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The Einstein equations and the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric are the foundation of modern cosmology. Whereas the geometric
interpretation of the Einstein equations describes the action of gravity as the
curvature of space by matter, the FLRW metric is built on Milne’s concept
of a kinematically determined universe. Applying the FLRW metric to the
Einstein equations yields the Friedmann equation which describes the expansion
history of the universe in the reference frame of observers co-moving with
the expansion, who, as a consequence of the equivalence principle, are free-
falling, co-moving observers and perceive flat space in their local inertial frame.
We use this fact to propose an extension to ΛCDM, incorporating the initial
conditions of the background universe, comprising the initial energy densities
and the initial post-big bang expansion rate. The observed late-time accelerated
expansion is then attributed to a kinematic effect akin to a dark energy (DE)
component. Choosing the same Ωm,0 ≃ 0.3 as ΛCDM, its equation of state
parameter is wde ≃ −0.8. The expansion history of this model displays the typical
s-shape in the evolution of the scale factor, which is known from the ΛCDM
concordance model.

KEYWORDS

cosmology, kinematic determination, Friedmann–Lemaître–Robertson–Walker metric,
spatial curvature, dark energy, historical context

1 Introduction

It is useful to begin the discussion about the significance of the equivalence principle
of general relativity (GR) for understanding kinematically determined universes by
describing the historical context. Einstein (1905) presented his special relativity theory
(SRT), which connects space and time and applies to inertial systems. Some years
later, based on the equivalence of inertial mass and gravitational mass, Einstein (1915)
presented the theory of GR with its geometric interpretation of gravity, where gravity
curves space. This indicates that in the absence of a gravitating mass (or more precisely,
gravitating energy density), space is flat, and Euclidean geometry applies. Gravitating
masses curve space, and the curvature of space depends on the spatial distribution of
the masses. The mathematical framework of the theory is based on Riemannian spaces,
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which led to Einstein’s field equations for gravity, introduced
in Section 2, Equation 1. Solving these equations for a specific
distribution of energy or masses, respectively, yields the
corresponding metric gμν, describing the curvature of space. For
example, the well-known Schwarzschild metric describes the
curvature of space due to a single-point mass (Schwarzschild, 1916).

In 1917, Einstein applied his field equations to the universe,
assuming a homogeneous and isotropic distribution of matter,
according to the cosmological principle (Einstein, 1917). To provide
a static solution to the field equations, he added the cosmological
constant Λ to the left-hand side of the equations, which can be
regarded as a modification of the law of gravity. In contrast, in
the current Λ cold dark matter (ΛCDM) concordance model, Λ
is considered an additive type of energy, contributing to the total
energy content of the universe, i.e., to the energy–momentum tensor
on the right-hand side, as any other cosmic component of themodel.

In the same year, de Sitter (1916), de Sitter (1917) found the
expanding solutionH = √Λ/3 in empty space.This surprising result
displayed, apart from the expansion, some strange properties which
were later explained by Lemaître, because of de Sitter’s choice to
apply the Schwarzschild metric. In 1924, Friedmann derived his
solutions to Einstein’s field equations for universes with constant
curvature, without restriction to specific physical or astronomical
assumptions, apart from the cosmological principle, and found two
differential equations, known as the first and second Friedmann
equations (Friedmann, 1924), which describe the expansion history
of model universes. Friedmann deduced that the “size” of the
universe is not constant, but either expanding or contracting,
depending on the amount of matter. Without the knowledge
of Friedmann’s works, in 1927, Lemaître developed the most
comprehensive and systematic set of cosmological solutions to the
general relativistic field equations, also assuming the cosmological
principle. It was the first time that the energy content of the universe
was divided intomatter and radiation components. Furthermore, his
work constituted a systematic compilation of possible world models
with different values for Λ and curvature. He concluded that the
universe originated from a structure he called the “primeval atom,”
in a unique event, which nowadays is called the big bang. Yet, already
in 1927, Lemaître had predicted an expanding universe, 2 years
before Hubble observed the expansion of the universe (Hubble,
1929). Additionally, Lemaître (1927) postulated that there is no
center of gravity in the universe, a fact rarely mentioned in the
literature, even though it is only this assumption which leads to a
homogeneous and isotropic gravitational field of a universe of finite
size, under the premise of the cosmological principle.

(Milne, 1932) presented the idea of a kinematically determined
universe, whichwas based on SRT andwhere the recession velocities
of galaxies, meanwhile discovered by Hubble (1929), were assumed
to be a physical velocity. Later, the Milne model has been ruled out
for several reasons and hence is not being considered a viable model
(e.g., Davis and Lineweaver, 2004; Chodorowski, 2005) as it does
not agreewith observations.Nevertheless, theMilnemodel inspired,
independently of each other, Robertson and Walker to transfer the
idea of a kinematically determined universe into GR.

The key concept of a kinematically determined universe is
that starting with an initial (or in the words of Lemaître, the
primeval) expansion rate, gravity is working against the momentum
of expansion and decelerates the expansion rate. In fact, Lemaître’s

original postulation of the absence of a center of gravity in the
universe lends the expansion rate H as the appropriate quantity to
describe the expansion of the universe. In contrast to “the radius,”
which is only defined by referencing to “the center of the universe,”
the expansion rate is well defined for every point in the universe
without any choice of a particular coordinate system. Finally, the
concept of a kinematically determined universe perfectly explains
the surprising de Sitter (1916), de Sitter (1917) solution for empty
space as the absence of gravity in empty space keeps the expansion
rate constant, just in the same way as the negative pressure exposed
by Λ balances the attractive force of gravity. The term “accelerated
expansion” for the observed late stages of the evolution of the
universe is thus a “misnomer” since the rationale is the constant
expansion rate—either due to the absence of gravity or due to
balancing of gravity. As we elaborate below, both scenarios are
described using an identical mathematical formalism, which can be
readily observed by inspecting the second Friedmann equation; see
Section 2, Equation 6.

The works of Robertson (1935), Robertson (1936a), Robertson
(1936b), and Walker (1937) were based on preceding works by
Friedmann (1922), Friedmann (1924), and Lemaître (1927) and
applied the Riemannian formalism of curved surfaces to describe
the dynamics of expansion of the universe in the reference frame of
a free-falling observer, moving on a geodesics, by a metric that can
be applied to Einstein’s field equations.Themetric is therefore called
the Friedmann–Lemaître–Robertson–Walker (FLRW) metric; see
Section 2, Equation 2. It includes the curvature index k, whose value
determines the geometry of a model universe: +1 (closed universe),
0 (flat universe), and −1 (open universe). The FLRW metric is
the foundation of modern cosmology and the ΛCDM concordance
model, contributing to its tremendous success. It is important to
note that the definition of the curvature index refers to the critical
density, although the density is not part of themetric: +1 (density >
critical density), 0 (density = critical density), and −1 (density <
critical density).

Applying the FLRW metric to the Einstein equations yields
the Friedmann equation; see Section 2, Equation 4 and Section 3.
In this equation, the curvature index reappears in a term called
the curvature term, describing the geometry of a model universe.
Customarily, this is also interpreted as the curvature of space in
the model universe. In the Friedmann equation, the density also
appears, but there is no “recipe” that guarantees the physically
correct correspondence between the choice of k and the density
in the Friedmann equation. The Friedmann equation normalized
to critical density (Equation 14)1 does not avoid the definition
of physically implausible model universes as we exemplify by the
following examples.

The first example is the Einstein–de Sitter universe, which
includes matter at critical density as the only component. According
to Equation 14, no curvature term appears, and the universe is
assumed to be flat. Interpreting the geometry as the curvature of
space indicates that there is no gravitating mass in the universe.
This is contradicting the definition of the mass density in the
model universe. The second example is an empty model universe,

1 In fact, this normalization is just a convention.
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FIGURE 1
Expansion history of the ΛCDM model computed using the Planck
2020 cosmological parameters. The vertical lines in blue bracket the
epoch of big bang nucleosynthesis between neutron–proton
freeze-out at an/p ∼ 1.3 ⋅ 10−10 and nuclei production at anuc ∼ 3.3 ⋅ 10−9,
and the vertical lines in red indicate the time of matter–radiation
equality aeq, followed by recombination arec.

which according to Equation 14 includes a curvature term2 at
critical density. Again, interpreting the geometry as the curvature
of space indicates that there is curved space in the model universe,
although the universe is empty—again a contradiction to its original
definition.

Let us turn to a more realistic model and discuss the
ΛCDM concordance model, the most important representative of
FLRW universes. The components of the model are radiation,
matter—baryonic and CDM—and the cosmological constant Λ.
Curvature does not appear as a flat geometry of space is suggested by
observations, mainly of the cosmic microwave background (CMB).
Figure 1 displays the well-known evolution of the expansion rate
of the ΛCDM concordance model computed using the Planck
2020 values (Planck-Collaboration, 2020).

We observe a deceleration in the expansion rateH in the course
of the expansion of the universe, caused by gravity of the (attractive)
components (see e.g., Peacock, 1999). It is important to note that
no curvature term appears in ΛCDM and space is considered flat.
Hence, there should be no deceleration. On the other hand, there
are gravitating energy densities in the universe, which should cause
a curvature of space.This suggests that there is some “inconsistency”
in ΛCDM’s flat universe interpretation. We present an approach
to resolve this inconsistency and discuss the consequences in the
following sections. In a follow-up paper, we apply the concepts
presented here onto nonlinear structure formation and investigate
the impact of the formation of the cosmic web.

This paper is organized as follows. In Section 2, we recapitulate
the basic equations for the evolution of the background universe in
FLRWmodels. Section 3 investigates the flat universe interpretation
for the general case of FLRW universes, followed by a discussion
of the initial conditions (ICs) of the background universe.

2 The curvature term is not regarded as a physical constituent of the

universe; see Section 2. Hence, the model universe is empty.

Section 4 proposes a ΛCDM extension such that the cosmological
model incorporates the post-big bang initial conditions of the
early universe. Finally, in Section 5, we summarize the presented
concepts, results, and implications, also in light of cosmological
observations.

2 Basic equations for the expansion
history in FLRW models

First, we recapitulate the well-known equations describing the
evolution of the homogeneous and isotropic background universe
that we need in our model. As gravity is the only force acting
on cosmological length scales, it determines the evolution of
the background universe and is described using Einsteins’ field
equations:

Rμν −
1
2
gμνR =

8πG
c4

Tμν, (1)

with the Ricci tensor Rμν and the Ricci scalar R. The left-
hand side (lhs) of the equation is often summarized as Eμν,
the Einstein tensor. The right-hand side (rhs) contains the
energy–momentum tensorTμν, which includes the cosmic inventory
of given cosmological models. The energy–momentum tensor Tμν
determines the curvature of space, expressed by the metric gμν,
which is also included in the Ricci tensor Rμν and the Ricci scalar
R. Cosmological models differ in their assumptions on the nature
and amount of the cosmic components encoded in Tμν. As such, all
models are subject to observational constraints.

The geometry of a universe with constant curvature is described
by applying the Riemannian formalism of curved surfaces and
was developed by Robertson (1935), Robertson (1936a), Robertson
(1936b), andWalker (1937) based onMilne’s idea of a kinematically
determined universe (Milne, 1932) and preceding works by
Friedmann (1922), Friedmann (1924), and Lemaître (1927). In
spherical coordinates (r,θ,ϕ), the line element of the metric reads as

ds2 = c2dt2 −R2(t)( dr2

1− kr2
+ r2dΩ2), (2a)

dΩ2 = dθ2 + sin2 θdϕ2, (2b)

with the curvature index k and its values +1 (closed universe),
0 (flat universe), and −1 (open universe). The spatial coordinates
(r,θ,ϕ) are defined in the co-moving frame, where r, θ, and ϕ remain
“fixed,” corresponding to the assumption of spaces of constant global
curvature (the geometry of the universe). R(t) is the “radius of
curvature,” as described by Kolb and Turner (1990), at cosmic time
t (for k = ± 1), with the dimension of length. Robertson calls this
space an “auxiliary space,” andWalker calls it a “Riemannian space,”
in contrast to Friedmann, who identifies it as the physical space of
the universe.

Applying the FLRWmetric Equation 2 to themetric tensor gμν in
Einstein Equation 1, the energy–momentum tensor Tμν then takes a
perfect-fluid form, which reads

Tμν = (ρ+
p
c2
)uμuν − gμν p, (3)

where uμ and uν is the four-velocity. The time–time component
of the solution to Einstein Equation 1 yields the (first) Friedmann
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equation in the classical version, as derived by Friedmann (1922),
see Section 3 and, for example, Kolb and Turner (1990):

H2 (t) = 8πG
3c2

ρ− kc2

a2 (t)
, (4)

which describes the dynamics of the evolution of the background
universe in the reference frame of a free-falling observer, co-moving
with the expansion3, moving on a geodesic (in a possibly curved
space). Here, ρ refers to the entire energy density of the universe;
k is the curvature index, defined in Equation 2 determining the
geometry, with k = + 1 for a closed (supercritical, density greater
than the critical density) universe, k = − 1 for an open (subcritical,
density less than the critical density) universe, and k = 0 for a flat
geometry with critical density. In the following sections, we use the
notion “geometry” for the curvature of the universe as determined
by the FLRW metric (Equation 2) and the Friedmann Equation 4,
respectively. a denotes the scale factor, with the dimension of
length, which owing to the symmetries imposed by the isotropy
and homogeneity of the background universe is only a function
of cosmic time t and is defined as the “size” of an expanding
or contracting universe, relative to its present-day size |a0| = 1.
H is the Hubble parameter (we use the term expansion rate
interchangeably) defined as

H (t) ≡ ȧ
a
, (5)

where the dot refers to the derivative with respect to cosmic
time t. The space–space component yields the second Friedmann
equation as

ä
a
= −4πG

3c2
(ρ+ 3p) , (6)

which Friedmann called the deceleration equation. In the recent
literature, it is referred to as the acceleration equation.

Now, let us introduce the cosmic inventory that features the
current concordance ΛCDM model. In addition, we introduce
some standard notions and equations that we need in the
paper. The energy densities of interest include “CDM,” baryons
(“b”), and radiation (“r”) (including photons and neutrinos).
In the formulae, we also include the cosmological constant Λ,
empirically added to the cosmic inventory to explain the flatness
of space, confirmed by the observations of the CMB, using the
balloon-based BOOMERanG experiment (de Bernardis et al., 2000;
MacTavish et al., 2006) as well as observations with increasing
accuracy by the space missions COBE (Smoot et al., 1992), WMAP
(Hinshaw et al., 2013), and Planck (Planck-Collaboration, 2020).

To study a variety of cosmological models, it has become
customary to put “curvature” and the cosmological constant
“Λ” into the energy–momentum tensor Tμν by operationally
defining “effective” energy densities for them, namely,
ρk = − 3kc

2/(8πGa2) for curvature (“k”) and ρΛ = Λc
2/(8πG) for

the cosmological constant.
We stress that although ρk represents a geometric quantity, it

has morphed into a “substance” or cosmic inventory, described

3 The co-moving observer is called fundamental observer by Robertson

(1935). This term is also sometimes used in the literature.

by Tμν, upon this standard operational procedure4. Nevertheless,
it is rightfully not regarded as a physical constituent of the
universe (see Section 3.1) but simply a mathematical formalism,
contributing an effective or artificial contribution to Tμν. On the
other hand, inΛCDM,Λ is usually regarded as a real physical cosmic
inventory, which contributes to Tμν, basically in the samemanner as
matter and radiation.

The Friedmann equation inmodern language reads as

H2 (t) = 8πG
3c2
[ρr (t) + ρb (t) + ρCDM (t)+

ρk (t) + ρΛ (t)] ,
(7)

with the time-dependent background energy densities for radiation
(ρr), baryons (ρb), CDM (ρCDM), the curvature (ρk), and the
cosmological constant (ρΛ). H(t) is the Hubble parameter, and its
present-day value5, the Hubble constant, is denoted as H0. The
critical density, defining a flat universe (i.e., a universe with flat
geometry), is given by

ρcrit,t =
3H2 (t)c2

8πG
, (8)

which is derived from Equation 4 with a vanishing curvature term.
It is convenient to introduce the so-called density parameters or
cosmological parameters as

Ωi,t =
ρi (t)
ρcrit,t
, (9)

where i = CDM, b, r, etc., which are nothing but the background
energy densities relative to the critical density (Equation 8).

To customarily solve the Friedmann equation, the energy
conservation equation is applied (for each component, i = CDM, b,
r, …), which reads

∂ρi
∂t
+ 3H(ρi + pi) = 0, (10)

where ρi and pi stand for the background energy densities and
pressures6, respectively. The energy densities and pressures are each
related by their respective equation of state (EoS):

pi (t) = wi (t)ρi (t) , (11)

where wi is often called the EoS parameter, which can also
change with time, in general. However, in ΛCDM, wi is assumed
to be a constant7 for every component i = CDM, b, r, Λ, and
k. Assuming a constant EoS parameter wi and substituting

4 This goes back to a proposal by Zeldovich to simplify cosmological

equations; see Zeldovich and Novikov (1983).

5 The literature has adopted the notational subscript “0” to denote

present-day values and not the values at t = 0.

6 This equation assumes that there is no transformation between different

components.

7 However, for a detailed study of phase transitions in the early universe,

it is important to include a variable EoS of the radiation component

to take into account the reduction in relativistic degrees of freedom in

the wake of the universe’s expansion.
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Equation 11 in Equation 10, it follows that ̇ρi/ρi = − 3(1+wi)ȧ/a,
which is readily integrated to yield the well-known relationship:

ρi (a) =Ωi,0ρcrit,0 a
−3(1+wi), (12)

which describes the evolution of the background energy densities as
a function of the scale factor a for the constant wi. The background
evolution of the standard cosmic components is thus given as

ρr(a) =Ωr,0ρcrit,0/a
4, (13a)

ρm(a) =Ωm,0ρcrit,0/a
3, (13b)

ρk(a) =Ωk,0ρcrit,0/a
2, (13c)

ρΛ =ΩΛ,0ρcrit,0, (13d)

where Equation 13a refers to the radiation component (its
EoS parameter in Equation 11 is wr = 1/3), Equation 13b refers to
baryonic matter and CDM (wm = 0), Equation 13c refers to the
curvature (wk = − 1/3), and Equation 13d refers to the cosmological
constant Λ (wΛ = − 1).

The Friedmann equation for the ΛCDMmodel (Equation 7) can
be alternatively written as an algebraic closure condition. In the
present study, it reads

1 =Ωr,0 +Ωb,0 +ΩCDM,0 +Ωk,0 +ΩΛ,0. (14)

In other words, Equation 14 is the normalization of
Friedmann Equation 7 to the critical density. In the ΛCDM model,
Ωk,0 = 0 is prescribed such that Λ closes the universe to critical
density, defining it a flat universe, which we elaborate in the
next section.

3 The flat universe interpretation

The ΛCDM model is a member of the broader family of FLRW
cosmological models. Furthermore, a flat space in the universe is
assumed on the grounds of the curvature of space, as measured,
for example, by the observations of the CMB—the flat universe
interpretation, where the curvature term in Friedmann Equation 4
is customarily interpreted to express the geometry of the universe.
We will now reassess this interpretation.

3.1 Curvature in FLRW universes

Let us elaborate on the curvature term appearing in Friedmann
Equation 4, which is connected to the curvature in the FLRWmetric
(Equations 2a,b). To this end, we now summarize the derivation
of Friedmann Equation 4, see, for example, Kolb and Turner
(1990). As mentioned above, Equation 4 is derived by applying the
FLRW metric (Equations 2a,b) to the metric tensor gμν in Einstein
Equation 1. The energy–momentum tensor (Equation 3) reads

Tμν = diag (ρ,−p,−p,−p) , (15)

The non-zero components of the Ricci tensor Rμν for the
FLRWmetric (Equation 2) are determined as follows:

the time–time component as

R00 = −3
ä
a
, (16)

the space–space component as

Rij = −[
ä
a
+ 2 ȧ

2

a2
+ 2k
a2
]gij, (17)

and the Ricci scalarR as

R = −6[ ä
a
+ ȧ

2

a2
+ k
a2
]. (18)

Using Equation 16 and Equation 18, the time–time component
of the solution to Einstein Equation 1 yields

ȧ2

a2
+ k
a2
= 8πG

3c2
ρ, (19)

where ρ is the energy density. In the above equation, the left-
hand side stems from the Ricci scalar R (Equation 18), and the
right-hand side ρ comes from the time–time component of the
energy–momentum tensor (Equation 15). Thus, the term k/a2 does
not contribute to Tμν and has no impact on gμν in the solution to
Equation 1 for a given choice of Tμν. Equation 19 is readily rewritten
to (first) Friedmann Equation 4.

This suggests that the curvature term should not be confused
with a contribution to the energy–momentum tensor, which
determines the Riemann tensor in Einstein Equation 1. It is these
equations which ought to determine the global curvature of space
in the universe. We now reassess the interpretation of the curvature
term in Equation 4 as the curvature of space in the universe using
the Einstein–de Sitter (EdS) model (see also Section 1).

First, let us start from Einstein Equation 1 only, which describes
the curvature of space, determined by the energy–momentum
tensor Tμν that describes the distribution of energy (or matter) in
the universe. Applying Tμν and solving Einstein Equation 1 yield
the metric tensor gμν, which describes the global curvature of space
in the universe. Considering the EdS universe, we apply Tμν =
diag(1,0,0,0) with the density in units of critical density and zero
pressure for pressureless matter, which yields a non-flat metric
tensor gμν. This is easily observed in a type of cross-check by solving
the Friedmann equation for the EdS universe H2 = (8πG/3c2)ρcrit,
which yields H2(a) ∝ a−3, given by Equation 13b. Thus, we observe
a deceleration in the expansion rate H during the expansion of the
EdS universe, which is caused by gravity (see, e.g., Peacock, 1999). It
is important to note that no curvature term appears in Equation 4
for the EdS universe. So there is curvature of space, although no
curvature term exists in Equation 4 (i.e., there is curved space in a
universe with flat geometry).

Now, the other direction follows the steps of the derivation
of Friedmann Equation 4, as described above, and reverses the
procedure of step 1. One starts by specifying the metric tensor
gμν corresponding to the curvature term of Equation 4. Applying
this metric tensor gμν to Einstein Equation 1 yields Tμν with the
corresponding energy densities8. The obtained energy–momentum
tensors are checked for agreementwith thosewe used in the previous

8 In general, this solution is not unique.
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step. Again, using the example of the EdS universe, we observe that
the curvature term in Equation 4 vanishes for the EdS universe,
and the corresponding metric tensor gμν describes flat space, which
yields the energy–momentum tensor Tμν = diag(0,0,0,0) of empty
space. This is different from Tμν = diag(1,0,0,0) for space at critical
density in theEdSuniverse.Thus, in general, the curvature termdoes
not express the spatial curvature9. This is addressed by Robertson
(1936a), by using an “auxiliary” (mathematical) space associated
with the FLRW metric (Equations 2a,b) (based on Riemannian
geometry), which categorizes the dynamics of expansion of the
background universe via the curvature index k ∈ {−1,+1,0} as
open (negative curvature), closed (positive curvature), and flat
(no curvature), based on the energy density of the background
universe relative to the critical density10. Walker (1937) used the
term “Riemannian space” for the space connected to the metric.

However, with regard to ΛCDM, the question arises about how
it is possible that observations of the CMB report the flatness of
space, given that the universe is not empty. Friedmann Equation 4
describes the dynamics of the expansion of the backgrounduniverse,
expressed by the evolution of the expansion rate H(t) in the local
reference frame of observers co-moving with the expansion, moving
on geodesics, that is, freely falling FLRW observers. The expansion
rate H(t) is determined by the two contributing terms describing
the evolution of the density and the curvature, determined by
Equation 13. A stringent consequence of GR’s equivalence principle
is that observers, freely falling in a gravitational potential, reside in
a local inertial system, during the entire evolution of the universe,
where special relativity (SR) applies, that is, they perceive flat space
[see, e.g., Weinberg (1972), Weinberg (2008), Peacock (1999), or
Fließbach (2016)]. Moreover, a consequence of this is that space
appears flat to co-moving FLRW observers, regardless of the energy
density of the model universe.Thus, space appears flat to co-moving
observers in open, closed, and flat geometries, justifying ρk = 0
and Ωk,0 = 0 in the ΛCDM model, providing the reason for the
observation of the flatness of space, not necessarily connected to
the critical density. This again suggests that the curvature term
in the Friedmann equations (Equation 4 and Equation 7) does not
express the global spatial curvature, as determined by Einstein
Equation 1 but the curvature of the auxiliary Riemannian space
defined by Robertson (1936b) and Walker (1937). Nevertheless,
the interpretation of the curvature term in Equation 4 is still
a pending question as the term is not related to ρk and Ωk,0,
which express the observed flatness of space by us as free-falling
FLRW observers. We fulfill the criterion of being co-moving FLRW
observers not strictly (Peacock, 1999) but to a very high degree
(details in a follow-up paper).

9 To falsify the assumption that the curvature term in Equation 4 expresses

the curvature of space, one contradicting example is sufficient.

10 As already mentioned in Section 1, the definition of k refers to the

density, although the density does not appear in the metric. In the FLRW

formalism, this is addressed by normalized Friedmann Equation 14,

relating density and curvature. Consequently, in the FLRW formalism,

the density parameters of subcritical and supercritical universes are also

normalized to critical density, for example, by considering the suitable

amount of curvature. Remember that the curvature is not regarded as

a physical contribution to the energy budget of the universe.

Equations 4, 6, 10 describe the expansion history of the
background universe. These equations are not independent of each
other. It is well known that first Friedmann Equation 4 is the result
of the integration of second Friedmann Equation 6. We multiply
Equation 6 by the scale factor a to derive

ä = −4πG
3c2
(ρ+ 3p)a, (20)

which we integrate with respect to time, at which we consider the
energy conservation Equation 10, yielding

ȧ2 = 8πGa
2

3c2
ρ− kc2, (21)

where k appears as an integration constant. Dividing by a2 recovers
first Friedmann Equation 4, being an ordinary differential equation.
Therefore, the integration constant k can be determined from the
ICs, which we elaborate next.

3.2 The initial conditions of FLRW universes

Customarily, the geometry (open, closed, or flat) of a model
universe is explained based on the energy density of the background
universe relative to the critical density. We present a more general
definition based on the ICs of the background universe, comprising
the initial densities in the early universe and the initial (post-big
bang) expansion rate.

The expansion rate for a universe at critical density is described
by the Friedmann equation with the vanishing curvature term as

H2 (t) = 8πG
3c2

ρcrit,t. (22)

This relationship between the expansion rate H and ρcrit holds true
for the entire cosmic time, especially in the very first moments after
the big bang.More precisely, the initial boost in the expansion rate is
supposed to be provided immediately after the big bang. By the time
we can apply GR, we can define an initial expansion rateHini (in the
language of Lemaître, we could call it here “the primeval expansion
rate”). At this cosmic point in time, when it becomes meaningful
to apply the Friedmann equation, the universe experienced its first
deceleration phase (see, e.g., Harrison, 2000), and the metric would
appear flat to a co-moving FLRW observer.

On the other hand, we can express the critical density for a flat
universe as

ρcrit,ini =
3H2

inic
2

8πG
, (23)

which is simply the rearrangement of Equation 22 to express ρcrit
at the considered initial point in time. This defines the “critical
expansion rate,” for a given initial density as

H2
crit,ini =

8πG
3c2

ρini. (24)

We can interpret this relationship as follows. Given an arbitrary
initial energy density ρini of a universe, originating from the big
bang, the primeval expansion rate Hini has to be specifically fine-
tuned to fulfill the criterion (Equation 24) describing a universe with
flat geometry, that is, Hini =Hcrit,ini.
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However, there are no comprehensible arguments for why the
big bang should be restricted to this exclusive fine-tuned value
for Hini. If Hini is less than Hcrit,ini (or in other words, ρini is
higher than ρcrit,ini, fulfilling Equation 24), the evolution of the
universe is described by a closed geometry. An open geometry is
determined by Hini greater than Hcrit,ini (or ρini being lower than
ρcrit,ini, fulfilling Equation 24).

Limiting ourselves to a flat geometry and given the energy
densities as deduced by the measurements of the CMB [e.g., by
Planck-Collaboration (2020)] in ΛCDM, it thereby ignores from the
outset a broad range of possible initial expansion rates Hini. Hence,
the assumption of a flat geometry in the FLRWmetric does not cover
those initial expansion rates Hini, which would lead to subcritical
and supercritical universes, where, as shown in Section 3.1,
freely falling, co-moving observers likewise perceive
flat space.

4 Incorporating the post-big bang
initial conditions

In Section 3.1, we argue that a prospective observation of flat
space does not necessarily imply a universe at critical density since
the curvature terms ρk andΩk in Equations 7, 14, respectively, vanish
in the local inertial frame of co-moving FLRW observers, giving the
reasons for the flatness of space as measured by the observations
of the CMB. To interpret the curvature term in Equation 4, we
associate the general concept of dark energy (DE) with the geometry
of the FLRW metric (Equations 2a,b) and use the subscript “de”
for the quantities describing the dynamics of expansion in the
following section.

In Section 3.2, we argue that the ICs of the background universe
are given by the initial expansion rate Hini and the initial densities.
Based on the CMB measurements, within the ΛCDM model, the
initial densities are determined to high precision (see also Foidl and
Rindler-Daller, 2024). For this reason, it is sufficient to incorporate
Hini into the ΛCDM formalism. Let us proceed in our approach by
considering the following parameters:

1 =Ωr,0 +Ωb,0 +ΩCDM,0 +Ωk,0 +Ωde,0, (25)

where the operationally defined density parameter of the
geometrical curvature Ωde takes the place of ΩΛ. For the sake of
completeness, we include Ωk,0 ( = 0) in the equation to express the
perceived flatness of space. In the same way as in ΛCDM, Ωk,0 =
0 describes the flatness of space but based on novel arguments as
it appears to us in our local reference frame as co-moving FLRW
observers.

To proceed with our approach, in an inflationary big bang
cosmology, we allow for the following simplification.We analyze the
evolution of cosmological models by the time inflation has ended,
and we call the expansion rate at the end of inflation “primordial
expansion rate” (in analogy to the primordial power spectrum in
structure formation). Detailed information of the exact evolution of
H prior to this point is not required.

We recognize from Equation 25 that

Ωde,0 = 1−Ωphys,0, (26)

where Ωphys,0 denotes the sum total of the density parameters
(ΩCDM,0, Ωb,0, and Ωr,0) of all physical contributions to the
energy budget of the universe (CDM, baryons, and radiation;
without considering the operationally defined contributions to the
energy–momentum tensor Tμν).

We want to use the EoS parameter wde of ρde to parameterize
the dynamics of the expansion, determined by the curvature
term in Equation 4, as a function of the sum total of the energy
densities of the cosmic components in the universe Ωphys, that
is, relate it to Equation 25. This retains the customary ΛCDM
formalism, although we are only left to adapt the computation of
wde, instead of using the constant EoS parameter wΛ = − 1 of the
ΛCDMmodel.

To this end, we carried out a change in variable ρ in Equation 4
to Ωphys: we multiply Equation 4 by a2(t), divide it by 2, and use the
total amount of energy (4π/3)ρphysa

3 in the sphere of “radius” (scale
factor) a, in units of the critical density (see Equation 26), instead of
the respective energy density ρphys, which yields

1
2
ȧ2 (t) −

GΩphys

a
= κ, (27)

with the constant κ.
We now use Equation 27 to determine wde as follows. Since κ

is a constant, the evolution of the first term is determined by the
evolution of the second term, given by

d
da
(
GΩphys

a
)∝ −

Ωphys

a2
, (28)

where we use the fact that all the cosmic components of interest
evolve smoothly with respect to the scale factor a, as observed by
the power laws in Equation 13, just as in ΛCDM. Moreover, this is
unsurprisingly equivalent to Equation 13c, which is derived from
Equation 12. In what follows, we do not need detailed prefactors.We
use the right-hand side of Equation 28 in Equation 12, which yields

ρde ∝ a−2Ωphys,0 . (29)

To transform the variables back to the customarily used energy
density ρde, we equate the exponents in Equation 12, 29 by
−3(1+wde) = − 2Ωphys,0. Rearranged to express wde, it reads as

wde =
2
3
Ωphys,0 − 1, (30)

where wde is a constant.
The significant property of Equation 30 is that in general, it does

not yield the EoS of a cosmological constant. Only for an empty
universe, we get exactly wde = − 1. In fact, this is in good accordance
with the original empty de Sitter universe solution (de Sitter, 1917)
and the expectations from a kinematically determined universe: if
the universe is empty, there is no global curvature of space and hence
no deceleration but rather H = const, resulting in an exponential
growth of the scale factor.

However, as soon as we have physical components, Ωphys,0 > 0,
the EoS parameter in Equation 30 fulfills wde > − 1. If we choose
the same matter content as the ΛCDM concordance model, that
is, using Ωphys,0 ≈Ωm,0 ≃ 0.3, Equation 30 yields wde ≃ −0.8; thus,
there is a weak deceleration compared to a model with wΛ = − 1.
Still, the two EoS parameters are close numerically and in terms of
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their phenomenological impact onto the expansion history (which
we present in detail in a follow-up paper).

On the other hand, a universe at critical density, that is,
Ωphys,0 = 1, yields wde = − 1/3, which is the EoS parameter of the
spatial curvature used in the FLRW formalism and restricted to
the fine-tuned case of a universe at critical density. This is exactly
what we expect.

To retain ΛCDM’s formalism and Equation 12, we make a
distinction of cases. We apply the constant value of wde = − 1/3
to flat and closed geometries, as is also the case in ΛCDM
(with wk = − 1/3). For open geometries, we apply Equation 30. In
summary, we have

wde = −
1
3
−Θ(Ωde,0)

2
3
Ωde,0, (31a)

Ωde,0 = 1−Ωphys,0, (31b)

where in Equation 31a Θ is the Heaviside function. The EoS
parameter wde is a function of Ωde,0 (see Equation 31b) and
therefore a constant for a given sum total of physical energy
densities. The Heaviside function separates the two regimes of
super- and subcritical model universes. The first term corresponds
to deceleration due to the critical density. The factor after the
Heaviside function applies to subcritical universes only, where wde
falls below −1/3; that is, a decreasing EoS parameter implies less
deceleration as it should. In addition, we retain Ωk,0 = 0 to express
the perceived flatness of space in our local inertial frame as co-
moving FLRW observers, just the same way as in ΛCDM. This is
essential to the linear perturbation theory applied in ΛCDM, for
example, in the calculation of theCMB temperature spectrum, as the
notion “curvature” herein refers to spatial curvature in the Einstein
equations (see, e.g., Ma and Bertschinger, 1995; Weinberg, 2008;
Coles and Lucchin, 2002; Mukhanov 2005; Dodelson, 2003; Peebles,
1993), and not to the geometry of the FLRW metric. A description
of how the spatial curvature affects the CMB temperature spectrum
can be found in many textbooks covering structure formation (see
the aforementioned references). However, there is a degeneracy for
the impact of spatial curvature on the CMB spectrum with the
cosmological constant Λ or dark energy, respectively (see, e.g., Hu
and Dodelson, 2002). We will explain this point in a follow-
up paper.

Finally, the Friedmann Equation 32a reads

H2(t) = 8πG
3c2
[ρr(t) + ρb(t) + ρCDM(t) + ρde(t)] , (32a)

ρde(a) =Ωde,0ρcrit,0 a
−3(1+wde), (32b)

where Equation 32b now describes the evolution of ρde as
a function of scale factor a for a constant wde, given by
Equation 31. The present-day critical density ρcrit,0 is defined in
Equation 8.

Figure 2 finally displays the time evolution of the scale factors
of model universes with various matter densities, color-coded by
density parameter Ωm, whose value refers to the present, within our
ΛCDM extension. The red curves indicate universes with closed
geometry; the yellow curve has exactly the critical density, that

FIGURE 2
Expansion histories of model universes with the kinematical DE
component. The color-coded curves display the expansion history of
individual model universes applying Equations 4, 31 for models with
supercritical density (dark red), the EdS model (yellow), and the empty
de Sitter universe (dark blue). The black curve indicates the expansion
history of the ΛCDM model with Ωm = 0.3 and ΩΛ = 0.7, assuming a
cosmological constant, i.e., wΛ = − 1. We see a great similarity
comparing ΛCDM to the model shown for the same matter density
and Ωde = 0.7 (thick light blue curve). This model displays the same
characteristic s-shape, indicating the transition from decelerated to
accelerated expansion because of wde = −0.8 being “close” to a
cosmological constant, given the relatively low energy density
observed in the universe.

is, the EdS universe, which separates the supercritical from the
subcritical universes, which go from light green to deep blue for the
empty universe.

The curves between the yellow and the dark blue curves depict
the evolution of subcriticalmodels withmatter densities between the
EdS model with critical density (solid yellow curve) and the empty
model (solid dark blue curve).We can observe that the cosmological
models transition uniformly between these two limiting model
cases, corresponding to decreasing mass density and “approaching”
the exponential curve of the empty model, exactly as expected for
kinematically determined universes in GR. In fact, a universe filled
with a cosmological constant to critical density displays the same
evolution as the expectations for an empty universe, in the former by
negative pressure balancing gravity11 and in the latter by vanishing
gravity in an empty universe.

The black solid curve indicates the evolution of the ΛCDM
model with Ωm = 0.3 and the cosmological constant ΩΛ = 0.7.
Comparing it to the solution obtained by our ΛCDM extension
with Ωde = 0.7 and wde = − 0.8 for a model universe with an
identical amount of matter Ωm = 0.3 (thick solid light blue curve),
we recognize the similarity between both models. Both display the
typical s-shape in the evolution of the scale factor, indicating the
transition from decelerated to accelerated expansion, known from
ΛCDM. However, there is a difference in the age between the two

11 Of course, this scenario also applies to the inflationary phase of the

universe, with p ≈ −ρ of the inflaton field dominating the universe,

resulting in an exponential growth of the scale factor.
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worldmodels.We discuss this finding and other features, along with
the results of further calculations in detail in a follow-up paper.
Moreover, the evolution of supercriticalmodel universeswithmatter
densities above the critical density also matches the expectation.
They display no deviations from conventional computations, with
respect to the evolution of their scale factors.

Our approach shows a significant difference compared to the
cosmological constant Λ, which is considered a physical content of
the universe. However, unlike the cosmological constant Λ, ρde here
does not contribute to the energy budget of the universe; instead, it
refers to a kinematic effect, described by an effective DE component
emerging from the geometry of the FLRW metric. As such, it is
considered an operational contribution to the energy–momentum
tensor and is not regarded as a physical contribution to the universe,
as depicted in Equation 19, just in the same way as ρk in ΛCDM
obviously. Although it seems to be only a minor modification, it
brings a significant difference compared to the ΛCDM model as
the universe, in this approach, is considered an open universe with
subcritical energy density and the sum total of the energy densities
of the physical contributions (radiation and matter) to the energy
budget of the universe is below critical density. Finally,Ωk,0 = 0 refers
to the perceived flatness of space in the local inertial system of
the co-moving FLRW observer, in contrast to ΛCDM, where it is
interpreted as the global flatness of space.

5 Summary and conclusion

We first presented the historical context of the foundation
of modern cosmology: the Einstein equations and the FLRW
metric. The geometric interpretation of gravity describes it as
the dynamical curvature of space by gravitating masses (more
precisely, gravitating energy densities12). Based on Milne’s idea
of a kinematically determined universe, Robertson and Walker
derived the FLRW metric. Applying this metric to the Einstein
equations yields the Friedmann equation, which describes the
evolution of the expansion history of a kinematically determined
universe in the reference frame of observers co-moving with the
expansion: they move on geodesics; i.e., they are free-falling. The
expansion of the universe started with a very high expansion rate,
which is continuously decelerated due to the action of gravity:
the kinematic determination of the evolution of the universe. We
presented three examples of model universes, which suggested that
there might be some “incompleteness” in ΛCDM’s flat universe
interpretation. Our proposal to solve this incompleteness includes
the following novelties:

a. We take the concept of a kinematically determined universe,
the equivalence principle, and the concept of the co-moving
FLRW observer at face value and find that the FLRW metric
and the curvature of space are two individual aspects of the
geometry of the universe, where we identify the geometry
given by the FLRWmetric with a kinematic DE component.

12 The cosmological constant, for example, is not a gravitating type of

energy as its negative pressure counteracts the effect of gravity.

b. In the FLRW formalism, the density parameters of subcritical
and supercritical universes are also normalized to critical
density by considering the suitable amount of spatial curvature.
In contrast to this, we consider the consequence of the
equivalence principle that irrespective of the geometry (open,
closed, or flat) of a universe, co-moving FLRW observers in
their reference frame always perceive flat space. Thus, co-
moving (i.e., free-falling) observers in subcritical universes,
supercritical universes, or universes at critical density likewise
perceive spatial flatness.

c. The FLRW formalism and therefore also ΛCDM consider the
energy densities in the early universe as the initial conditions
determining the expansion history of the universe. In contrast,
we consider these initial energy densities in relation to the
post-big bang expansion rate as the initial conditions as a
consequence of the kinematic determination of the universe.
The relationship between these two quantities determines the
geometry of the universe, as described by the curvature of the
FLRWmetric.

Owing to thedifferent evolutionof ρde in our approach versusΛ in
ΛCDM, there is adifference in theageof themodels,namely, 13.04Gyr
versus 13.8 Gyr, respectively. We checked to see that the younger age
of our model is not in conflict with age estimates of the oldest known
stars. It is alsonot in conflictwith thevery early galaxies found through
the James Webb Space Telescope since the redshift determinations of
these galaxies require a cosmological model to convert redshift into
age. In our model, these galaxies would be correspondingly younger
than those in a ΛCDM universe. In a follow-up paper, we present an
in-depth comparison with observations.

Wefirstmotivatedourapproachpresented in this articlebyplacing
the key concepts of modern cosmology in a historical context. We
now want to complete this view of the historical context. Although
Robertson and Walker showed that observers co-moving with the
expansionof theuniversemoveongeodesics, theyneither emphasized
that they are in a locally flat space nor discussed the consequences.
UnlikeFriedmann,however, theydescribethecurvatureofanauxiliary
Riemannian space, not the physical space of the universe. In the
closing statement of his works (Friedmann, 1922; Friedmann, 1924),
Friedmann concluded that it is not possible to determine, based on
the Einstein equations alone, whether the universe is finite (i.e., has
supercritical density) or infinite (i.e., has critical or subcritical density)
andthat supplementaryassumptionsarerequired.Lemaîtreconcluded
that the universe originated from an event nowadays known as the
big bang and has been expanding ever since; this is precisely this
supplementary assumption Friedmann referred to. Considering the
concept of a kinematically determined universe, we presented the idea
that not only the initial density but also its relationship with the initial
expansion rate determines the expansion history of the universe.This
led to a very natural explanation for the phenomenology of a late-time
accelerated expansion as a kinematic effect, which we incorporated
into the FLRW formalism as a kinematical DE component.
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