best fit shape that is farther from Mercury and
slightly more extended in ρ than the shape found by W13. We note
that the bow shock crossings at high ρ values (ρ ∼ 3.5− 5) are likely
contributing to the fit location being farther out, as each datapoint
is equally weighted in the fitting. We find best fit values of p =
3.57± 0.24RM, ϵ = 1.12± 0.09 and X0 = 0.22± 0.08RM. Though ϵ is
similar to that found by W13, the focal parameter p and focal point
X0 are both larger. For the magnetopause fitting from P20, we find
updated best fit values of RSS = 1.43± 0.01RM and α = 0.26± 0.02.
The standoff distance RSS is within the margin of error for the value
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FIGURE 5
Bow shock crossings (blue to green squares) and magnetopause
crossings (yellow to orange circles) identified from the clustering
algorithm in the aberrated X (X′)-ρ plane, where the colors represent
the angle ϕ = tan−1 (Y′/Z′). These observations are used to derive a best
fit location from the model of Winslow et al. (2013) for the bow shock
(red solid line) and of Philpott et al. (2020) for the magnetopause (red
dashed line). The best fit locations of the bow shock and the
magnetopause from this work are compared to those from
Winslow et al. (2013) (black dash-dotted line) and Philpott et al. (2020)
(black dotted line), respectively.

found by P20, though we find a smaller value for α, resulting in
a less flared shape. The difference between our best fit shape and
that found by P20 is most noticeable towards the flank, and likely
related to the higher likelihood ofmissed or incorrect identifications
from the clustering algorithm near the dawn-dusk terminator (see
the bottom row of Figure 4). While solar wind velocity can vary
from around 250 km/s to 550 km/s Brown et al., 2025, we find
that varying the value of solar wind velocity in the analysis makes
negligible difference in the fit. We repeated the analysis using values
of 250 km/s and 550 km/s for solar wind velocity. The best fit
magnetopause and bow shock values using these velocity values
are within the margin of error of those using a constant value of
400 km/s. An interesting follow up study would be to compare the
differences in MESSENGER observations between the P20 list of
magnetopauses and bow shocks and the ones identified in this work.

4 Summary and conclusion

We have automatically categorized all 4 years of dayside
MESSENGER orbit data into three plasma regimes (magnetosphere,
magnetosheath, and solar wind) at 1-min resolution. This was done
using an unsupervised plasma region clustering model originally
trained on dayside Earth observations from the MMS mission
and fine tuned with MESSENGER data as a proof of concept that

this Earth based model can be extended to different planetary
environments and missions. In order to account for differences
in both MESSENGER and MMS instrumentation and between
Mercury and Earth’s magnetospheres, we applied additional post-
cleaning rules and minimal changes to the generated features (e.g.,
changing the normalized value of Btot from 50 nT to 150 nT).
We note that while we incorporate two additional post-processing
features, the classification is primarily using the same, but slightly
modified, features used in the Toy-Edens et al. (2024b) (T24)
model. One could potentially envision generating features specific
toMESSENGER and/orMercury’smagnetosphere environment and
specifications, however, this would be at the loss of creating a
generalized and widely adaptable model that can be applied to a
variety of planetary magnetospheric systems and mission data. For
example, by sampling a limited number of intervals ofMESSENGER
data with region transitions, one can manually adjust the features
and post-cleaning rules that go into the T24 model to get plasma
region classifications for 4 years of MESSENGER dayside data
quickly and without extensive manual review. Our study is a clear
demonstration of unsupervised transfer learning showing that the
clustering of plasma regions using ion spectra and magnetic field is
flexible and extensible and can be applied to observations fromother
planets and for a multitude of missions, despite being differently
equipped.This is particularly timely, as it could be adapted to be used
with observations from the BepiColombo mission when it enters
into orbit around Mercury.

We compare our results against the Philpott et al. (2020) (P20)
list of bow shock and magnetopause crossings that were visually
identified using magnetic field data from the entire MESSENGER
mission. Using an identification criteria that the plasma region
remains stable for 3 min before and after each bow shock or
magnetopause, we find that 67% of bow shock and 74% of
magnetopause crossings that we identify also appear in the P20
list, with a total completeness of 54% and 64% for bow shock
and magnetopause identifications, respectively. For magnetopause
crossings, the completeness is dependent on location, where we find
a lowermatch to the P20magnetopause list near the flanks. Similarly,
we find good agreement in the 2D shape of themagnetopause except
at the flanks, where we find less flaring of the fitted magnetopause
location than reported in P20. For bow shock crossings, the most
representative 2D shape from the bow shock crossings identified
in this work extends further out from the surface of Mercury than
that previously described in Winslow et al. (2013) (W13), and we
find a larger spread in the spatial distribution of our identified bow
shock crossings. We note that we are not trying to recreate or exceed
manualmethods for identifying plasma regions fromMESSENGER,
but instead we are focused on demonstrating that an extensible
unsupervised learning model trained on Earth-based data can be
successfully applied to vastly differing conditions andmissions.This
method also can provide an initial identification of interesting events
or regions for further study which may be useful for the upcoming
BepiColombo mission.

Future work will include in-depth parameter sensitivity studies
of the T24 model features and comparisons with use of T24 with
no modifications to further identify the main observational drivers
that benefit or limit the completeness and accuracy of the clustering
algorithm.This includes extending the T24 model dataset as long as
available with MMS for years within the ascending and maximum
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phases of the solar cycle to account for any possible biases related to
primarily sampling solar minimum conditions and also upsampling
rare solar wind conditions. Additionally, future work will seek to
better optimize the algorithm for nightside observations to enable
further studies of magnetospheric regions and dynamics. Finally,
future efforts will also focus on adapting the clustering algorithm to
observations at different planets, including the largely rotationally-
driven intrinsicmagnetospheres of the outer planets and the induced
magnetosphere of Venus.
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