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There are numerous small-scale electron density irregularities in the ionosphere.
The coordination of multiple needle Langmuir probes (m-NLPs) enables in
situ measurement of electron density with high spatial resolution. However,
the theoretical analysis method based on orbital motion-limited (OML) theory
cannot accurately estimate electron density, even at higher resolutions, due to
limitations in satellite measurements. In addition, due to the influence of satellite
charging and flight wake, the currents collected between multi-probes have
low consistency, introducing significant error into the measurement results. This
study uses a stacking algorithm to process m-NLP data and incorporates the
International Reference lonosphere (IRI) model to correct the predicted electron
density (N,) values. The integrated characteristics of the stacking model make
full use of the advantages of various models such as multilayer perceptron (MLP),
support vector regression (SVR), K-nearest neighbors (KNN), and light gradient
boosting machine (LightGBM). The combination of integrated machine learning
methods and IRl models greatly improves the accuracy of electron density
measurements obtained by m-NLPs. The results indicate that even with poor
consistency among the currents collected by multiple probes, the coefficient of
determination (R?) of the prediction results using this method can reach 0.9553,
which is 0.5079 higher than that of the traditional diagnostic method.
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1 Introduction

There are some plasma clouds with different degrees of ionization in the ionosphere,
which are called ionospheric irregularities (Aol et al., 2020; Reid, 1968). Their electron
density (N,) is higher or lower than the average ionization density of the surrounding
environment. The spatial-scale distribution of irregularities ranges from meters to
several thousand kilometers (Xing et al, 2018). The formation mechanisms and
principles of irregularities at different scales are different, and their spatial and temporal
evolution is also complex and dynamic. Numerous small-scale irregularities (ranging
from meter to hectometer scale) that form at the edges of large- and medium-scale
irregularities have been shown to cause severe amplitude and phase scintillation in radio
waves. The rapid fading in short-medium waves and forward scattering of very high
frequencies cause changes in signal trajectory and propagation delay in radio waves
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(Ning et al., 2012; Tereshchenko et al., 2006; Liu et al., 2021),
leading to adverse effects on satellite communication and GNSS.
Thus, it is important to measure the small-scale irregularities in
the ionospheric plasma to mitigate their effects on radio wave
communication.

Mott-Smith and Langmuir (1926) proposed a Langmuir probe
diagnostic method to measure various plasma parameters. Later,
this method has been widely used in space plasma exploration
(Lebreton et al., 2006; Buchert et al., 2015; Wang et al., 2018;
Lee et al,, 2013). Traditional Langmuir probe systems rely on active
voltage sweeping mechanisms (Lebreton et al., 2006; Fish et al,
2014) to acquire probe current measurements through which
current-voltage (I-V) response profiles are derived. These data
have been analyzed using theories such as orbital motion-
limited (OML) theory (Mott-smith and Langmuir, 1926), the
Allen-Boyd-Reynolds (ABR) theory (Allen et al., 1957), and the
Bernstein-Rabinowitz-Laframboise (BRL) theory (Bernstein and
Rabinowitz, 1959; Chen, 1965) to obtain plasma parameters such as
N, temperature (T,), and satellite floating potential (Vf) (Liu et al,,
2023). The use of Langmuir probes in ionosphere satellites
helped measure the distribution of ionospheric irregularities,
enhancing our understanding of how ionospheric irregularities
affect wireless communication and improving the reliability of
modern communication systems.

The Langmuir probe can perform accurate in situ measurement
of N, in ionospheric plasma, which is one of the key parameters
of the ionosphere composition and dynamics. The changes in N,
affect many aspects, such as radio communication, radar systems,
satellite navigation, and space weather (Kintner and Ledvina, 2005;
Chapin et al., 2006; Jakowski et al., 2001; Akala et al., 2012). These
plasma irregularities exhibit dynamic spatial configurations that
require quantification of N, at meter to multi-kilometer scales for
precise characterization of their spatiotemporal evolution (Kintner
and Seyler, 1985). The limited correlation between the scanning
frequency and plasma frequency of traditional Langmuir probes
implies the difficulty in achieving high spatial resolution.

The new multi-needle Langmuir probe (m-NLP), conceived
and engineered by Norway’s University of Oslo, was successfully
deployed aboard the NorSat-1 during its orbital insertion from the
Baikonur Cosmodrome, Kazakhstan, on 14 July 2017 (Hoang et al.,
2018a). NorSat-1 completes dual equatorial traverses and polar
transits within its 90-min orbital period. The m-NLP suite integrates
a quad-probe configuration with independent bias-voltage control,
featuring cylindrical sensors with 0.5 mm diameter and 25 mm
axial dimensions. This payload achieves 1 kHz temporal resolution
with 1 nA current measurement sensitivity (Hoang et al., 2018a),
specifically designed to elucidate the formation mechanisms of
small-scale plasma irregularities through high-precision N, gradient
measurements.

Jacobsen et al. (2010) proposed a new approach for the fast
computation of N,, which was later used to process m-NLP
data. This method uses multiple fixed-bias Langmuir probes to
simultaneously sample the plasma at different biases in the electron
saturation region of the I-V characteristic. This method does not
need scanning bias voltage or T, at the beginning. The time required
to obtain plasma parameters is short, which can greatly improve
the spatial resolution of measuring N,. Hereafter, the N, calculation
method proposed by Jacobsen et al. (2010) using linear fitting will be
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referred to as the traditional diagnostic method (TDM). Regarding
the OML theory, the probe saturation current (I,) and the applied
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bias voltage need to satisfy Equation 1 (Allen, 1992):
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where e is the electron charge, A is the surface area of the probe, kj

1

is the Boltzmann constant, m, is the electron mass, and V is the bias
voltage applied by the probe relative to the plasma space potential.
In OML theory, the exponential 3-value of the cylindrical Langmuir
probe is 0.5, which is also used by m-NLP to calculate N,. However,
in practical situations, it is difficult to meet all the prerequisites of
OML theory (Ma et al., 2019). For example, the plasma needs to
satisfy the conditions such as (1) being collisionless, (2) following
a non-drifting Maxwell distribution, (3) being non-magnetized, and
(4) having an ion-collected current much smaller than the electron-
collected current. It is reasonable to assume that the plasma in the
ionosphere satisfies the above conditions. However, the limitations
of the probe need to be discussed separately. At first, the potential
carried on the probe must satisfy the following condition: (5) eV/kT
>0 or eV/kT = 2 for cylindrical objects. The two requirements for
the size of the probe are as follows: (6) the probe must be very thin,
meaning that the probe radius r needs to be much smaller than the
Debye length (A,), and (7) for a cylindrical probe, the probe length
I needs to be much greater than A,,.

The Langmuir probe payload working in space may not always
meet the abovementioned seven conditions, especially (5) and
(7). The TDM algorithm based on OML theory assumes a linear
relationship between the square of the current collected and the
voltage applied by the probe, which forms the basis for excluding T',
in calculating N,. However, this only applies when the bias voltage
applied to the probe is higher than the plasma potential, that is,
the probe is in the saturation region of the I-V characteristics.
However, the potential on the lower-potential probe of the CubeSat
spacecraft is usually lower than the plasma potential due to the
negative potential carried by the spacecraft (Ma et al., 2019). This
prevents the probe from meeting the condition eV/kT = 2, resulting
in poor consistency in current collection between several probes and
causing significant errors in the TDM results.

In addition, OML has certain requirements for the probe shape
such that the probe radius should be smaller than the plasma
Ape> while the probe length far exceeds Ap, (Ma et al, 2019
Hoskinson and Hershkowitz, 2006). However, probes cannot satisfy
this condition in the ionosphere, and in real practice, the probe
length is usually similar to or even smaller than A, (Guthrie et al.,
2021; Hoang et al., 2019). For example, the probe length of m-NLP
is 25 mm, which, in most cases, is much smaller than the Ap, of
the ionospheric plasma (ranges from 7 mm to 400 mm). Therefore,
taking  directly as 0.5 is inaccurate. Many studies have shown
that the value of 8 varies within a certain range (Jacobsen et al.,
2010; Friedrich et al., 2013; Bekkeng et al., 2019; Hoang et al.,
2018b). Certain studies also indicate that OML theory cannot be
fully satisfied even with a probe length of 50 mm (Hoskinson and
Hershkowitz, 2006). However, TDM did not account for errors in
the N, results caused by f deviations from 0.5.

The operational attitude of the spacecraft and contamination of
probe surfaces can also lead to significant errors. When a spacecraft
flies in low Earth orbit, one or more probes are likely to work within
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the plasma wake generated by the spacecraft's movement. Under this
orbital dynamics, the thermal motion of ions remains low relative
to the platform velocity, while the thermal motion of electrons far
exceeds the orbital velocity threshold. However, electrons can only
penetrate the ion-rarefied wake region behind the probe within the
range allowed by bipolar diffusion (Barjatya et al., 2009). Therefore,
the operation of the spacecraft affects the collected current of the
Langmuir probe in the ion and electron saturation regions, thus
affecting N, measurements (Ivarsen et al, 2019). Moreover, the
surface of Langmuir probes is prone to adsorb water and neutral
gas molecules, resulting in a weakened ability to absorb electrons or
ions. The different levels of contamination between multiple probes
can also cause significant errors.

In summary, due to the lack of many restrictions for the
establishment of OML, there is a significant error between N,
provided by m-NLP and the actual observation. Thus, a new method
is needed to accurately process the data generated by m-NLP, and
this study proposes a method that combines the stacking algorithm
in machine learning with m-NLP to estimate ionospheric plasma
parameters, which can accurately capture the rapid changes in
plasma N,.

Section 2 introduces the theory of N, measurement; Section 3
introduces several machine learning methods integrated in this
model and the evaluation methods for the final results; Section 4
introduces the specific experimental process and provides a detailed
analysis of the experimental results; and Section 5 presents the
conclusion.

2 Theory of electron density
measurement

Figure 1 shows the representative I-V characteristics collected
by the cylindrical Langmuir probe in plasma. The vertical axis shows
the current collected by the probe (I p), and the horizontal axis shows
the scanning voltage (V) applied by the probe. The characteristic
curve can be divided into three regions, namely, the ion saturation
region, the transition region, and the electron saturation region,
as the bias voltage changes from negative to positive. The voltage
corresponding to the boundary point is the plasma floating potential
(Vf) and plasma potential (VP).

Within the ion saturation region, V, applied to the probe is
much lower than V, causing it to repel most electrons, and only
a very small number of high-energy electrons are captured by
the probe’s sheath. Therefore, I, can be considered to be mainly
contributed by ions captured by the probe at this point while
neglecting the role of a few electrons. Meanwhile, the negative
potential of the probe attracts ions and forms an ion sheath around
the probe. The condition of electrical neutrality is not met within
the sheath (N; > N,), but outside the sheath, the plasma remains
electrically neutral and is not disturbed by the probe’s potential. Ions
enter the sheath at a random velocity, forming the ion saturation
current (I;;) of the probe. The value of the ion saturation current is
calculated as shown in Equation 2 for the Bohm current.

T, \:
n)

I = —0.6056N,-A<
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FIGURE 1

Representative |-V characteristic curves of the Langmuir probe.
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FIGURE 2
Trajectory of ions attracted by the probe.

where N; is the ion density and m; is the ion mass. Although
I
the ion saturation current does not remain fixed as V; changes;

;s 1s theoretically constant, experimental observation shows that
instead, it gradually increases, especially for spherical and cylindrical
probes. As V, increases, the thickness of the sheath also changes,
and the positive correlation with the absolute value of V, results
in an increase in the area for collecting ions, and consequently, the
ion current does not saturate. Therefore, the ion saturation current
cannot be described by the collection theory of planar probes,
and at this point, Mott-Smith and Langmuir (1926) proposed
OML theory.

OML theory considers the motion path of individual ions at the
microscopic level. It is assumed that a positive ion starts at infinity
and moves at a velocity v, along a fixed direction toward a cylindrical
Langmuir probe with a radius Ry, as shown in Figure 2. It is also
assumed that the plasma potential at infinity is 0, and the probe
potential is negative.

In Figure 2, p is the distance between the incident orbit and the
center point of the probe, and a is the distance from the center
point of the probe after being attracted by the probe voltage and
changing the orbit. According to the conservation of energy and
angular momentum, if the distance between the ion and the center
of the probe is less than Ry, the ion will be absorbed by the probe.
Therefore, the ion flux (®;) of the cylindrical probe with length L can
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be calculated using Equation 3:

V. \:
®; =27R,L( 1+ V. o, 3)
where V, is the voltage at the starting area of the ion, V, is the

voltage at the current area, and @, is the random flux generated by
the ion’s thermal velocity with the same Maxwell energy distribution

(Equation 4).
kT,
(Dr _ Ni B+i ,
2mm;

where T, is the ion temperature. Integrating the distribution

(4)

function of ions with Maxwell’s velocity distribution yields the total
flux (@) of the probe, as shown in Equation 5:
- S : x[1_ i
®—ACD,{aerf<¢2)+e [1 erf(x+q5)2”>, (5)
where x = —eV/kyT,, ¢ = a’x/s* —a?, and s is the thickness of the
sheath layer.
When the three conditions s >> a, x >> ¢, and T,>0 are
satisfied, Equation 5 can be approximated using Taylor expansion as

=

I— ANe—
Under orbital motion-limited theory, the relationship between

(6)

T,—0 T

ion saturation current and probe voltage for a cylindrical Langmuir
probe can also be extended to calculate the electron saturation
current, as shown in Equation 6.

The N, rapid diagnostic method proposed by Jacobsen et al.
(2010) only requires the use of two or more fixed-bias Langmuir
probes. When the bias voltage is sufficiently positive, the electron
current dominates, resulting in the probe being in the electron
saturation current region. Squaring Equation 1 yields Equation 7:

2
P

2kpT,e*A*N,*>  2A%8VN,?
= + .
m m

V, and V, represent the two different biases of the probe,

7)

e e

and I, and I, represent the currents collected by the two probes
with different biases. The difference between the squares of two
currents yields Equation 8:

L2 24%3(V, - V,)N,2

L2-1, e (®)

pl

e

From Equation 8, N, can be obtained as follows:

)

According to Equation 9, N, can be calculated for two different
biases through the probe and their corresponding collection
currents. This suggests that, in the same plasma, the square of the
probe collection current shows a linear relationship with the voltage
difference, as shown in Figure 3.

To make the results more reliable, bias voltages and
corresponding currents are linearly fitted at no less than three
points to solve N,, which greatly improves the spatial resolution
of plasma density.
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Two fixed-bias probes used to diagnose electron density (N,).
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3 Method of ensemble learning

Ensemble learning techniques have achieved state-of-the-
art performance in diverse machine learning applications by
combining the predictions from two or more base models (Mienye
and Sun, 2022). In this study, multilayer perceptron (MLP),
support vector regression (SVR), K-nearest neighbors (KNN), and
light gradient boosting machine (LightGBM) were used as the
base models.

3.1 Multilayer perceptron

MLP is a widely used deep learning model, which is a
feedforward network capable of solving linearly inseparable
problems. Its structure is shown in Figure 4 (Kruse et al., 2022).

MLP consists of an input layer, several hidden layers, and an
output layer containing multiple neurons in each layer. Each neuron
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receives and processes the output signals of all neurons in the
previous layer and outputs them to the next layer. The calculations
of each neuron in MLP are independent of each other. The input
to a neuron is calculated as weighted sum of the outputs from the
previous layer of neurons, added to a bias term. This calculation
is shown in Equation 10:

O _ 0, =1

N
Z; Zj:l (Wij a]

where i represents the ith neuron, I represents the Ith layer,

)+ b, (10)

NED represents the number of neurons in the (L-1)th layer, wij(l)
represents the weight connecting the jth neuron in the (L-1)th layer
to the ith neuron in the (L-1)th layer, aj(“ ) represents the output of
the jth neuron in the (L-1)th layer, and b," represents the bias of the
ith neuron in the (I-1)th layer. Z; ® represents the input of the ith
neuron in the /th layer.

Activation functions are used in each hidden layer and output
layer of MLP to implement nonlinear transformations that enable
the network to learn more complex representations and avoid
network degradation. The common activation functions include the
sigmoid function (Cox, 1958), ReLU function (Krizhevsky et al,
2017), tanh function (Lecun et al.,, 2002), and softmax function
(Bridle, 1990). By inputting z,” into the activation function,
the output a,”) of the neuron can be obtained as shown in
Equation 11:

= f(2). (1)

3.2 Support vector regression

SVR is a regression application based on the support vector
machine (SVM), which establishes the regression process by finding
an optimal hyperplane that only considers the edge points around
the training set (Smola and Scholkopf, 2004).

Assuming that the input feature x; and the target output y; form a
pair of input-output data, f;, is the output function of this model. To
avoid overfitting of the model and improve its generalization ability,
a tolerance error ¢ is introduced so that the model does not need
to fit all data points. The absolute value of the difference between f,,
and y is acceptable within the tolerance error e. When calculating the
loss, only data points outside the tolerance error range are calculated.
As shown in Figure 5, a spacing band is constructed with f,, as the
center, with the upper boundary being f,) +¢ and the lower boundary
being f,)—¢ If [y; = f.|< € is satisfied, then the data point is within
the interval band and the loss is 0.

The kernel function maps the input features to a high-
dimensional feature space and performs linear regression in the
high-dimensional linear space to handle nonlinear problems. The
commonly used kernel functions include linear kernel, polynomial
kernel, Gaussian kernel, and Laplacian kernel.

3.3 K-nearest neighbors

KNN is an instance-based learning method that identifies K
samples nearest to a given observation and uses their average to
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FIGURE 5
Support vector regression schematic.

predict the target value. The calculation method of the average value
() is shown in Equation 12.

1 S ; 12
Y=z ;y (12)
where K is the number of samples and y; is the actual output value
of the ith nearest neighbor sample of the predicted point. The core
idea of KNN is to use information from surrounding neighbors
for prediction. The choice of K value affects the model’s and the
smoothness of its prediction. This indicates that a smaller K makes
the model more sensitive, while a larger K results in smoother
prediction results.

3.4 Light gradient boosting machine

LightGBM is based on a gradient boosting framework
with the core ideas of the histogram algorithm, a leaf-
wise growth strategy with depth limitation, unilateral
gradient sampling, and mutually exclusive feature bundling
(Ke et al., 2017).

The histogram algorithm is an eflicient decision tree learning
algorithm that has a small memory footprint. Unlike traditional
algorithms that sort feature values at each split point, the histogram
algorithm divides continuous feature values into discrete intervals
and finds the optimal split within those intervals. This approach
reduces computational complexity while maintaining high accuracy,
as shown in Figure 6.

LightGBM the

as shown in Figure 7. The leaf-wise growth strategy prioritizes

uses leaf-wise ~ growth  strategy,
splitting the leaf nodes with the highest gain, and the decision
tree stops growing at a certain depth. This limits the complexity of
the tree and prevents overfitting while ensuring a fast and efficient

model speed.
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Leaf-wise tree growth strategy.

3.5 Stacking theory

Ensemble learning combines multiple learners into a more
powerful learner that can combine multiple models with reasonable
strategies to achieve higher performance and generalization ability.
The three main methods of ensemble learning are bagging,
boosting, and stacking (Ribeiro and Dos santos coelho, 2020).
As shown in Figure 8, two types of learners in the stacking model are
base learners and meta-learners. The base learner is the underlying
learner of the stacking model, which is the first-level learner that
directly learns from the raw data and generates first-level prediction
results. The meta-learner is the top-level learner of the stacking
model and acts as a second-order learner, typically represented by
a single model instance. The meta-learner integrates and modifies
the output of the base-learner to reduce the bias and variance of the
model. It can also generate the final prediction results and improve
the stability and accuracy of the model.

The stacking model takes the prediction results of multiple
different base learners as input and trains a meta-learner. The
learners in each layer can be different types of models, such as
decision trees, linear models, and neural networks.

The ensemble feature of the stacking model enables the full
utilization of the advantages of each base learner, compensates for
the shortcomings of individual learners, and reduces the impact
of overfitting of a model on specific data. Its advantage is the
ability to extract diverse information from data and adapt to various
types of data features and task objectives. This model has high
diversity and generalization ability, and its architecture is also easy
to expand. However, there is often a risk of overfitting in the stacking
model when faced with limited input data, so some overfitting
strategies must be used during the training process of the model.
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This study used k-fold cross-validation (k = 5) during both base-
learner training and meta-learner stacking. For neural network-
based base learners (MLP, etc.), we applied L2 regularization (A =
0.01) and dropout (rate = 0.2) to reduce model complexity and avoid
overfitting.

4 Experimental process and results

The data used in this study come from the m-NLP payload
and the IRI 2016 model. The m-NLP provides probe current
data required for prediction, while IRI 2016 provides N, data
corresponding to the probe’s data. The NorSat-1 m-NLP data can
be downloaded from the data portal website of the University of
Oslo (M-nlp, 2024). According to the location and time information
provided by the m-NLP, the corresponding N, data can be obtained
from the IRI 2016 model (Bilitza et al., 2014).

IRI 2016 is an international ionospheric reference model
developed jointly by the International Committee on Space Research
(COSPAR) and the International Union of Radio Science (URSI)
to describe the global distribution of key parameters such as N,
N, and T, in the Earth’s ionosphere (Bilitza et al., 2014). IRI 2016
provides standardized and empirical predictions of ionospheric
parameters, and the output ionospheric plasma parameters depend
on solar activity intensity and the geomagnetic index. Compared
to real detection results, the displayed parameters are smoother.
However, due to the lack of in situ exploration references in space,
this study used the result output by IRI 2016 as reference values.
Although there are errors compared with the real ionospheric
environment, this study mainly aims to verify the effectiveness of
machine learning methods in predicting N,. IRI 2016 can provide
corresponding ionospheric parameters by inputting information
such as time and the satellite’s location.

The experimental process is shown in Figure 9. As mentioned
earlier, the probe data from the m-NLP and the N, data from
IRI 2016, required for this analysis, can be obtained from their
respective websites and together constitute the original dataset. The
raw data are then pre-processed, including steps such as filtering
and normalization. Finally, we train the single model and the
stacking model of various structures subsequently and use the
evaluation indicator to compare the prediction effect of each model
to determine the best model.

The predictive effectiveness of this model during training can
be quantified using evaluation indicators. The evaluation indicators
can also identify problems in the model and determine whether
overfitting and underfitting have occurred. This analysis chooses
mean squared error (MSE) as the loss function given in Equation 13:

n
Loss = MSE = %Z(yi—yi’)z, (13)
i=1
where y; i the label value, y;” is the model’s prediction value, and n
is the number of samples. The MSE intuitively measures the squared
difference between the predicted and actual values, making the loss
function easier to interpret.

The model’s predictive performance is measured using four
indicators: mean absolute error (MAE), mean absolute percentage
error (MAPE), root mean square error (RMSE), and coefficient of
determination (R?).
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The MAE can show the actual situation of prediction error and
is given in Equation 14:

n
1
MAE = ;Zl)’i_)’”' (14)
izl

The MAE provides a quantitative measure to represent
the average prediction error size of a model. It measures the
average absolute difference between the predicted and true
values. Unlike the MSE, the MAE does not assign excessive
weight to large errors, suggesting that it is less sensitive
to outliers.

The MAPE provides a simple and clear representation of the
ratio between the prediction error and true value. The equation for
MAPE is shown in Equation 15:

MAPE = — z’y i ‘ (15)

The RMSE function reflects the average error value and can be
calculated using Equation 16:

RMSE = (16)

The RMSE has the same unit of measurement error as the
raw data. This allows the performance of the model to be
understood at the scale of actual observations without being
affected by the absolute size of the data. The RMSE is more

frontiersin.org


https://doi.org/10.3389/fspas.2025.1614225
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Wang et al. 10.3389/fspas.2025.1614225
.
T L T I T I l’ l T l T I T l T I ——
0.10 0.12 0.14 0.16 0.18 020 022 024 026
T,(eV)
FIGURE 10
T, and N, distribution of the dataset.

sensitive to large errors than the MAE, and if the model produces
significant errors on some data points, the RMSE will be more
pronounced.

R? can quantify the goodness of fit of a regression model with
values spanning from 0 to 1. The closer R? is to 1, the better the
model’s goodness of fit and its explanatory power for changes in the
observed values. R can be calculated as shown in Equation 17:

n 2
> iy
RP=1- ;11 1 —1 2
Zizl(yi_yi)

where j; represents the average of the actual values.

(17)

4.1 Data preprocessing

We used m-NLP to obtain probe and satellite orbit data for
5 days, 5 May, 7 May, 8 May, 2 August, and 3 August 2021, which
were relatively complete and had high continuity. The longitude,
latitude, altitude, and time in m-NLP data can be used to find the
corresponding T, and N, data in IRI 2016. IRI 2016 and m-NLP
data were filtered, and some data were removed as some periods of
m-NLP data only contained orbital data and did not include probe
data. After filtering, there are 1,420 sets of data per day, resulting in
a total of 7,100 datasets over 5 days. We combined the four current
values of the four probes with the N, data from IRI 2016 to obtain the
raw dataset and divided it into training and testing sets in a 4:1 ratio.
The N, and T, distribution results of the data are shown in Figure 10.
The distribution ranges of N, and T, are 4.65 x 10" m~- 4,02 x
10" m™ and 0.09 eV-0.26 eV, respectively.

The
cause the objective function to shift, and normalization is also

difference in the dimension of feature vectors can
required between different evaluation indicators. The difference in
dimensions can also cause the descent direction to deviate from
the minimum value direction and generate violent fluctuations
during model gradient descent, ultimately leading to excessively
long training time and even ineffective training results. So, we
standardize the data before inputting it into the model to eliminate
the dimensional influence between various indicators. The zero
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mean normalization (Equation 18) is a method that can perform
linear transformations on data. It can shift the mean of data to 0, help
eliminate mean bias, and facilitate model learning of data features.
p_XTH
x'=—,
o

(18)

where p is the average and o is the standard deviation of the
characteristic values. The zero mean normalization can eliminate
mean bias between features by shifting the mean of the data to 0,
and this helps the model better capture the relationships between
features. The method reduces the bias during the model training
process and can accelerate the convergence speed of the model. After
standardization, the data present a uniform distribution relative to
the center, and optimization algorithms can, thus, quickly find the
optimal solution. The zero mean normalization does not change the
scale of the data and hence does not affect the feature scale of the
model. The standardized data have zero mean and unit variance,
which makes the weights of features easier to interpret and reflects
their relative contributions to the output.

4.2 Optimizer

The search for the optimal solution is a crucial objective in
optimization problems. To achieve this goal, numerous optimization
algorithms have been proposed, including the gray wolf optimizer
(GWO) (Mirjalili et al, 2014), whale optimization algorithm
(WOA) (Mirjalili and Lewis, 2016), and Bayesian optimization
(BO) (Frazier and Bayesian optimization, 2018). GWO is a global
optimization algorithm inspired by the hierarchical behavior
of gray wolf packs, which simulates the social hierarchy and
cooperative hunting behavior of gray wolves to search for the
optimal solution in the solution space (Mirjalili et al., 2014).
WOA is a heuristic global optimization algorithm that mimics
the hunting behavior of humpback whales, which primarily
consists of three phases: encircling prey, bubble-net attacking,
and searching for prey (Mirjalili and Lewis, 2016). BO is a global
optimization algorithm designed for optimizing objective functions.
It is based on Bayesian inference and Gaussian process modeling,
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TABLE1 Components of stacking models.

10.3389/fspas.2025.1614225

Model Meta-learner Base learnerl Base learner2 ‘ Base learner3
Stackingl MLP SVR KNN LightGBM
Stacking2 SVR MLP KNN LightGBM
Stacking3 KNN MLP SVR LightGBM
Stacking4 LightGBM MLP SVR KNN

utilizing Gaussian processes to generate a multidimensional
Gaussian distribution (Frazier and Bayesian optimization, 2018).
By examining the most probable points given by the posterior
distribution, BO can identify parameters that yield the global
optimum. Through iterative modeling and optimization of the
objective function, it locates the optimal solution within a limited
number of sampling iterations.

This study used four machine learning models, namely, MLP,
SVR, KNN, and LightGBM, and trained and evaluated each
model using the three optimizers mentioned above to determine
the optimal optimizer suitable for each model. The results are
provided in Section 4.4.

4.3 Model construction

The basic idea of the stacking model is to combine the prediction
results of various models and leverage their strengths to improve
the overall performance of the model. The performance of stacking
models obtained by combining different types of models also varies.

Stacking models divided into homogeneous
heterogeneous stacking models. The basic models of homogeneous

are and
stacking are of the same type and have similar structures.
Homogeneous stacking models have strong compatibility and
simple implementation, but the differences between models are
small, making it difficult to fully utilize the characteristics of the
models. They are usually suitable for simpler tasks. The basic models
of heterogeneous stacking are of different types with significant
structural differences.

Heterogeneous stacking models can combine various types
of models, such as decision trees, neural networks, and support
vector machines, with rich and diverse effects. However, the
implementation of this model is relatively complex, and the structure
needs to be reasonably matched and attempted. The model is usually
suitable for more complex tasks.

This paper uses MLP, SVR, KNN, and LightGBM models
to construct a heterogeneous stacking model for N, prediction.
As shown in Table 1, one model is selected from the four models
as the meta-learner, and the remaining three models are considered
the base learners. The N, data from IRI 2016 are used as the label
values and to train heterogeneous stacking models.

The evaluation indicators of the predictive results of four
stacking models and four single models on the test dataset are
presented in Table 2 and Figure 11.

The predictive results for the test dataset indicate that the SVR
model, when used as a meta-learner, has the optimal values for all
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TABLE 2 Comparison of evaluation indicators of each model.

Model MAE MAPE RMSE ‘ R? ‘
MLP 2.0025 x 10" 0.1818 2.7906 x 10" 0.8819
SVR 2.1541 x 10" 0.1798 3.4196 x 10" 0.8227
KNN 1.9178 x 10'° 0.1510 2.8752 x 10" 0.8747
LightGBM 2.1906 x 10'° 0.1889 3.0972 x 10" 0.8546
Stackingl 1.8457 x 10'° 0.1490 2.5326 x 10'° 0.9028
Stacking2 1.2549 x 10" 0.1088 1.7179 x 10" 0.9553
Stacking3 1.9483 x 10" 0.1821 2.6341 x 10" 0.8948
Stacking4 1.7244 x 10" 0.1508 2.4374 x 10" 0.9099

four evaluation indicators of N,. It achieves the highest R* value,
reaching 0.9553, and the lowest values for MAE, MAPE, and RMSE,
which are 1.2549 x 10'?, 0.1088, and 1.7179 x 10'°, respectively.
Therefore, the SVR model was ultimately selected as the meta-
learner for the stacking model, while the MLP, KNN, and LightGBM
models were chosen as the base learners, i.e., Stacking2 in Table 1.

4.4 Model parameter

The meta-learner used in this study is SVR, and the optimizer
used is the WOA. The base learners are LightGBM, KNN, and MLP.
By comparing the three optimization methods (GWO, WOA, and
BO), GWO was chosen to optimize them. The main parameters of
each optimized model are shown in Table 3.

The main parameters of the SVR model are shown in the
first row of Table 3. The parameter 1°C is the penalty parameter
that controls the penalty for errors. C is positively correlated with
the fitting ability of the model and also represents the probability of
overfitting in the model. Gamma is the Gaussian kernel coeflicient,
which can control the complexity of the model. Gamma is inversely
correlated with the smoothness of decision boundaries. Epsilon
controls the width of the insensitive interval, and the error within
this interval is accepted.

The main parameters of the LightGBM model are shown in
the second row of Table 3. The feature_fraction is used to control
the proportion of feature sampling used in each iteration, and its
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TABLE 3 Results of each parameter of the SVR, LightGBM, KNN, and MLP models after optimization.

Model Parameter 1 Parameter 2 ’ Parameter 3 Optimizer
SVR C:20 Gamma: 0.5 Epsilon: 0.03 WOA
base_lr: 0.0250
LightGBM num_Jleaves: 6 feature_fraction: 0.8 GWO
final_Ir: 0.0060
KNN n_neighbors: 14 leaf_size: 25 GWO
hidden_dim_1: 50 base_Ir: 0.0010
MLP hidden_layer_num: 2 GWO
hidden_dim_2: 4 final_lIr: 0.0001

value ranges from 0 to 1. This study reduces the risk of overfitting
by limiting the number of features used in each iteration while
also reducing computational complexity and speeding up model
training. When the data dimension is high, the role of feature_
fraction is to reduce the impact of dimension disasters. The initial
learning rate (base_Ir) and final learning rate ( final_Ir) of the model
are 0.0250 and 0.0060, respectively.

The main parameters of the KNN model are shown in the
third row of Table 3. The number of neighbors (n_neighbors) needs
to be considered when making predictions; a larger number of
neighbors results in smoother model performance. The leaf_size is
the size of the leaf node.

The main parameters of the MLP model are shown in the
fourth row of Table 3. The MLP model used in this study adopts a
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configuration of one input layer, two hidden layers, and one output
layer. The hidden layer nodes contain 50 and 4 nodes, respectively.
The activation function used in the model is the ReLU function.
The base_Ir and final_Ir used in the model are 0.0010 and 0.0001,
respectively.

4.5 Results and analysis

After the model training is completed, we first select a period
of data from m-NLP to compare the results of two methods: the
stacking model and TDM, as shown in Figure 12.

The four curves in Figure 12a correspond to the current values
of the four probes, and the bias voltages corresponding to the four
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FIGURE 13
Deviation of the results obtained from the stacking model and TDM
from the true value.

probes are +10V, +9V, +8V, and +6V. The red curve corresponds
to the red coordinate axis on the right side, and the remaining
curves correspond to the black coordinate axis on the left side.
The curve in Figure 12b represents N, corresponding to the probe
current, while the black solid curve represents the N, value obtained
from IRI 2016 as the true value. The red dashed curve shows
the predictive result of the stacking model, and the blue dashed
curve shows the N, diagnostic result of the TDM. The comparison
of the results of the two methods is shown in Figure 13, and
the distance between the results and the black curve in Figure 13
represents the error.

13, the
outperform TDM in N, prediction, with TDM yielding consistently

From Figures 12b, stacking model's outcomes
lower magnitude results, corroborating the findings of Hoang et al.
(2018a). The difference in evaluation indicators between the two

approaches is presented in Table 4 and Figure 14.
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TABLE 4 Comparison of evaluation indicators of the two methods.

Model MAE MAPE RMSE R?
TDM 8.8144e+10 0.6362 1.1080e+11 0.4474
Stacking2 1.2549e+10 0.1088 1.7179e+10 0.9553
X 101()
15
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FIGURE 14
Comparison of evaluation indicators of the stacking model and TDM.

According to Table 4, the predictive results of the stacking
model are significantly better than those of the TDM in terms
of evaluation indicators. The error class indicators of the stacking
model, such as the MAE, MAPE, and RMSE on the test set
data, are significantly lower than those of the TDM. However,
the evaluation indicator R? for the stacking model fit is 0.9553,
representing a significant improvement of 0.5079 compared to
that of the TDM.

From Figure 12a, the data trends of probes 3 and 4 are
significantly different from those of the other probes. This is mainly
due to the following reasons:
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« The charging effect of the spacecraft causes the voltage applied
to one or several probes to be insufficient to bias the probes
higher than the plasma potential.

o Pre-launch terrestrial exposure induces surface adsorbate
accumulation through atmospheric oxidation processes,
altering probe work function characteristics.

« One or more probes work in the plasma wake of the satellite.

« The resolution of m-NLP current measurement is 1 nA, and it
has a low signal-to-noise ratio when processing weak signals.

o The probes used in m-NLP cannot satisfy the constraint
relationship between the length and the Debye length.

The above reasons affect data acquisition from multiple probes,
making the data unsuitable for use with the TDM and leading to
certain errors in the final calculation results.

From multiple perspectives, the predictions of the stacking
model are significantly better than those of the TDM and can better
fit N, of IRI 2016. This indicates that combining the stacking model
with m-NLP for ionospheric plasma prediction can maintain high
accuracy, even in the case of poor consistency among the currents
collected by multiple probes. This method can achieve an R* of
0.9553 for N, prediction results, proving its effectiveness as a data
processing approach.

5 Conclusion

A new machine learning method has been proposed to
process data from Langmuir multi-probe payloads, such as m-
NLP. Due to its unique design, m-NLP can achieve high spatial
resolution exploration of ionospheric irregularities, which is of
great significance for the study of space weather. Nevertheless, the
traditional data analysis method of Langmuir probes based on
OML theory cannot be well applied to payloads such as m-NLP.
This is mainly due to the following two reasons. First, the sensor
used does meet the prerequisites of OML theory. For example, the
probe length is significantly smaller than the Debye length, and the
potential applied to the probe cannot be higher than the plasma
potential. Another aspect that causes errors is the influence of the
space environment. For example, the charging effect of the spacecraft
creates a large potential barrier between the spacecraft and plasma,
and the varying degrees of contamination between multiple probes
result in poor consistency in the collection of current by the probes.
The above reasons result in significant errors in the measurement of
electron density using traditional analysis methods, which cannot
meet the requirements for the accurate measurement of plasma.

A stacking algorithm is an integrated machine learning method
that combines the prediction results of multiple base models to
improve the overall prediction accuracy. It has been applied to
multiple physical environments and achieved good results. The
new method combines the stacking algorithm with m-NLP data
for ionospheric plasma prediction, which can accurately capture
the rapid changes in plasma density and help study the small-
scale irregularities in the ionosphere for space weather applications.
The use of machine learning methods significantly improves
the prediction performance of plasma parameters compared to
traditional methods based on OML. We compared and analyzed the
prediction model using m-NLP data. In the case of poor consistency
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among the currents collected by multiple probes, the R? value of this
model’s diagnostic results can reach 0.9553, which is 0.5079 higher
than that of the traditional diagnostic methods.
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