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This study aims at developing ring current proton flux models using four 
neural network architectures: a multilayer perceptron (MLP), a convolutional 
neural network (CNN), a long short-term memory (LSTM) network, and a 
Transformer network. All models take time sequences of geomagnetic indices 
as inputs. Experimental results demonstrate that the LSTM and Transformer 
models consistently outperform the MLP and CNN models by achieving lower 
mean squared errors on the test set, possibly due to their intrinsic capability 
to process temporal sequential input data. Unlike MLP and CNN models, 
which require a fixed input history length even though proton lifetime varies 
with altitude, the LSTM and Transformer models accommodate variable-length 
sequences during both training and inference. Our findings indicate that the 
LSTM and Transformer architectures are well suited for modeling ring current 
proton behavior when GPU resources are available, and the Transformer slightly 
underperforms the LSTM model due to the restriction on the number of total 
heads. For resource-constrained environments, however, the MLP model offers 
a practical alternative, with faster training and inference times, while maintaining 
competitive accuracy.
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 1 Introduction

The Earth’s magnetosphere is a highly dynamic system, and ring current ions are one of 
the most significant components of the magnetospheric environment. Accurate modeling of 
ring current dynamics is therefore crucial for space weather forecasting. Early studies with 
Explorer-45 captured the intensification and decay of ring current ions, and identified that 
the ring current lifetime is subject to charge exchange (Smith et al., 1981). AMPTE/CCE 
measurements with composition distributions clarified the relative roles of H+ and O+ 
in the ring current (Hamilton et al., 1988). Energetic neutral atom (ENA) imagers from 
the IMAGE and TWINS missions showed the influence of interplanetary magnetic field 
and geomagnetic field variation on global ring current ion dynamics (Brandt et al., 2002;
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Fok et al., 2010). Van Allen Probes measured ring current 
ion distributions with species-, energy-, and pitch-angle-
resolutions throughout storm phases (e.g., Yue et al., 2017a; 
Yue et al., 2017b; Yue et al., 2018).

Ring current dynamics directly drive magnetic field variations, 
which can be measured on the ground. The intensity of the globally 
symmetrical equatorial electrojet is commonly quantified by the 
disturbance storm time (Dst) index (hourly cadence) or the Sym-H 
index (minute cadence), which are the most commonly used indices 
that define geomagnetic storms (e.g., Mayaud, 1980; Iyemori, 1990).

Over the past decade, driven by the development of machine 
learning algorithms and growing satellite data, machine learning 
techniques have been increasingly applied to space weather 
modeling. Three categories of geospace weather models have 
emerged (e.g., Camporeale, 2019). 1) Nowcast models, which rely 
on the geomagnetic indices, including the Sym-H and auroral 
electrojet (AE) indices, as the input, and predict the current 
state of space environment, providing an instantaneous “snapshot” 
of global geospace conditions (e.g., Bortnik et al., 2016; 2018; 
Chu et al., 2017; Zhelavskaya et al., 2017; Shprits et al., 2019; 
Landis et al., 2022). 2) Short-term forecasts, which rely on the 
solar wind measurements at the L1 point, offering a brief lead 
time (∼1 h) that can be critical for satellite operator alerts (e.g., 
Lundstedt et al., 2002; Bernoux et al., 2021; Sierra-Porta et al., 
2024). 3) 1–3 days forecast models, leveraging remote solar imagery 
or coronal data (such as the Parker Solar Probe measurements), 
which would be most practical for mission planning and decision 
making (e.g., Huang et al., 2018; Hu et al., 2022; Wang et al., 2025;
Lin et al., 2024).

Li et al. (2023) presented a nowcast model for global and 
time-varying distribution ring current proton fluxes at different 
energy levels based on Van Allen Probe observations and artificial 
neural networks, demonstrating a high correlation and a small error 
between model predictions and satellite measurements. The present 
study continues to advance nowcast modeling of ring current proton 
fluxes, which is practical and important for situational awareness. 
The input includes the spatial location and time sequence of 
geomagnetic indices, represented as an N × M shaped matrix, i.e., 
N time steps and M features, and in the current study, M = 4, 
since we will use four geomagnetic indices: Sym-H, Asy-H, Asy-
D and SME. The output is a single value, i.e., proton flux at a 
specific location and energy. We investigate how the choice of neural 
network architecture affects the model’s ability to accurately predict 
the ring current dynamics. Four networks are experimented with: 
a multilayer perceptron (MLP), a convolutional neural network 
(CNN), a long short-term memory (LSTM) network, and an 
encoder-only Transformer.

The MLP neural network is often referred to as feedforward 
neural network (FNN), or fully connected network (FCN), and 
sometimes simply termed artificial neural network (ANN) although 
ANN is also used more broadly to denote any neural network. 
It has been widely used and has gained tremendous success 
in modeling space plasma density (e.g., Bortnik et al., 2016; 
Chu et al., 2017; Zhelavskaya et al., 2017), energetic electron 
distributions (e.g., Chu et al., 2021; Ma et al., 2021), ion distributions 
(e.g., Li et al., 2023; Wang et al., 2024) and waves (Chu et al., 
2024; Huang et al., 2024; Bortnik et al., 2018). The MLP neural 
network flattens the N × M-shaped input into a one-dimensional 

vector. While MLPs have demonstrated success in predicting space 
environment, their reliance on fixed-length input windows limits 
their ability to capture multiscale temporal dependencies—critical 
for ion flux variations that evolve from hours to tens of days across L-
shells.

The CNN exploits structured input by using a convolutional 
filter that enables pattern recognition (LeCun et al., 1998) and 
has been a standard in image classification and segmentation 
(e.g., Krizhevsky et al., 2012). Geomagnetic storm and substorm 
events can be identified by short-term patterns in the geomagnetic 
indices. In this study, the CNN treats the N × M-shaped input as 
a 2D image. By applying convolution operations across the time 
dimension, the CNN can effectively identify the storm phase and 
the occurrence time, similar to its ability in pattern recognition 
and semantic segmentation (Long et al., 2015). However, CNNs are 
inherently limited in capturing very long-term dependencies unless 
the convolutional kernels or network depth are increased to enlarge 
the receptive field. Thus, while CNNs excel at recognizing immediate 
precursors to ring current changes, they might miss more subtle 
effects of prolonged conditions.

Recurrent neural networks (RNN) offer another approach, 
explicitly crafted to handle temporal sequential data. The LSTM 
network, a type of RNN, processes the input as an ordered time 
series: at each time step, it takes the feature vector and updates an 
internal hidden state that carries information forward (Hochreiter 
and Schmidhuber, 1997). Through its input, output, and forget 
gates, the LSTM can learn to retain pertinent information over 
long sequences or discard it when it becomes irrelevant. This 
capability is particularly relevant for the ring current problem. 
For instance, the partial ring current can build up over several 
hours during the main phase of a storm and then decay gradually 
over a day. An LSTM can remember the contributions from 
many hours ago that still affect the current flux level, and is 
naturally suited to capture both fast and slow dynamics within one 
framework.

The LSTM model processes input sequences iteratively, which 
makes both training and inference relatively slow. In contrast, the 
Transformer architecture (Vaswani et al., 2017) replaces recurrence 
with self-attention, allowing the entire sequence to be processed 
in parallel and thereby greatly accelerating computation on GPUs. 
Transformers have since been widely adopted in natural language 
processing (Brown et al., 2020), computer vision (Dosovitskiy et al., 
2021), and scientific research (Zhao et al., 2023). In this study, 
we employ a customized encoder-only Transformer (Devlin et al., 
2018) composed of self-attention and feedforward layers, while 
omitting the embedding and softmax layers typically used in 
language models.

This study aims to systematically compare these four neural 
network architectures for modeling ring current proton flux. We 
evaluate each model’s performance in terms of prediction accuracy 
and its computational efficiency (both training time and run-time 
considerations). We seek to elucidate how the structure of an ML 
model influences its ability to capture the physics of the ring 
current. By benchmarking MLP, CNN, LSTM, and Transformer 
models on the ring current nowcast problem, we provide insight 
into the strengths and weaknesses of each approach, helping pave the 
way toward more advanced machine-learning-based space weather 
forecasting tools in the future. 
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2 Dataset

The input of the models includes the Sym-H, the Asy-H, and 
Asy-D indices (Wanliss and Showalter, 2006). Here, Sym and Asy 
stand for “symmetric” and “asymmetric” disturbances, respectively, 
and H and D stand for the horizontal and east-west components, 
respectively, of the magnetic field measured on the ground. The 
ring current particles can also be injected during substorms (e.g., 
Sandhu et al., 2018), which can be indicated by the auroral 
electrojet (AE) index. This study uses the SuperMag version of 
AE index, known as the SME index (Gjerloev, 2009; Newell and 
Gjerloev, 2011).

NASA’s Van Allen Probe (Mauk et al., 2013) provides the 
ring current proton fluxes. The Radiation Belt Storm Probes Ion 
Composition Experiment (RBSPICE) instruments (Mitchell et al., 
2013) measured proton fluxes over an energy range of 45–600 keV, 
and is used as the target data in the present study. We resampled 
the 1-min geomagnetic indices and 30-s proton fluxes to a common 
5-min cadence by averaging within non-overlapping windows for 
model training and inference.

We use the time sequence of Sym-H, Asy-H, Asy-D and SME 
index as the predictor, as they are expected to best predict proton 
fluxes (Li et al., 2023). The input of the model also includes satellite 
coordinates, specifically, the L, cosθ, sinθ and Lat, where θ is the 
azimuthal angle with 0° directed towards the midnight. We use 
cosθ and sinθ instead of using x, y, and z to eliminate periodic 
discontinuities and preserve complete directional information, 
which is a common practice in machine learning. The model 
output is the omnidirectional proton flux at each energy channel 
from 45 keV to 598 keV, and we use the logarithmic value (the 
log10 of flux in units of keV−1s−1cm−2) in the training as they 
span several magnitudes. We split the data set into contiguous 
2-day segments to ensure a large number of chunks (∼1,278 in 
this study), similar to the work by Ma et al. (2021). The data 
throughout 2017 is set aside to be the test set (∼15%) to enable 
an intuitive evaluation of model performance, and we partition the 
remaining 5 years (2013–2016, 2018) data into a training set (∼70%) 
and a validation set (∼15%). The validation set is used to prevent 
overfitting by continuously assessing the model’s generalization 
capability. 

3 Model architectures

We use the Adaptive Moment Estimation (Adam) optimizer 
(Kingma and Ba, 2017) to minimize the MSE between predicted 
and observed values at each time step to update the weights and 
biases. The training process stops either when the MSE of the 
validation set stops improving for 15 consecutive steps (to prevent 
overfitting) or when the training reaches 40 full epochs through the 
entire set. We use the PyTorch software library (Paszke et al., 2019), 
which has gained widespread adoption in the research community 
and is now favored over alternative libraries such as TensorFlow 
(Abadi et al., 2016; Géron, 2019). The architectures of the MLP, 
CNN, LSTM, and Transformer models are illustrated in Figure 1 and 
detailed in the following sections.

3.1 MLP model

Following the work by Li et al. (2023), we establish an MLP 
network to model ring current proton distributions. The network 
comprises two hidden layers, each with 32 neurons and followed 
by a Rectified Linear Unit (ReLU) activation function, the most 
widely used activation function (e.g., Goodfellow et al., 2016), 
and a dropout layer (Srivastava et al., 2014) with a rate of 0.2. 
This architecture and the parameters are chosen after extensive 
experiments and guided by the evaluation of model performance, 
specifically, the coefficient of determination R2 of the test set.

The lifetime of protons in the ring current region varies 
significantly depending on energy and L-shell. Our experiments 
demonstrated that a 10-day historical window of geomagnetic 
indices is broadly sufficient for predicting 55 keV proton flux. While 
slightly shorter or longer historical windows may occasionally yield 
marginally higher R2 scores, such improvements are minimal and 
statistically insignificant due to inherent variability stemming from 
stochastic processes and initial random settings for weights and 
biases. Using a 2-h cadence input, we obtain a 120 × 4 matrix 
for geomagnetic indices (120 time steps, 4 features), which is then 
flattened into a one-dimensional vector (480 parameters).

For high-energy protons, even though their lifetime is long, 
our experiments indicate that increasing the historical input length 
beyond an optimal range (which is shorter than the lifetime) does 
not consistently enhance performance. This is possibly because 
increased input dimensionality can introduce detrimental effects 
such as model overfitting. For proton fluxes at energies above 
148 keV with a lifetime of ∼10 s–∼100 s days, we extended the 
historical input window to 40 days. 

3.2 CNN model

In this study, we leverage a CNN to capture spatio-temporal 
features in geomagnetic indices, treating the N × M as a two-
dimensional image. This arrangement allows the CNN to effectively 
identify characteristic patterns associated with geomagnetic storms 
and substorm events, as well as how long ago they occurred relative 
to the data point being predicted. This study employs a 2D-CNN, 
which captures joint representation across geomagnetic indices. 
In contrast, using separate 1D-CNN for geomagnetic indices and 
concatenating their output may miss interactions between indices.

The CNN architecture comprises two convolutional blocks, each 
followed by max-pooling operations. The first convolutional layer 
contains 64 kernels, each with dimensions 4 × 4, to extract event 
patterns from the geomagnetic indices. A max-pooling operation 
reduces the spatial dimension of the output feature maps. A second 
convolutional layer, also consisting of 64 4 × 4 kernels, further 
processes these intermediate feature representations, again followed 
by max-pooling. The resultant feature maps are flattened and fed into 
a dense layer of 64 neurons, which are then concatenated with spatial 
coordinate inputs. Subsequently, two fully connected layers with 
ReLU activation functions produce the network’s output, modeling 
the proton flux predictions. We adopted these hyperparameters 
based on optimization from experiments over a wide range. 
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FIGURE 1
Architectures of MLP, CNN, LSTM and Transformer models for modeling 55 keV ring current proton fluxes, which uses a 10-day history length for 
geomagnetic indices, and the time sequence length is 120 (2-h cadence). Modeling of >148 keV proton flux uses 40-day history lengths. The term 
dense layer is also referred to as the fully-connected layer.

3.3 LSTM model

The LSTM network employed in this study consists of 32 
recurrent cells designed to process sequential geomagnetic index 
data recursively. At each time step, these cells generate an encoded 
representation (a 32-dimensional output vector) that captures 
essential characteristics of recent geomagnetic activity, such as the 
magnitude of preceding storm or substorm events and the elapsed 
time since their occurrence. This temporal encoding is concatenated 
with four spatial coordinate neurons, resulting in a combined 
representation of the spatial-temporal context. Subsequently, two 

fully connected dense layers with ReLU activation functions process 
this vector to generate predictions of proton flux.

An important advantage of the LSTM model is its flexibility 
in handling variable-length input sequences without requiring 
architectural modifications. To capitalize on this feature, we 
tailored the training strategy according to the proton energy 
range being modeled. For lower-energy protons (≤148 keV), whose 
characteristic decay timescales are typically within 10 days, we 
trained the model using a 10-day historical lookback window 
of geomagnetic indices. For higher-energy protons (>148 keV), 
which exhibit substantially longer decay timescales, we utilized 
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a combined training approach, using 40-day, 20-day and 10-day 
historical windows within each training epoch to update the weights. 
This methodology ensures robust model performance across varying 
input sequence lengths, enhancing the consistency and reliability of 
proton flux predictions. 

3.4 Transformer model

This study employs an encoder-only Transformer, 
corresponding to the encoder part of the original encoder-decoder 
architecture, to process the sequence of geomagnetic indices. The 
input layer consists of a vector of geomagnetic indices combined 
with positional embeddings. Each encoder block follows the 
design adopted in GPT-3 (Brown et al., 2020), comprising layer 
normalization (Xiong et al., 2020), a multi-head attention layer 
with residual connections, a second layer normalization, and a 
feedforward network with residual connections. We construct the 
encoder by stacking four such blocks.

At each epoch, the geomagnetic indices are inherently 
represented as vectors, eliminating the need for the token-to-
vector embedding step commonly used in NLP. During training, 
we considered sequences ranging from a single time step (current 
geomagnetic indices only) to the full sequence length (120 for 
<148 keV and 480 for ≥148 keV). To enable parallelization, we 
applied a triangular mask. Unlike language models that employ 
a left-triangular mask to autoregressively predict tokens from the 
beginning of the sequence, our regression model predicts values 
from any historical window ending at the current step. Therefore, we 
adopt a right-triangular mask. Finally, because the task is regression 
rather than classification, we omit the softmax layer typically used 
in NLP models. 

4 Model performance

All models can predict the full proton flux distribution as a 
function of spatial location and datetime. The MSE between out of 
sample test-set data and model prediction is an essential metric for 
evaluating model performance and gives an estimate of the model’s 
generalizability. Additionally, we also employ the coefficients of 
determination R2 to measure how well the regression predictions 
approximate the real data points. The R2 is defined as

R2 = 1−
∑

i
(zi − yi)

2

∑
i
(zi − z)2

Where zi is the test data, z is the mean value of zi, and yi is the 
model prediction.

We systematically evaluated model performance for proton 
fluxes at three representative energies. 1) 55 keV, which has a short 
decay timescale (a few days) across all L-shells and exhibiting 
strong correlations with geomagnetic indices; 2) 148 keV, having 
intermediate decay timescales (∼10 days) and responding primarily 
to moderate and large geomagnetic storms; 3) 269 keV, with 
significantly longer timescales (>100 days at L = 3.5; Wang and Li, 
2023), and predominantly responding only to major geomagnetic 
storms. We employed all four neural network architectures to model 

proton fluxes at these representative energies. Figure 2 presents a 
comparative analysis of each model’s performance, quantified by 
both MSE and R2 correlation between predictions and observational 
data at each energy. Note that the study by Li et al. (2023) uses 
averaged fluxes binned to each 0.1 L-shell as the training set, while 
this study uses 5-min average proton fluxes, allowing for more data 
samples. Hence, the resultant MLP model performances are notably 
different.

Across all examined proton energies, the LSTM and 
Transformer network consistently demonstrates superior 
performance compared to the MLP and CNN models, as shown by 
the lower MSE values and correspondingly higher R2 correlations. 
For all energies, the MSE resulting from the LSTM and Transformer 
models is smaller than 0.06, which translates to a factor of 10√0.06

= 1.76, well within the uncertainty range of the measurements. This 
superior performance of LSTM and Transformer likely stems from 
their intrinsic capability to effectively process time sequence input 
data. Moreover, proton flux buildup and decay processes exhibit 
timescales that vary significantly with L-shell. Unlike the MLP and 
CNN models, which require a predetermined, fixed-length input 
sequence, the LSTM and Transformer architectures can flexibly 
accommodate arbitrary input sequence lengths, both in the training 
and use phases. This flexibility simplifies model implementation and 
reduces the redundant work of tuning the input history length for 
different modeling scenarios.

We note that several sources of randomness may affect neural 
network training, including the splitting of datasets into training and 
validation subsets, as well as the random initialization of network 
weights and biases. Consequently, variations in random seeds may 
lead to minor differences in model performance metrics, including 
the test-set MSE and R2 scores. Despite this inherent stochasticity, 
the LSTM and Transformer networks consistently outperform both 
the MLP and CNN models.

Figures 3a,b illustrate the SME and Sym-H indices 
throughout the year 2017. Figure 3c shows the observed 55 keV 
proton flux, and Figures 3d–g show predictions by the MLP, CNN, 
LSTM, and Transformer models, respectively. All four models give 
reasonably good performance at this energy, due to their short 
lifetime, plus a strong correlation between low-energy proton fluxes 
and geomagnetic indices, even during minor geomagnetic storms.

Figure 4 shows the observations and model predictions for 
148 keV and 269 keV proton fluxes. At the energy of 148 keV, 
predictions from the MLP model appear notably more erratic, 
whereas the CNN, LSTM, and Transformer models yield more 
consistent and stable results. Although the Transformer model 
achieves the lowest MSE, it underperforms the LSTM in predicting 
ion dynamics during some small storms. For instance, the observed 
proton flux shows a depletion during the January 15 storm and 
an enhancement during the January 31 storm, yet the Transformer 
model does not show significant changes to these two small storms.

The lifetime of high-energy protons at the center of the ring 
current can extend to several months. We employed a 40-day 
historical window of geomagnetic indices for modeling proton fluxes 
at energies of 148 keV and above. Figure 4h shows the observed 
269 keV proton flux, and Figures 4i–l present predictions from 
each model. All models perform well at L shells above L = 4.5, 
where protons respond to all storms, including minor ones. At low 
altitudes, the MLP model fails to reproduce the characteristic decay 
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FIGURE 2
Comparison between test-set proton fluxes and model predictions from the MLP, CNN, LSTM, and Transformer models. Results are presented for three 
representative proton energies: 55 keV (a–d), 148 keV (e–h), and 269 keV (i–l). Each panel includes the calculated MSE and the coefficient of 
determination R2, quantifying model performance.

pattern clearly seen in the observational data (Figure 4i), and the 
CNN model is unable to capture the decay accurately when major 
storm events occur beyond its 40-day input window (Figure 4j). In 
contrast, the LSTM model reliably reproduces the prolonged decay 
behavior, successfully retaining accurate predictions even for events 
that occurred more than 40 days prior (Figure 4k). The Transformer 
model predictions (Figure 4l) slightly underestimates storm time 
fluxes and overestimates quiet time fluxes. This is possibly because 
the Transformer has a restriction: the total head is equivalent to 
the number of feature parameters, which is 4 in our case (since 
we use 4 geomagnetic indices). In contrast, the LSTM model uses 
32 cells to remember the current state, which can well record the 
occurrence of the last large storm and the last minor storm and
their intensities.

Predictions from all four models underestimate the acceleration 
of 148 keV and 269 keV ions following the September 7 geomagnetic 
storm. Furthermore, the prediction of high-energy proton flux 
from all four models is not as good as the predictions of low-
energy protons. This probably stems from the fact that high-energy 
protons mainly respond to large storms at low L-shells, but we 

have insufficient training data covering large storm events, leading 
to reduced model accuracy in such scenarios. To mitigate the 
imbalance between abundant quiet-time data and scarce storm-time 
events, and thereby enhance prediction during major storms, one 
effective strategy is to apply a customized weighting scheme in the 
loss function (e.g., Chu et al., 2025).

It is informative to investigate the model’s performance as a 
function of L shell. Figure 5d illustrates the sample counts of the test 
set binned to each 0.1 L shell. Due to their elliptical orbit, Van Allen 
Probes measured more samples around apogee (5.8 Re in geocentric 
distance) than at perigee. The orbit could be further than L = 5.8 
because the spacecraft were sometimes at high magnetic latitudes 
up to ∼20°. Figures 5a–c illustrate the LSTM model loss for the test 
set versus L shell at the three selected energies. Impressively, at all 
these energies, the lowest MSE values occur at L shells where proton 
fluxes peak and make the most energy contributions to the Dst/Sym-
H dynamics (L = 6.3 for 55 keV, L = 4.9 for 148 keV and L = 4.3 for 
269 keV), and the lowest MSE values are all within the 0.02–0.025 
range. This highlights the strength of machine-learned models–they 
can accurately capture the most dynamics and significant variations.
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FIGURE 3
(a) The SME and (b) SymH index over the entire year of 2017 (c–g) The measured 55 keV proton flux of the test set and that predicted by the MLP, CNN, 
LSTM, and Transformer models, respectively.

5 Discussion

Across all energy levels, the MSE achieved by the models 
corresponds to prediction errors typically within a factor of two, 
which is within the uncertainties inherent in the observational 
measurements. The data from 2013 to 2018 covers half a solar 
cycle from maximum to minimum. Moreover, the SymH index is 
proportional to the total energy of the ring current (Dessler and 
Parker, 1959; Sckopke, 1966), presumably, our model should be 
applied to the whole solar cycle.

Pires De Lima et al. (2020) experimented with a series of neural 
networks in making 1-day and 2-day predictions of radiation 
belt electrons using observations at low Earth orbit, plus the 
upstreaming solar wind speed as input. Their study shows that the 
linear regression, MLP, CNN, and LSTM models resulted in similar 
accuracy, while the linear regression model slightly outperformed 
other models, probably due to a high linear correlation between 
precipitation and trapped MeV electrons. Sinha et al. (2021) further 
showed that nonlinear models outperform linear regression for 
>2 MeV electrons at L < 4.

In this study, the four models show very close performance 
for low energy ion fluxes which has a strong correlation with 
the input, and short-time dependencies. For high-energies, the 

LSTM and Transformer neural network consistently outperforms 
the MLP and CNN neural networks, which likely stems from their 
intrinsic capability to effectively process time sequence input data, 
especially long sequences (up to 480 in our study). Moreover, 
proton flux buildup and decay processes exhibit timescales that 
vary significantly with L-shell. Unlike the MLP and CNN models, 
which require a predetermined, fixed-length input sequence, the 
LSTM architecture can flexibly accommodate arbitrary input 
sequence lengths, both in the training and inference phases. 
This flexibility simplifies model implementation and reduces the 
redundant work of tuning the input history length for different 
modeling scenarios. The LSTM model in our experiments slightly 
outperforms the Transformer model, possibly because the number 
of total attention heads is restricted to 4 in this study. This 
restriction could potentially be overcome by customizing a new 
Transformer model, for instance, by concatenating two adjacent 
sequences into one (thus enabling 8 heads). This will be left for 
future studies.

All models were trained on an NVIDIA RTX 3090 GPU 
using CUDA. The MLP trained fastest (∼5 s/epoch), while CNN, 
LSTM, and Transformer models required ∼1 min/epoch. Notably, 
the Transformer handled all sequence lengths, whereas the LSTM 
was limited to selected windows (e.g., 10-, 20-, and 40-day for 
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FIGURE 4
(a) The SME and (b) SymH index over the entire year of 2017. (c–g) The measured 148 keV proton flux of the test set and that predicted by the MLP, 
CNN, LSTM, and Transformer models, respectively. (h–l) The test set and model predictions for 269 keV proton flux.

≥148 keV protons). If training on the same amount of tasks, the 
Transformer trains faster due to parallelization, whereas the LSTM 
processes inputs sequentially. On CPUs, however, CNNs, LSTMs, 
and Transformers incur >10× higher computation time. While 

model performance could be prioritized over tolerable differences in 
training time, this may not always apply for large-scale applications. 
Hence, the MLP model remains efficient for inferences on edge 
devices, especially for large-scale applications. 
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FIGURE 5
(a–c) The LSTM model loss versus L shell for the test set at 55 keV, 148 keV and 269 keV, respectively. (d) The test set sample counts binned to each 0.1 
in L-shell.

6 Conclusion

In this study, we evaluated the performance of four fundamental 
neural network architectures—the Multilayer Perceptron (MLP), 
the Convolutional Neural Network (CNN), the Long Short-Term 
Memory (LSTM) and the Transformer—for modeling ring current 
proton fluxes using time-sequenced geomagnetic indices as input. 
The models were trained and tested on proton fluxes at three 
representative energies: 55 keV, 148 keV, and 269 keV, which s 
different lifetime and are L-shell-dependent.

Our results show that all four models are capable of learning 
meaningful patterns and producing reasonable flux predictions. 
All four models yield accurate prediction for low-energy proton 
fluxes, and the performances are similar. For modeling high-energy 
proton fluxes, the LSTM and Transformer networks consistently 
achieved lower MSE than the MLP and CNN models, demonstrating 
a stronger ability to capture the long-term evolution of proton fluxes. 
Besides, both the LSTM and Transformer models offer flexibility by 
accommodating sequences of varying lengths during both training 
and inference. The Transformer model slightly underperforms the 
LSTM model, possibly due to its restriction on the number of output 
dimension which has to be equal to the input dimension. The LSTM 
can use any number of cells, making it more-suited for modeling the 
multi-timescale behavior of ring current ions.

When GPU resources are available, the LSTM and Transformer 
models are recommended due to their superior accuracy and 
adaptability. However, the MLP model remains a competitive 
alternative for CPU-limited or resource-constrained environments, 
offering a favorable balance between predictive performance and 
computational efficiency.
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