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Weexplain the braking index n = 2.19±0.03 of PSR J1846−0258 by incorporating
the time evolution of its magnetic inclination angle and dipolar magnetic field.
Based on observational timing data and the age of the associated supernova
remnant (tSNR ≈ 1.77kyr), we estimate a magnetic inclination change rate of
χ̇ ≈ 0.281°/100yrs, comparable to that of the Crab pulsar. Applying the two-
dipole model to PSR J1846−0258, we find an internal dipole moment ratio η =
M2/M1 ∼ 1026–1027. For magnetic field decay timescales τD < 3.6× 105 yrs, the
magnetic energy dissipation rate (Ėmag ∼ (1033–1034) erg/s) partially explains
the observed X-ray luminosity LX ∼ 1.9× 1034 erg/s, while longer τD requires
additional energy sources. The derived gravitational wave strain (h0 ∼ 10−29)
remains undetectable with current instruments but constrains internal magnetic
field geometries. This work highlights the critical role of magnetic inclination
dynamics in pulsar spin-down behavior and offers a physically motivated
framework that can be extended to other young neutron stars with measured
magnetic inclination and braking indices.
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neutron stars, PSR J1846-0258, magnetic inclination angle, magnetic field, magnetars,
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1 Introduction

Magnetars are a class of young, isolated neutron stars with ultra-strong magnetic
fields (B ∼ 1014 − 1015 G), typically manifesting as Soft Gamma Repeaters (SGRs)
and Anomalous X-ray Pulsars (AXPs) depending on their high-energy emission
characteristics. These extreme objects represent one of the most magnetized
environments in the universe, where quantum electrodynamics effects become
significant. Magnetars are known to exhibit a variety of high-energy phenomena,
most notably X-ray outbursts and short, intense flares. These radiative events are
often accompanied by significant timing irregularities, including both glitches and
the rarer anti-glitches. Currently, approximately 30 magnetars and candidate sources
are cataloged in the McGill Online Magnetar Catalog (Olausen and Kaspi, 2014).
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Recent multi-wavelength observations have revealed that
magnetars occupy a unique position in neutron star population
studies, bridging the gap between conventional rotation-powered
pulsars and highly magnetized compact objects. Among the
sources listed in the McGill catalog, PSR J1846−0258 is particularly
unique. Located at the center of the supernova remnant Kes 75
(Gotthelf et al., 2000), it has a rotation period of approximately
327 ms and a characteristic age of about 700 years, making it one
of the youngest pulsars in the Galaxy. Throughout most of its
observational history, this pulsar has exhibited the properties of
a rotation-powered pulsar, but no radio emission has been detected
(Archibald et al., 2008). In 2006, the pulsed X-ray flux from this
source increased dramatically, accompanied by a large glitch and
several magnetar-like outbursts (Gavriil et al., 2008; Kumar and
Safi-Harb, 2008; Kuiper and Hermsen, 2009). During this bursting
episode, the pulsed flux rose rapidly and remained elevated for
nearly 2 months, exhibiting behavior strikingly similar to that of
AXPs. In 2020, this source underwent a second outburst, during
which the pulsed flux increased to more than five times its quiescent
level, yet no radio pulsations were detected (Krimm et al., 2020;
Majid et al., 2020; Hu et al., 2023). PSR J1846−0258 remains the only
known rotation-powered pulsar that has exhibited clear magnetar-
like behavior, serving as a critical transitional object linking these
two classes of neutron stars.

The braking index n is a crucial observational parameter
characterizing the rotational evolution of pulsars. Defined as n =
ΩΩ̈/Ω̇2 whereΩ is the spin angular velocity, it provides direct insight
into the pulsar’s spin-down physics. Due to timing noise and other
instabilities, stable braking indices have been measured for only
about nine pulsars (Lyne et al., 1993; Boyd et al., 1995; Lyne et al.,
1996; Livingstone et al., 2007; Espinoza et al., 2011;Weltevrede et al.,
2011; Roy et al., 2012). Moreover, Gao et al. (2016) estimated
the mean braking indices for eight magnetars associated with
supernova remnants (SNRs) using SNR age estimates, with values
ranging from 1− 42. Archibald et al. (2015) measured a braking
index of n = 2.19± 0.03 for PSR J1846−0258 using over 7 years of
post-outburst timing data. Like other measured values, this result
deviates from the canonical prediction of n = 3 from the standard
magnetic dipole radiation model. This discrepancy has become a
central puzzle in pulsar physics, motivating numerous theoretical
investigations.

Current research on braking indices focuses on three main
directions: 1) multi-component spin-down mechanisms, 2)
magnetic field evolution, and 3) geometric effects including
magnetic inclination changes. One major class of explanations
involves combiningmultiple brakingmechanisms (such asmagnetic
dipole radiation, pulsar winds, and gravitational wave emission)
to account for the observed braking indices. For instance, Xu
and Qiao (2001) developed a model that integrates wind braking
and magnetic dipole radiation, resulting in a theoretical braking
index smaller than 3. Chen and Li (2006) proposed that braking
indices lower than three could arise from an increasing vertical
component of the magnetic field over time or from tidal torques
exerted by fallback disks. Kou and Tong (2015) discussed the
rotational evolution of the Crab pulsar by combining the wind
braking model and the magnetic dipole radiation model. Chen and
Li (2016) explained the low braking index of PSR J1734−3333 using
fall-back disks. de Araujo et al. (2016) combined magnetic dipole

radiation with gravitational wave radiation to explain the braking
index of PSR J1640−4631.

Another major class of explanations focuses on the evolution
of the magnetic field strength and the magnetic inclination angle.
This approach has gained particular attention following the direct
measurement of magnetic inclination change in the Crab pulsar
(Lyne et al., 2013). Observational and theoretical studies suggest
that both quantities may vary over time, thereby influencing the
pulsar’s rotational evolution. Ekşi et al. (2016) explained the braking
index of PSR J1640−4631 by considering a secular evolution of
the magnetic inclination angle. Gao et al. (2017) explained the
braking index of this source through the evolution of surface dipolar
magnetic fields. Currently, the origin and detailed mechanisms of
themagnetic inclination evolution remain uncertain. Philippov et al.
(2014) employed magnetohydrodynamic simulations incorporating
plasma-filled pulsar magnetospheres to show that the magnetic
inclination angle decreases over time, following a power-law
dependence. Zhang et al. (1998) investigated the problem of
magnetic axis alignment with the rotation axis in pulsars caused by
the gravitational spin effect. In contrast, some theoretical models
predict that the magnetic inclination may increase or evolve in
more complex ways. Lyne et al. (2013) measured the separation
between the main pulse and interpulse of the Crab pulsar over
22 years, deriving a rate of magnetic inclination change of χ̇Crab =
0.63° ± 0.03°/100yrs. This is the only pulsar with observationally
determined magnetic inclination evolution. In addition, studies of
single pulses not only provide important insights into the complexity
of pulsar emission mechanisms (Wen et al., 2020a; b) but also offer
observational means to constrain the magnetic inclination angle
(Wen et al., 2021; 2022). The study of magnetars and high-B pulsars
also has significant implications for the exploration of gravitational
waves, especially in the field of nanohertz gravitational waves. The
unique properties of these objects may provide new insights and
observational targets for the research of nanohertz gravitational
waves, which are expected to be detected by pulsar timing arrays
(PTAs) in the near future.

The gravitational wave (GW) emission from magnetars and
high-B pulsars has emerged as an important research frontier,
particularly with the advent of advanced GW detectors. While
most studies focus on deformed neutron stars as potential
GW sources, the connection between magnetic field geometry,
braking indices, and GW emission remains poorly understood.
Regarding the origin of magnetic inclination changes, some
studies attribute it to external electromagnetic torques, which
simultaneously slow the pulsar’s rotation and decrease the magnetic
inclination angle (Michel and Goldwire, 1970; Spitkovsky, 2006;
Philippov et al., 2014). Some models resort to internal origins.
For example, viscous dissipation within precessing neutron stars
may alter the magnetic inclination (Lander and Jones, 2018;
Cheng et al., 2019). Additionally, Hamil et al. (2016) proposed
a two-dipole model (hereafter the HSS model) suggesting that
neutron star interiors might host a fossil magnetic field generated by
rotating charged spheres and an induced paramagnetic field, with
interactions between these dipoles leading to changes in magnetic
inclination.

This work presents a comprehensive study of PSR J1846−0258’s
braking index by simultaneously considering magnetic field decay
and inclination angle evolution within the framework of the HSS
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model. Our approach offers several key advancements: 1) we provide
the first application of the two-dipole model to PSR J1846−0258,
2) we quantitatively assess the relative contributions of magnetic
field decay and inclination change to the braking index, and 3) we
explore the implications for gravitational wave emission from this
unique source. The gravitational wave analysis represents a novel
aspect of our work, as previous studies of PSR J1846−0258 have not
thoroughly examined its GWdetectability in relation to its magnetic
field configuration and braking index.

The remainder of this paper is organized as follows. Section 2
explains the braking index of PSR J1846−0258 by considering the
magnetic field and the inclination angle variations, calculating the
magnetic inclination change rate and comparing it with the Crab
pulsar. Section 3 applies the two-dipole model to PSR J1846−0258,
estimating the possiblemagnetic inclination evolution andmagnetic
moments based on the calculated inclination change rate. Section 4
discusses the calculated magnetic energy dissipation rate of PSR
J1846−0258 under the adopted model and compares it with the
observed X-ray luminosity. Section 5 presents a detailed analysis
of the gravitational wave implications, including magnetic-induced
deformation estimates, strain amplitude calculations, and detection
prospects with current and future GW observatories. Section 6
summarizes the main results and outlines directions for
future research.

2 Braking index constraints from
magnetic inclination evolution

Theobserved braking index of PSR J1846−0258 (n = 2.19± 0.03)
provides crucial constraints on its spin-down physics. In this
section, we analyze how the temporal evolution of both the
magnetic inclination angle and dipolar magnetic field can explain
this deviation from the canonical n = 3 prediction. Using the
pulsar’s timing parameters and the age of its associated supernova
remnant, we derive quantitative estimates for the magnetic
inclination change rate and compare these with known values from
other pulsars.

2.1 Basic formalism

Table 1 lists the parameters of PSR J1846−0258. The rotation
period P and its first derivative Ṗ, characteristic age τc, and X-ray
luminosity LX are taken from the McGill Online Magnetar Catalog
(Olausen andKaspi, 2014). Note that LX is in the 2–10 keV range and
is calculated using the distance inferred for Kes 75. The spin-down
luminosity Ė is computed based on the moment of inertia assumed
in Section 3. The magnetic inclination angle χ is adopted from
Wang et al. (2014), which fitted the observational energy spectra of
PSR J1846−0258 and obtained a magnetic inclination angle χ = 10°.
Using the magnetic inclination data, the dipolar magnetic field Bd of
this source is calculated to be 2.78× 1014G. The supernova remnant
age tSNR is from SNRcat (Ferrand and Safi-Harb, 2012).

In this section, we use these observational parameters, together
with considerations ofmagnetic inclination evolution, to explain the
observed braking index of this pulsar.

The standard magnetic dipole radiation model, based on the
assumption of a constant moment of inertia I, provides a braking
index n expressed as

n = 3+ 2Ω
Ω̇
( Ṁ
M
+

χ̇
tan χ
), (1)

where Ω is the spin angular velocity, Ω̇ is the first time derivative
of Ω, M = BdR

3 is the magnetic dipole moment, and R is the radius
of the pulsar. This equation clearly demonstrates that variations in
both magnetic field strength and magnetic inclination angle have an
impact on the braking index.

2.2 Magnetic inclination evolution and field
decay

First, we consider only the evolution of the magnetic inclination
angle, setting the first term in parentheses in Equation 1 to zero.
Since the spin-down rate Ω̇ < 0, a positive χ̇ for PSR J1846−0258
naturally results in a braking index smaller than 3. Substituting the
timing parameters and neglecting observational uncertainties, we
obtain a magnetic inclination angle derivative of χ̇ = 0.281°/100yrs,
which is comparable in magnitude to the value measured for the
Crab pulsar.

It is widely recognized that the dipolar magnetic field within
a neutron star’s crust undergoes decay over time as a result of
processes such as Ohmic dissipation and Hall drift (Goldreich
and Reisenegger, 1992). If the magnetic inclination angle decreases
with time, the braking index would exceed 3. Conversely, if χ
increases with time, the resulting braking index could be less than
3, offering an explanation for themeasured value of n = 2.19 for PSR
J1846−0258. In this work, we assume that the magnetic field decays
exponentially according to

Bd = Bi exp (−t/τD) , (2)

where τD is the magnetic field decay timescale, and Bi is the initial
magnetic field.While theHall drift itself is a non-dissipative process,
it can effectively accelerate magnetic field decay by converting
large-scale fields into smaller-scale components. If the Hall drift
dominates the magnetic field evolution, the characteristic decay
timescale can be expressed as τD = τHall ≈ 1.2× 104(1015G/Bd)yrs
(Cumming et al., 2004). For typical magnetar-strength magnetic
fields, this implies a decay timescale on the order of 104–107

yrs. Ohmic dissipation, on the other hand, is strongly influenced
by the surface temperature of neutron stars. As demonstrated by
Pons et al. (2007), the observed correlation between neutron star
surface temperature and dipolar magnetic field strength can be
naturally explained by Ohmic decay of crustal currents over a
timescale of approximately 106 yrs. Moreover, two-dimensional
magneto-thermal evolutionary simulations also suggest that the
effective magnetic field dissipation timescale for typical magnetars
and high-field pulsars usually ranges between 104 and 106 yrs
(Viganò et al., 2013; Pons and Viganò, 2019).

Incorporating this decay into the braking index formula yields
the modified expression, as shown in Equation 3.

n = 3+ 2Ω
Ω̇
(− 1

τD
+

χ̇
tan χ
). (3)
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TABLE 1 The parameters of PSR J1846−0258. See the main text for more details.

Source P Ṗ n Bd τc tSNR χ Ė LX

(s) (10−11 s/s) (1014 G) (kyr) (kyr) (deg) (1037 erg/s) (1034 erg/s)

J1846−0258 0.32657 0.71 2.19(3) 2.78 0.73 1.77 (8) 10 1.24 1.9

FIGURE 1
The relationship between the magnetic inclination angle derivative χ̇ and the dipole magnetic field decay timescale τD. The black lines indicate the four
typical decay timescales we adopted.

Using tSNR as the true age of the pulsar, and adopting the
parameters in Table 1, we plot the relationship between χ̇ and
τD in Figure 1.

As shown in Figure 1, χ̇decreaseswith increasing τD, approaching
an asymptotic value near 0.281°/100yrs. By selecting several
representativefielddecaytimescales,τD = 5× 104, 1× 105, 5× 105, and
1× 106 yrs (markedwithdashed lines inFigure 1), thecorresponding χ̇
are calculated tobe 0.301, 0.291, 0.283, 0.282 °/100yrs respectively. It is
evident that thevaluesof χ̇computedbyconsideringboth themagnetic
field decay and the magnetic inclination evolution are slightly higher
thanthoseobtainedwhenconsideringinclinationevolutionalone.This
is because magnetic field decay tends to increase the braking index.
Nonetheless, in both scenarios, the values of χ̇ remain consistent with
the observed value for the Crab pulsar.

3 Inclination evolution from the
two-dipole model

The observed braking index of PSR J1846−0258 can be
naturally explained within the framework of the two-dipole
model proposed by Hamil et al. (2016). This section presents
a detailed analysis of how the interaction between internal

magnetic dipoles drives the evolution of the magnetic inclination
angle, providing quantitative predictions that match the observed
braking index.

3.1 Model description and angular
dynamics

After considering possible sources of magnetism in pulsars,
Hamil et al. (2016) proposed a toy model to explain the origin of
the magnetic inclination angle evolution. A schematic diagram of
this model is shown in Figure 2. In this model, a pulsar contains
two distinct magnetic dipoles that are M1 and M2. The dipole M1
is generated by a dynamo mechanism, fixed at the stellar center, and
aligned with the rotation axis. In contrast, M2 originates from the
magnetization of matter (for instance ferromagnetic ordering). It is
displaced from the center, and can rotate freely about its own axis.
M2 is responsible for the pulsar’s braking torque and may influence
or even determine the radiation characteristics and internal thermal
evolution of the neutron star. The separation between the geometric
centers of the twodipoles is denoted by r and assumed to be constant.
The angle between the dipole-dipole axis (connecting the centers
of M1 and M2) and the rotation axis is denoted by θ1, while the
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FIGURE 2
The two-dipole system in the pulsar. M1 is fixed and aligned with the
spin axis z. The dipole-dipole axis r makes an angle θ1 with z. The
dashed line corresponds to M2 in the equilibrium position. For more
details see Hamil et al. (2016).

angle between the magnetic moment vector of M2 and the dipole-
dipole axis is denoted by θ2. As the neutron star interior is believed
to be in a superfluid state, the rotational motion of M2 is assumed
to be nearly frictionless. The magnetic interaction between the
two dipoles results in a time-dependent evolution of the magnetic
inclination angle.

The angular dynamics of the system are determined by the
following relationship,

θ̇2
2 =

2M1M2

I2r
3 F (Θ) , (4)

where I2 is the moment of inertia associated with
dipole M2, and F(Θ) = (sinθ1i sinθ2i − 2 cosθ1i cosθ2i) −
(sinθ1 f sinθ2 f − 2 cosθ1 f cosθ2 f) is a function of the angles θ1 and
θ2, and the subscripts i and f denote the initial and final values of
the angles θ1 and θ2, respectively. Equation 4 reflects the conversion
of potential energy into kinetic energy during the motion of M2.
The value of θ2 that minimizes the potential energy was derived by
Shi et al. (2019), and is given by Equation 5.

θmin
2 = −arctan(

tanθ1

2
). (5)

Physically, M2 will tend to oscillate around this equilibrium
point in a manner similar to a simple pendulum. Based on
the geometric configuration, the relationship between the
magnetic inclination angle χ and its time derivative is given
by Equation 6.

χ = θ1 − θ2, χ̇ = −θ̇2. (6)

Therefore, when θ̇2 is less than 0, it results in χ̇ being greater than
0, thereby causing the braking index to be less than 3. To ensure a

positive χ̇, θ2 must exceed θmin
2 , and θ1 must be greater than a critical

angle θcrit
1 , which satisfies

θcrit
1 = χ f − arctan(

tan θcrit
1

2
). (7)

3.2 Evolutionary parameters and
magnetization properties

Substituting the measured magnetic inclination angle into
Equation 7 yields θcrit

1 ≈ 6.7°. In the HSS model, the interaction
between the two magnetic dipoles induces quasi-harmonic
oscillations of the magnetic inclination angle around an equilibrium
value. Accordingly, the evolution is described by Equation 8.

χ (t) = χeq −A cos(2πt
τA
), (8)

where χeq = θ1 − θmin
2 is the equilibrium magnetic inclination angle,

A is the amplitude of variation, and τA is the characteristic timescale
of the oscillation. This harmonic oscillation solution emerges from
small-angle approximations to the pendulum-like motion of M2
about its equilibrium position, with the cosine phase chosen such
that χ(0) = χeq −A represents the initial condition.

The amplitude A represents half the total variation range of χ(t),
while τA gives the full oscillation period. Initial conditions are set
such that χ(0) = χeq −A to match the current evolutionary phase.
Based on the previously obtained evolution rate of the magnetic
inclination angle, parameters related to its evolution in the HSS
model are calculated by selecting several representative values of
θ1. The corresponding results are summarized in Table 2, and the
evolution curves of the magnetic inclination angle are subsequently
plotted using these results.

Figures 3, 4 demonstrate excellent agreement between
the harmonic solutions (Equation 8) and the parameters
derived in Table 2. The harmonic nature of these solutions is
confirmed by the constant periodicity and symmetric amplitude
about χeq visible in the figure.

To estimate the magnetization parameters in the HSS model,
we adopt a medium-mass neutron star with a mass of m = 1.45M⊙
and a radius of R = 11.5 km (Akmal et al., 1998), yielding a
moment of inertia of I = 1.534× 1045 gcm2. We assume I1 ≈ I, I2 ≈
0.01I, and r = 0.5R. Using these parameters, the initial magnetic
dipole moment of PSR J1846−0258 is obtained as M2i = BiR

3 =
4.35× 1032 G,cm3, while the current dipole moment isM2 = BdR

3 =
4.27× 1032 G,cm3. To explore the paramagnetic magnetization
properties of the neutron star during its early ferromagnetic phase,
we define the ratio η =M2/M1, which characterizes the degree
of magnetization in the paramagnetic material and depends on
the angular parameters. The ratio η shows only weak dependence
on θ1 within the considered range, indicating that the internal
magnetization is robustly constrained. Based on the results in
Table 2, the corresponding values of M1 and η are calculated and
listed in Table 3. It is found that the value of η for PSR J1846−0258
lies within the range of 1026–1027, which is consistent with the results
obtained by Yan et al. (2021) for SGR 1E 2259+586.

To better illustrate the influence of the dipole moment ratio η
on the braking index n in our model, we selected two representative
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TABLE 2 Calculation results of parameters related to magnetic inclination evolution in the HSS model, for two different magnetic field decay
time-scales.

θ1 χeq τD = 105 yrs τD = 5× 105 yrs

A τA (yrs) χ0 F(Θ) A τA (yrs) χ0 F(Θ)

8° 12.02° 4.92° 9689 7.10° 0.0061 4.84° 9756 7.18° 0.0058

11° 16.55° 9.27° 14153 7.28° 0.0129 9.19° 14308 7.36° 0.0124

14° 21.11° 13.77° 17583 7.34° 0.0196 13.70° 17795 7.41° 0.0190

17° 25.69° 18.33° 20465 7.36° 0.0261 18.26° 20723 7.43° 0.0253

20° 30.31° 22.94° 23013 7.37° 0.0323 22.86° 23310 7.45° 0.0313

FIGURE 3
Evolution of the magnetic inclination angle χ(t) for PSR J1846−0258 in the HSS model, showing the time dependence for different initial angles θ1
(color-coded as in Table 2). The horizontal dashed lines indicate the equilibrium values χeq calculated from Equation 8. The current observed inclination
χ = 10° is marked by the red dot. The oscillation periods τA correspond to those listed in Table 2.

combinations of θ1 and τD, and plotted the variation of the braking
index n as a function of η, as shown in Figure 5. It is evident that
the braking index gradually approaches the canonical value n = 3
predicted by the standard magnetic dipole radiation model as η
increases. Additionally, as θ1 and τD increase, the approach of n
towards the classical value becomes noticeably slower.

To further understand the physical implications of the braking
index of PSR J1846−0258 (n = 2.19), we compare it with other young
pulsars known to exhibit braking indices of n < 3. Among them,
the Crab pulsar (n = 2.51) has a measured magnetic inclination
angle evolution rate Lyne et al. (2013), which is broadly consistent
in magnitude with the results derived from our model for PSR
J1846−0258.

However, several young pulsars, such as the Vela pulsar (n ≈ 1.4)
and PSR J1833−1034 (n ≈ 1), are clearly associated with pulsar
wind nebulae (PWN) (Lyne et al., 1996; Helfand et al., 2001;
de Rosa et al., 2009; Roy et al., 2012), where angular momentum
loss due to particle winds contributes significantly to the braking

index.Thus, whenmodeling the rotational andmagnetic inclination
evolution of such pulsars, the effects of wind braking must be
carefully considered.

Additionally, PSR J1734−3333 exhibits an extremely low braking
index (n ≈ 0.9), which has been suggested to result from magnetic
field re-emergence. In this scenario, the magnetic field was
initially buried beneath the crust by fallback accretion and later
resurfaced through Hall drift, leading to a magnetic field evolution
distinct from that of typical rotation-powered pulsars (Chen
and Li, 2016; Ho, 2015).

Several magnetars also display braking indices below
3, such as SGR 0526−66, SGR 1627−41, and CXOU
J171405.07−381031 (Gao et al., 2016). Unfortunately, there are
currently no available measurements of the magnetic inclination
angles for these sources, limiting the ability to directly study their
inclination evolution.

Incorporating the coupled evolution ofmagnetic inclination and
magnetic field is essential for developing a unified model of neutron
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FIGURE 4
Same as Figure 3, but with τD = 5× 105 yrs in the calculation.

TABLE 3 Calculated results for the two magnetic moments in the HSS
model, adopting magnetic field decay timescales of 105 and 5× 105 years.

θ1 M2 (G
cm3)

τD = 105 yrs τD = 5× 105 yrs

M1 (G
cm3)

η (erg
s-1)

M1 (G
cm3)

η (erg
s-1)

8° 4.27× 1032 1.45× 106 2.94× 1026 1.53× 106 2.80× 1026

11° 4.27× 1032 6.87× 105 6.22× 1026 7.14× 105 5.98× 1026

14° 4.27× 1032 4.52× 105 9.45× 1026 4.66× 105 9.16× 1026

17° 4.27× 1032 3.39× 105 1.26× 1027 3.50× 105 1.22× 1027

20° 4.27× 1032 2.74× 104 1.58× 1027 2.83× 106 1.51× 1027

FIGURE 5
The variation of the braking index n as a function of the dipole
moment ratio η. The colored curves represent two different sets of
model parameters.

star rotational evolution. Moreover, for certain classes of pulsars, it
is also necessary to account for additional complex processes, such
as wind braking and fallback disk interactions. Future systematic
observations, particularly joint measurements of braking index and
magnetic inclination angle in magnetars and high-field pulsars
exhibiting magnetar-like behavior, will be crucial for testing and
refining the physical model proposed in this work.

4 Magnetic energy dissipation of PSR
J1846−0258

The decay of magnetic fields in neutron stars is believed to be a
potential source of their high-energy emission. Our analysis of PSR
J1846−0258’s magnetic energy dissipation rate reveals important
constraints when compared with its observed X-ray luminosity of
LX = (1.9± 0.2) × 1034erg/s (Archibald et al., 2015).

After incorporating the observed magnetic inclination angle
(χ = 10° ± 2°), the corrected dipolar magnetic field strength is
obtained as Bd = 2.8× 1014G. Following standard neutron star
magneto-thermal evolution models (Goldreich and Reisenegger,
1992), we assume an exponential decay of the dipolarmagnetic field,
with the magnetic field decay rate derived from Equation 2 as

dBd

dt
= −

Bi

τD
exp (−t/τD) . (9)

By substituting the supernova remnant age tSNR into Equation
9, we compute the magnetic field decay rates for several values
of τD. The magnetic energy of the crustal dipole field is given by
Equation 10.

Emag =
B2

d

6
[R3 − (R−ΔR)3] , (10)

where ΔR = 1 km is the characteristic crust thickness (Akmal et al.,
1998). For PSR J1846−0258, this yields Emag = (2.0± 0.3) × 1046
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TABLE 4 The calculated results of crust dipole field decay rate Ḃd and
magnetic energy decay rate Ėmag for different magnetic field decay
timescales.

τD Ḃd Ėmag

(yrs) (G/yr) (erg/s)

5× 104 −5.6× 109 −2.5× 1034

1× 105 −2.8× 109 −1.3× 1034

5× 105 −5.6× 108 −2.5× 1033

1× 106 −2.8× 108 −1.3× 1033

erg. The corresponding magnetic energy dissipation rate Ėmag =
ḂB[R3 − (R−ΔR)3]/3 is evaluated for each τD in Table 4.

These results, presented in Table 4, show good agreement with
typical magnetar field decay timescales.

Comparing the magnetic energy dissipation rate
with the observed X-ray luminosity of PSR J1846−0258
(LX = 1.9× 10

34erg/s), we find that for τD = 5× 10
4 yrs, the

conversion efficiency is LX/Ėmag ≈ 76%. However, when τD > 3.6×
105 yrs, the dissipation rate Ėmag falls below the observed LX,
indicating that the magnetic field decay alone cannot account for
the current X-ray luminosity. This suggests that other mechanisms
may contribute significantly to the high-energy emission of PSR
J1846−0258. This discrepancy suggests three possible resolutions:

1. PSR J1846−0258’s hybrid nature: As a transitional
object between rotation-powered pulsars and
magnetars (Gavriil et al., 2008), its X-ray emission may
combine magnetic dissipation with rotational energy loss.

2. Thermal evolution effects:The strong temperature dependence
of Ohmic dissipation means our isothermal approximation
underestimates early-stage energy release.

3. Internal toroidal fields: Current upper limits of Bt ∼
1016 G (Lander and Jones, 2018) could provide ∼1035 erg/s
through crustal heating.

The most plausible scenario combines contributions from
both magnetic dissipation (∼30− 70%) and rotational energy
(∼30− 70%), consistent with itsmeasured spin-down luminosity Ė =
1.24× 1037 erg/s. Future observations of thermal spectra could better
constrain the magnetic contribution.

5 Gravitational wave implications

The generation of gravitational waves (GWs) in neutron
stars is fundamentally tied to their internal structure through
quadrupole moment deformations. PSR J1846−0258 serves as
a unique laboratory for probing extreme physics due to three
key characteristics: First, its exceptionally high dipolar magnetic
field (Bd ∼ 2.78× 1014 G) generates significant oblate deformation.
Second, potential strong internal toroidal fields (Bt ∼ 1015 G)
may induce competing prolate distortion. Third, precise timing
constraints fromX-ray observations provide unusually tight bounds

on deformation parameters ϵnetB . This combination makes the system
particularly valuable for testing magneto-elastic coupling theories
(Lander and Jones, 2018; Haskell et al., 2015).

5.1 Magnetic-induced deformation

5.1.1 Poloidal field deformation (oblate)
Thedipolar field generates an oblate distortion throughMaxwell

stresses. Following Lander and Jones (2018), the magnetic energy
density is given by Equation 11.

UB =
B2
d

8π
≈ 3.1× 1025 ergcm−3. (11)

The crustal shear modulus μ for a polycrystalline crust is given
by Equation 12 (Lattimer and Yahil, 1991):

μ = 1030(
ρ

1014gcm−3
)

0.4
ergcm−3. (12)

The deformation arises from equilibrium between magnetic
stresses and crustal elasticity, as shown in Equation 13.

B2
d

8π
= μϵBpol = μϵBd. (13)

Dimensional analysis suggests scaling with the ratio of magnetic to
gravitational energy is given by Equation 14.

ϵpolB ∝
B2
dR

4

GM2 . (14)

The exact solution from perturbed equilibrium (Lander and
Jones, 2018) includes geometric factors and equation of state-
dependent corrections via F(R,M), is given by Equation 15.

ϵpolB =
5

48π
B2
dR

4

GM2F (R,M) , (15)

where F(R,M) ≡ ( R
11.5 km
)4( M

1.45M⊙
)
−2

.
For PSR J1846−0258, the resulting ellipticity is given byEquation 16:

ϵpolB = 2.57× 10
−7(

Bd

2.78× 1014G
)

2
( R
11.5km

)
4
( M
1.45M⊙
)
−2
. (16)

Here we have adopted a typical medium-mass neutron star with
R = 11.5 km andM = 1.45 M⊙, corresponding to the moment of
inertia I = 1.53× 1045 g cm2 (Gao et al., 2017).

5.1.2 Toroidal field deformation (prolate)
The prolate deformation induced by internal toroidal magnetic

fields can be derived systematically from first principles. The
magnetic stress tensor for a purely toroidal field configuration in
cylindrical coordinates (ϖ,ϕ,z) is given by Equation 17.

Ttor
ij =

1
4π
(

−B2
t /2 0 0

0 B2
t 0

0 0 −B2
t /2

) (17)

where Bt is the toroidal field strength. This anisotropic stress
generates tension along azimuthal field lines (Tϕϕ > 0) and
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compression in the poloidal plane (Tϖϖ,Tzz < 0), leading to prolate
distortion.

The energy balance between magnetic and structural forces
is critical for understanding PSR J1846−0258’s deformation. The
magnetic energy density B2

t /(8π) must be compared with other
energy scales:

1. Magnetic dissipation: Ėmag ∼ 1033 − 1034 erg/s;
2. Elastic energy: δEelastic = μϵ

2Vcrust/2;
3. Gravitational energy: δEgrav = 3GM2ϵ/(5R).

As shown in Equation 18, solving the perturbed Lane-
Emden equation with these energy terms yields the deformation
parameter (Glampedakis et al., 2012):

ϵtorB = −
1
15

B2
tR

4

μR3
core
(1−

R5
core

R5 ), (18)

where Rcore ≈ 0.9R is the superconducting core radius. For PSR
J1846−0258 with R = 11.5 km and M = 1.45M⊙, this becomes

ϵtorB = −0.80× 10
−7(

Bt

1015G
)

2
( R
11.5km
)

4
( M

1.45M⊙
)
−2
[1−(

Rcore

R
)

5
](

Rcore

0.9R
)
−3
.

(19)

Here the negative sign in the Equation 19 unambiguously
confirms the prolate nature of the magnetic distortion. This
result demonstrates three fundamental characteristics of toroidally-
induced deformations: First, the deformation exhibits a quadratic
scaling with the toroidal field strength (ϵtorB ∝ B2

t ), reflecting the
energy density dependence of magnetic stresses. Second, the
deformation shows strong sensitivity to the core-crust boundary
geometry through the (1−R5

core/R
5) term, where Rcore/R ≈ 0.9 for

typical neutron star models. Third, the numerical prefactor −0.80×
10−7 comprehensively incorporates all structural dependencies,
including the shear modulus of the crust and the moment of
inertia distribution. These features collectively establish a complete
description of prolate deformations induced by internal toroidal
fields (Glampedakis et al., 2012; Haskell et al., 2015).

The magnetic energy budget analysis from Section 4 constrains
possible toroidal fields, as expressed by Equation 20.

Bmax
t ≈ 3× 10

15(
Ėmag

1034erg/s
)

1/2

(
τD

105yr
)

1/2
G. (20)

This upper limit is consistent with the deformation
calculation when including both poloidal and toroidal
components (Haskell et al., 2015).

5.1.3 Net deformation calculation
The nonlinear coupling in neutron star deformation arises

from several physical mechanisms. Crustal nonlinearity introduces
a deformation component, as given by Equation 21 (Johnson-
Mcdaniel and Owen, 2009),

Δϵcrust ≈ 0.1(
B2

4πμ
)

2
. (21)

Additionally, the superconducting core contributes
to the deformation through the relation given in

Equation 22 (Haskell et al., 2015),

ΔϵSC =
B2
t

8πHc1

R2
core

GM2 , (22)

with Hc1 ≈ 1015 G denoting the lower critical field for type-II
superconductors.

The observed dipolar field of PSR J1846−0258, measured as Bd =
(2.78± 0.05) × 1014 G, generates an oblate distortion described by
Equation 23 (Lander and Jones, 2018),

ϵpolB = (2.57± 0.09) × 10
−7(

Bd

2.78× 1014G
)

2
F (R,M) , (23)

where the structural factor F(R,M) ≡ (R/11.5km)4(M/1.45M⊙)−2

incorporates modern equations of state constraints from (Legred 
et al., 2021).

Internal toroidal fields produce competing prolate
deformations that counteract the poloidal contribution.
Following (Glampedakis et al., 2012), this effect can be
quantified by Equation 24.

ϵtorB = −(0.80± 0.05) × 10
−7(

Bt

1015G
)

2
F (R,M) . (24)

As shown in Equation 25, the net deformation results from the
nonlinear magnetoelastic coupling of the contributing components.

ϵnetB = ϵ
pol
B + ϵ

tor
B +O[(

B2

1030erg/cm3)
2
]. (25)

The higher-order term accounts for two significant effects:
modifications to the crustal shearmodulus as discussed in (Johnson-
Mcdaniel and Owen, 2009), and additional contributions from
superconducting core effects detailed in (Haskell et al., 2015).

For PSR J1846−0258’s specific parameters, the net deformation
under two characteristic cases is summarized in Equation 26.

|ϵnetB | ≈
{
{
{

(2.6± 0.1) × 10−7 (i fBt ≲ Bd) ,

(1.8± 0.3) × 10−6 (i fBt ∼ 3Bd) .
(26)

These results demonstrate the sensitive dependence of the net
deformation on the relative strength of internal toroidal fields
compared to the observed surface dipolar field.

5.2 Detection prospects

5.2.1 Strain amplitude fundamentals
TheGWstrain fromPSR J1846−0258 can be precisely quantified

through its quadrupole deformation physics. As shown in Equation
27, the characteristic strain amplitude h0 follows from the standard
formula for a triaxial neutron star Thorne (1987):

h0 =
16π2G
c4

IϵnetB f2GW

d
= 1.02 (5) × 10−29(

|ϵnetB |

10−7
), (27)

where the distance d = 6.3± 1.2 kpc (Leahy and Tian, 2008) and
GW frequency fGW = 2ν = 6.02 Hz derive from radio timing
observations. The moment of inertia I = 1.53× 1045 g cm2

assumes standard neutron star parameters (Gao et al., 2017).
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TABLE 5 Gravitational wave detectability comparison.

Source/Detector f (Hz) h0 √Sn Ref.

PSR J1846−0258 (fiducial) 6.02 1.0× 10−29 N/A This work

PSR J1846−0258 (Bt = 3Bd) 6.02 1.8× 10−28 N/A This work

Advanced LIGO (O5) 6 N/A 1.5× 10−24 Abbott et al. (2023)

Einstein Telescope 6 N/A 2.4× 10−26 Hild et al. (2011)

Cosmic Explorer 6 N/A 9.7× 10−27 Reitze et al. (2019)

Notes:
1. Sensitivity values assume 1-year integration at 90% confidence
2. h0estimates include ±5%distance uncertainty
3. Extreme Btcase assumes Bt = 3× 1015G
4.√Snvalues correspond to 6 Hz GW frequency

5.2.2 Detector sensitivity landscape
The detection threshold depends fundamentally on the noise

amplitude spectral density√Sn( f), as shown in Equation 28.

SNR =
h0T

1/2
obs

√Sn ( fGW)
. (28)

This relationship reveals why h0 and √Sn share comparable
magnitude scales - both represent strain quantities, with √Sn
characterizing fundamental detector limitations while h0 reflects
astrophysical source strength.

5.2.3 Key findings
Table 5 summarizes the gravitational wave detectability of PSR

J1846−0258, comparing predicted strain amplitudes under different
internal field configurations with the sensitivity levels of current
and future detectors. Three fundamental insights emerge from
our analysis:

First, current-generation detectors like LIGO O5 face
insurmountable sensitivity barriers. The fiducial strain h0 ∼
10−29 would require ∼105 years integration to reach SNR =
1, demonstrating the fundamental limitations of 2G detector
technology.

Second, next-generation observatories promise transformative
capabilities. Einstein Telescope’s projected √Sn ∼ 2.4× 10−26

could achieve SNR∼5 for extreme configurations (Bt/Bd > 5)
within 5 years, opening new discovery space for neutron star
interior physics (Ma et al., 2025).

Third, non-detections provide valuable constraints. The upper
limits impose Bt/Bd < 5 at 90% confidence level, testing models of
crustal rigidity and superconducting core coupling under extreme
magnetic fields.

5.2.4 Scientific implications and technology
roadmap

Beyond direct detection, this work establishes:

1. Theoretical benchmarks constraining deformation models to
ϵB < 10−6 for typical equations of state.

2. Design requirements for future detectors, necessitating √Sn <
10−26 at 6 Hz for toroidal field studies.

3. A multi-messenger framework combining GW upper limits
with X-ray timing constraints, reducing parameter space by
38% compared to isolated analyses.

The derived strain amplitudes, while currently below detection
thresholds, establish critical benchmarks for future instrumentation,
as shown in Equation 29:

hreq
0 = 10

−29( d
6.3 kpc

)
−1
⇒√Sn < 10−27 Hz−1/2. (29)

This requirement drives three key development directions:

• Low-Frequency Optimization: Next-generation detectors
must enhance 1–10 Hz sensitivity by ∼2 orders of magnitude;
• Multi-Messenger Synergy: Combined GW/X-ray analysis

reduces EOS uncertainty by 38% (cf. isolated approaches);
• Calibration Standards: Provides reference values for neutron

star deformation models.

Continuousmonitoring remains essential acrossmultiple fronts.
During magnetar outburst phases, when magnetic reconfiguration
may temporarily enhance gravitational wave emission by factors of
102 − 103, coordinated multi-messenger observations could reveal
otherwise inaccessible aspects of neutron star physics. Furthermore,
the derived strain estimates establish concrete benchmarks for future
detector development, specifying required sensitivity improvements
and guiding instrument design choices.

6 Conclusion and outlook

This study presents a unified framework to explain the
anomalous braking index (n = 2.19± 0.03) of PSR J1846−0258 by
simultaneously considering magnetic field decay and inclination
angle evolution. Our analysis reveals that the observed braking
index requires a magnetic inclination change rate of χ̇ ≈ 0.281°/100
yrs, remarkably similar to the Crab pulsar’s measured value of
0.63° ± 0.03°/100 yrs. This correspondence suggests that young,
high-B pulsars may share common spin-down physics governed by
magnetic geometry evolution.
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The two-dipole model successfully explains the inclination
evolution through harmonic oscillations driven by internal dipole
interactions. We derive a dipole moment ratio η =M2/M1 ∼
1026–1027, consistent with previous magnetar studies. The model’s
physical plausibility is further supported by its ability to reproduce
both the braking index and current magnetic configuration without
requiring extreme parameters.

Our energy budget analysis shows that magnetic dissipation
(Ėmag ∼ 1033–1034 erg s−1) can account for the observed X-ray
luminosity (LX ∼ 1.9× 1034 erg s−1) only for field decay timescales
τD < 3.6× 105 yrs. Longer timescales necessitate additional energy
sources, possibly including residual thermal energy, rotational
energy conversion (Ėrot ∼ 10

37 erg s−1), or dissipation of internal
toroidal fields.

The gravitational wave analysis yields a characteristic strain h0 ∼
10−29, currently well below the sensitivity limits of both current and
upcoming detectors. While not directly detectable, such modeling
helps to constrain the plausible internal magnetic field geometries
and provides benchmarks for guiding future observational
strategies. Future investigations should focus on three key directions:
First, incorporating thermo-magnetic coupled evolution models
to better constrain the energy budget. Second, extending this
framework to other young pulsars with measured braking indices
and inclination angles.Third, refining gravitational wave predictions
through improved treatments of magnetic deformation in the
neutron star crust and core. This work ultimately demonstrates
that magnetic inclination dynamics play a fundamental role in
pulsar spin-down physics, particularly for transitional objects like
PSR J1846−0258 that bridge the gap between rotation-powered
pulsars and magnetars. Furthermore, our analysis also provides a
new perspective for the study of nanohertz gravitational waves. The
understanding of the magnetic inclination dynamics and internal
magnetic field geometries of neutron stars like PSR J1846−0258 can
help improve the theoretical models of gravitational wave sources in
the nanohertz frequency band, thus promoting the research of PTAs
in detecting nanohertz gravitational waves.
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