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Solar spectral irradiance from the
CODET model for studying
planetary exospheres: Earth and
Mars

Jenny M. Rodríguez-Gómez*

The Catholic University of America located at Solar Physics Laboratory, NASA Goddard Space Flight
Center, Greenbelt, MD, United States

Solar variability and solar spectral irradiance (SSI) are important for studying
planetary atmospheres, particularly the ionosphere–thermosphere–mesosphere
(ITM) system, and planetary exospheres. This paper introduces new SSI time
series from the CODET model, obtained at different geocentric distances,
namely, 3.0 Re, 6.6 Re, and 8.0 Re (the CODET Re model), at wavelengths
of 21.1 nm and 19.3 nm. Additionally, modeled time series at Mars’ distance
(CODETMars model) are provided for 28.4 nm and 21.1 nm. A comparison
with measurements from MAVEN/EUVM indicates that SSI modeled by the
CODETMars model can be obtained with uncertainties ≤43% from 19 October
2014 to 20 April 2024. Thus, SSI from the CODET Re and CODETMars models
provides an excellent opportunity to study exospheric/atmospheric dynamics
and compare them with future observations. The impact of SSI on the Earth’s
upper atmosphere was analyzed using the time series from the CODET model.
Specifically, the study focused on the effect of SSI in extreme ultraviolet (EUV)
wavelengths and its influence on the Earth’s atmosphere during geomagnetic
storms, as measured by the Dst and Ap indices. This analysis shows that strong
and moderate geomagnetic storms are associated with enhancements of SSI
in EUV. These results highlight the importance of SSI in the study of planetary
atmospheres. The CODET model provides SSI time series filling observational
gaps, and providing a reliable long-term dataset that covers the last solar cycles.
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1 Introduction

Solar spectral irradiance (SSI) plays an important role in the ionosphere–thermosphere–
mesosphere (ITM) system and in the Earth’s exosphere. Characteristics such as the
exospheric density provides clues about the past, present, and future of Earth’s
atmosphere and also offer insights into the atmospheres of other planets. In general,
the exosphere connects Earth’s atmosphere to the interplanetary space. The exosphere
can provide key insights into Earth’s atmosphere loss mechanisms resulting from
Sun–Earth interactions. Some exospheric neutrals are lost to the interplanetary space
due to the influence of solar extreme ultraviolet (EUV) photoionization (Connor et al.,
2023). Additionally, the exosphere is dynamic and directly affected by the solar
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activity and during geomagnetic storms (Cucho-Padin and
Waldrop, 2019; Qin et al., 2017).

SSI is important to determine and follow changes in the
exospheric density (Connor et al. (2023) and references therein)
and for understanding how periods with high solar activity, such as
the solar maximum, can affect the thermosphere and the heating
process present there. Although the importance of SSI in the
planetary atmospheres is well-known, there is no general agreement
on how it can impact the Earth’s exosphere during the maximum
and minimum solar activity or in the upper atmospheres of other
planets such as Mars and Venus. Solar variability is associated with
solar magnetic activity and occurs across different timescales. Long
time-scales are related to the solar cycle modulation (∼11 years).
Short-term variations, such as those from eruptive events like
flares, can occur withinminutes to hours. Additionally, intermediate
variations are observed on the timescale scales of solar rotation
(∼27 days) (Chamberlin et al., 2008; Carlesso et al., 2022 and
references therein). This variability affects and modulates SSI,
which, in turn, influences planetary atmospheres. The influence
of SSI (EUV) variability in Mars’ exosphere is mainly related
to the 27-day solar rotation (Forbes et al., 2008; Forbes et al.,
2006). Moreover, the influence of SSI in EUV is evident during
the early stages of planetary evolution; for example, Mars and
Venus lost most of their water during the early active period of
the young Sun, and after the Sun reached the main sequence,
high SSI in X-ray and EUV wavelengths was 10 to 100 times
greater than that of the present Sun, affecting temperatures in
their thermosphere–exosphere environments (Lammer et al., 2006).
Specifically, SSI from 10 nm to 420 nm reaching Mars’ atmosphere
and surface can impact the climatemodeling, physics, and chemistry
of the atmosphere and soil (Delgado-Bonal et al., 2016).

Thus, understanding solar variability and its impacts on
planetary atmospheres (including the ITM system and their
exospheres) is important, especially for future human exploration
of the Moon and Mars. In addition to the influence of EUV and X-
ray fluxes in the era of exoplanetary exploration, these fluxes play an
important role. They can help characterize exoplanet atmospheres
and understand the variability of the host star (Krishnamurthy and
Cowan, 2024; Linsky, 2014).

This paper aims to show the importance of SSI in EUV
wavelengths using the COronal DEnsity andTemperature (CODET)
model, particularly when observational data are unavailable.
Specifically, this study uses the CODET model versions 1.0
(Rodríguez-Gómez, 2017; Rodríguez Gómez et al., 2018; 2019) and
1.1 (Rodríguez Gómez, 2025) (details in Section 2). New SSI time
series from the CODET (Re) model were obtained at different
geocentric distances (dRe

), namely, 3.0 Re, 6.6 Re, and 8.0 Re, and
presented as an alternative to study Earth’s exosphere (presented
in Section 3). The SSI time series from the CODET model v 1.0
and 1.1 provide an alternative to F10.7 flux with long time series
covering mainly the last solar cycles and exploring SSI in EUV
wavelengths, such as 28.4 nm, 21.1 nm, and 19.3 nm, and its impact
on Earth’s atmosphere, such as Dst and Ap daily values, to quantify
the relationship between SSI in EUV wavelengths and geomagnetic
storms (subsection 3.1). Additionally, modeled SSI time series at
a Mars’ distance of ∼1.5 AU were obtained using an adapted
version of the CODETMars model at 28.4 nm and 21.1 nm. The
time series were compared with MAVEN/EUVM level-3 data at

28.5 nm and 21.5 nm. This comparison provided SSI predictions
at Mars’ distance, where the solar photospheric magnetic field data
are available, covering long timescales from days to solar cycles
(Section 4). Finally, in Section 5, the key findings are summarized,
alongwith a discussion of their implications and future perspectives.

2 SSI from the CODET model

The CODET model is a physics-based model
(Rodríguez Gómez, 2025; Rodríguez Gómez et al., 2018; Rodríguez-
Gómez, 2017). It uses the relationship between the solar magnetic
field, density, temperature, and emission. The CODET model
uses the solar photospheric magnetic field from SOHO/MDI
(Scherrer et al., 1995) and SDO/HMI (Scherrer et al., 2012), a
flux transport model (Schrijver, 2001), and a coronal magnetic
field extrapolation (PFSS) model (Schrijver, 2001; Schrijver and
De Rosa, 2003) to obtain the solar atmosphere’s magnetic structure.
The plasma temperature and density are derived from scaling laws
and used as inputs to the emission model, which retrieves daily SSI
in EUV wavelengths (i.e., the mean full-disc intensity) (Rodríguez-
Gómez, 2017; Rodríguez Gómez et al., 2018).This model accurately
describes the solar coronal emission on scales from days to solar
cycles. The original version of the CODET model, version 1.0
(Rodríguez-Gómez, 2017; Rodríguez Gómez et al., 2018), used
TIMED/SEE data (Hock and Eparvier, 2008; Woods et al., 2005)
to compare modeled SSI. This version model provides SSI in
19.3 nm and 21.1 nm. A recent update to the CODET model
version 1.1 (Rodríguez Gómez, 2025) uses the EUV variability
experiment (EVE) MEGS-A detector onboard SDO (Hock et al.,
2012; Woods et al., 2012; Chamberlin et al., 2007) to constrain
model outputs, providing SSI predictions that are close to the
observational data at 28.4 nm and 21.1 nm wavelengths. Both
model versions provide SSI time series from 1 July 1996 to the
present, corresponding to the period where solar photospheric
magnetic fieldmaps are available, e.g., MDI andHMI.The following
sections show the new CODET model data products, such as SSI
at different geocentric and heliocentric distances (for example, at
Mars’ distance).

3 SSI modeled at different geocentric
distances and its potential applications
for studying the Earth’s exosphere

SSI plays a key part in determining the density of the exosphere.
Exospheric H atoms resonantly scatter the near-line-center solar
Lyman-α flux at 121.6 nm. Assuming optically thin conditions
above 3.0 Re (the Earth’s radius) along a line of sight (LOS),
the scattered LOS-column intensity is proportional to the LOS
H-column density or exosphere density (Zoennchen et al., 2015).
Additionally, Earth’s exospheric neutrals are lost to interplanetary
space through solar EUV photoionization (Connor et al., 2023).
Although it is known that solar irradiance affects the exosphere,
the mechanism by which exospheric density variations are affected
under solar irradiance variations during periods of high and low
solar activity remains unknown. For this reason, SSI from the
CODET model version 1.0 was calculated at different geocentric
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FIGURE 1
SSI time series at 21.1 nm (top) and 19.3 nm (bottom) from the CODET Re model at 3.0 Re (blue), 6.6 Re (green), and 8.0 Re (gray) from 1 July 1996 to
29 March 2025.

distances (dRe
), namely, 3.0 Re, 6.6 Re, and 8.0 Re, where Re

corresponds to the Earth’s radius. These distances were chosen
because they represent heights in the Earth’s exosphere. Specifically,
these positions can help evaluate exospheric models (Cucho-
Padin et al., 2023; Zoennchen et al., 2015) and, in general, study
the Earth’s exosphere. The SSI from the CODET Re model was
integrated at those geocentric distances using the expression DRe

=
1 AU− dRe

. Assuming that the mean distance between the Earth
and the Sun (1 AU) sets a lower limit at the Earth’s thermosphere,
where EUV solar emission interacts with Earth’s atmosphere
(∼600 km or ∼ 1.0941 Re), EUV is absorbed below that height.

Figure 1 shows the SSI time series at 21.1 nm and 19.3 nm from
the CODET Re model at 3.0 Re, 6.6 Re, and 8.0 Re from 1 July 1996
to 29 March 2025. SSI shows some outliers related to issues with
the magnetic flux transport model (see details in Rodríguez Gómez
(2025)). A comparison using themean SSI from the CODET version
1.0 and CODET Re models at 21.1 nm and 19.3 nm is presented.
SSI at 1 AU shows a difference of 3.00× 10−8 [W/m2/nm] at
3.0 Re, 8.00× 10−8 [W/m2/nm] at 6.6 Re in both wavelengths,
and 9.00× 10−8 [W/m2/nm] at 8.0 Re for 21.1 nmand 10.00×
10−8 [W/m2/nm] for 19.3 nm.These results indicate that the SSI at
1 AU and the other geocentric distances exhibit comparable values.
This similarity is attributed to the inverse scaling of SSI with distance
at both wavelengths.

3.1 Impact of SSI from the CODET model
on Earth’s upper atmosphere

The Sun–Earth interaction contributes to the atmosphere’s
loss, and the Earth’s exosphere can provide important information
regarding the loss mechanism. The composition of the Earth’s

exosphere is dominated mainly by hydrogen, helium, and oxygen.
These neutrals are lost to the interplanetary space by solar EUV
photoionization and charge exchange with plasmas from the
magnetosphere and the interplanetary medium (Connor et al.,
2023). Solar variability, especially some events such as coronal
mass ejections (CMEs), flares, or solar winds, can affect the Earth’s
atmosphere; for example, geomagnetic storms can directly affect
the dynamics of the exosphere (Cucho-Padin and Waldrop, 2019;
Qin et al., 2017). Additionally, changes in solar activity are related to
some processes such as heating efficiency, radiative cooling, thermal
conduction, and dynamics in planetary exospheres (Forbes et al.,
2008). The interaction of atomic hydrogen Lyman-α with the
exosphere and plasmasphere, especially during geomagnetic storm
events, is important to understand the space weather effects on
Earth’s upper atmosphere (Bhattacharyya et al., 2025). In this
section, the relationship between enhancements in SSI at EUV
wavelengths and geomagnetic storms is explored using time series
from the CODET model version 1.0 at 1 AU because of the slight
differences between the CODETmodel version 1.0 and the CODET
Re (Figure 1). The Dst index was selected because it provides
insights into how the distribution of exospheric density changes
during geomagnetic storms. Previous studies have shown that
there are few geomagnetic storms analyzed using the Dst index
to compare the enhancements of emissions in the exosphere at
distances of 3.0− 8.0 Re (Cucho-Padin and Waldrop, 2019; Bailey
and Gruntman, 2013). To analyze the impact of SSI on Earth’s
atmosphere–exosphere along solar cycles, daily values of the
geomagnetic Dst and Ap indices were used. Daily Dst values are
available from the World Data Center for Geomagnetism, Kyoto1,

1 https://wdc.kugi.kyoto-u.ac.jp/dstae/index.html
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FIGURE 2
SSI time series at 21.1 nm (red) and 19.3 nm (orange) from the CODET model version 1.0 at 1 AU and the Lyman-α at 121.427 nm (blue). Daily Dst and
Ap indices for strong (top) and moderate (bottom) geomagnetic storms from 01 July 1996 to 29 March 2025.

and the Ap index is provided by the GeoForschungsZentrum
(GFZ) Potsdam2 from 01 July 1996 to 29 March 2025,
covering the last solar cycles.

Figure 2 shows SSI from the CODET model version 1.0
and SSI from the solar chromosphere using the Lyman-α3 time
series. The Lyman-α time series was selected for its significance
in the exosphere and its relationship with exospheric density
(Zoennchen et al., 2015). Furthermore, the exosphere is mainly
populated with hydrogen, which resonantly scatters solar Lyman-α
photons, producing the geocorona or the global glow that surrounds
the Earth (Zoennchen et al., 2024).

To analyze the impact of geomagnetic storms through Dst and
Ap indices, two different geomagnetic regimes were defined for
strongDst≤− 100 nT (Rodríguez Gómez et al., 2020) andmoderate
−100 nT > Dst ≤− 50 nT geomagnetic storms. It is important to
highlight that more negative Dst values indicate larger geomagnetic
activity and stronger geomagnetic storms. In addition, the Ap index
intervals were defined for strong Ap > 45 nT andmoderate 15 nT <
Ap ≤45 nT geomagnetic storms (Takalo, 2021). These values were
overplotted on the SSI time series during solar cycles 23 and 24
and the ascending phase of solar cycle 25. In the Earth’s case,
strong geomagnetic storms are correlated with high values of SSI in
EUV from coronal and chromospheric emissions at 1 AU (the top
panel of Figure 2) and occur preferentially during the maximum of
each solar cycle. Moderate geomagnetic storms occurred during the
increasing, maximum, and decreasing phases of the solar cycles (the

2 https://www.gfz.de/en/section/geomagnetism/data-products-

services/geomagnetic-kp-index

3 https://lasp.colorado.edu/lisird/data/lyman_alpha_model_ssi

bottom panel of Figure 2). However, their relationship is not simple,
especially during moderate geomagnetic storms. Most of the strong
geomagnetic storms, as indicated by the Dst and Ap indices, appear
to be related to SSI values higher than their mean value. This is in
agreement with the maximum of solar activity (Figure 2).

Additionally, the chromospheric emission in Lyman-α at
121.427 nm was plotted to compare it with SSI from the CODET
model. The Lyman-α dataset is derived from the linear correlation
of Lyman-α line profiles observed by SOHO/SUMER (Lemaire et al.,
2015), with the Lyman-α composite (Woods et al., 2000) producing
a daily high-resolution irradiance profile (Kretzschmar et al., 2018).
This chromospheric emission was included in this analysis due to
its importance in the study of planetary atmospheres. In addition,
it provides additional information from the solar atmosphere that
it not provided by the CODET model, which focuses on emissions
in the solar coronal wavelengths. SSI from the CODET model
version 1.0 is compared with chromospheric emissions in Lyman-α
at 121.427 nm using the mean intensity ratio Lyman−α

CODET21.1nm
∼ 6.58 and

Lyman−α
CODET19.3nm

∼ 5.54. It shows somedifferences because SSI comes from
a different height in the solar atmosphere. These values are helpful
for inter-comparison between SSI from different heights of the
solar atmosphere. Figure 3 shows scatter plots comparing modeled
SSI from the CODET model at 21.1 nm and 19.3 nm with SSI in
Lyman-α. Both wavelengths show a linear relationship with SSI in
Lyman-α with a correlation coefficient of R = 0.854. It reflects how
the modeled SSI from the CODET model and Lyman-α irradiance
provide a good description of solar variability ranging from days to
solar cycles.

It is well-known that solar irradiance affects the exosphere.
However, the duration and extent of the changes in exospheric
density due to variations in solar irradiance and during
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FIGURE 3
Scatter plots of SSI from the CODET model at 21.1 nm (left) and 19.3 nm (right) versus SSI in Lyman-α from 1 July 1996 to 29 March 2025.

geomagnetic storms throughout the solar cycles remain unclear.
Recently, Zoennchen and Cucho-Padin (2025) showed that
density distributions during weak geomagnetic disturbances
at 3.0 Re–6.0 Re are highly variable. This highlights that the
relationships involved are complex, especially during both strong
and weak geomagnetic storms.

4 SSI modeled at Mars ∼1.5AU

The SSI modeled at Mars can be obtained using an
adapted version of the CODET model version 1.0 and 1.1
at 28.4 nm and 21.1 nm, respectively (Rodríguez Gómez,
2025; Rodríguez Gómez et al., 2018; Rodríguez-Gómez, 2017;
Rodríguez Gómez, 2025). The modeled SSI was integrated at
an average distance of ∼1.5 AU between the Sun and Mars.
MAVEN/EUVM (Eparvier et al., 2015) level-3 daily average
data4 were used to compare the model outputs. Figure 4 shows
the modeled SSI at Mars’ distance from the CODETMars model
at 28.4 nm and 21.1 nm. The mean intensity ratio between the
CODETMars model and MAVEN data was obtained in order to
guide the search for empirical factors. The mean intensity ratio for
the period from 19 October 2014 to 20 April 2024 corresponds to
MAVEN 28.5nm
CODETMars 28.4

∼ 1.31 and MAVEN 21.5nm
CODETMars 21.1

∼ 3.15. These values were
used as a starting point to align SSI from the CODET model
versions 1.0 and 1.1 with the MAVEN/EUVM time series at each
wavelength to find the bestmatch. In parallel, scatter plots (Figure 5)
and the correlation coefficient (R) were analyzed. If the correlation
coefficient was R ≥ 0.80 and the mean absolute percentage error was
ϵ < 50%, the empirical factor was selected.Thus, these modeled time
series were corrected by an empirical factor of 1.8 at 28.4 nm and 4.5
at 21.1 nm (Figure 4).These values differ at eachwavelength because
of differences in themodel CODET versions 1.0 and 1.1. Eachmodel

4 https://lasp.colorado.edu/lisird/data/mvn_euv_l3_daily

used different observational data, namely, TIMED/SEE (CODET v
1.0) and EVE/SDO (CODET v 1.1), to constrain the model outputs.
As a result, the baseline for both model versions is different (more
details in Rodríguez Gómez (2025)). Additionally, these empirical
factors are related to solar phase shifting, distance scaling, the
different orbital radii, revolution speeds of the planet, and solar
rotation. As a result, there are spatiotemporal differences in the SSI
received on the planet (Xu and Qin, 2024; Thiemann et al., 2017).

The best model performance was obtained at both wavelengths
from 6 July 2016 to 15 October 2022 (during the minimum between
the solar cycles 24 and 25). In general, SSI from CODETMars shows
good agreement with the observational data fromMAVEN/EUVM,
with a mean absolute percentage error (ϵ) of 42.21% at 28.4 nm
and 43.92% at 21.1 nm. The correlation coefficient (R) analysis
shows a linear relationship between modeled irradiance and
MAVEN/EUVM data at both wavelengths (R = 0.851 at 28.4 nm
and R = 0.831 at 21.1 nm) (Figure 5), where the model showed a
good performance. These time series can help study the response of
Mars’ exosphere over long-term scales, ranging from days to years.

5 Summary and discussion

Due to the CODET model’s versatility, it is possible to
obtain SSI time series at different geocentric and heliocentric
distances, providing a remarkable opportunity to study
planetary atmospheres even when no observational data are
available. The results of this study can be summarized as
follows.

• SSI from the CODET model version 1.0 is presented as
an alternative to F10.7 and as a valuable tool for studying
planetary exospheres. It provides long time series of SSI in
EUV, especially the emission originating from the solar corona,
where the solar photospheric magnetic field is available. It is
important to highlight that the CODET model only provides
solar emission from coronal heights. Thus, it is not possible to
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FIGURE 4
SSI time series at 28.4 nm and 21.1 nm from the CODETMars model (gray dotted line) and the MAVEN/EUVM time series at 28.5 nm and 21.5 nm (red
line) from 19 October 2014 to 20 April 2024.

FIGURE 5
Solar spectral irradiance observed by MAVEN/EUVM and modeled using the CODETMarsmodel at 28.4 nm(left) and at 21.1 nm(right) wavelengths from
19 October 2014 to 20 April 2024 scatter plots.

obtain SSI from chromospheric wavelengths with the current
model versions, namely, Lyman-α andHe II 304 Å. However, it
is possible to observe howSSI fromchromospheric and coronal
heights follows the variation in the solar cycle, providing
a comprehensive description of SSI variability over long
timescales, ranging from days to solar cycles. The variability
of solar irradiance significantly affects exospheric density and
thermosphere heating during the solar cycle. Thus, the solar
irradiance time series from the CODET model provide an
important tool for understanding thermosphere–ionosphere
dynamics across multiple timescales, ranging from days to
solar cycles.

• SSI from the CODET model version 1.0 at 1 AU and the
model at different geocentric distances (CODET Re) at 3.0 Re,
6.6 Re, and 8.0 Re from 01 July 1996 to 29 March 2025 shows
that the expected behavior due to the SSI decreases with
increasing distance from the Sun following an inverse square
law. However, SSI values from the CODET Re model and
the CODET model v 1.0 at 1 AU are comparable. Thus, the
SSI time series from CODET Re can be a valuable tool to
study Earth’s exosphere dynamics in detail when exospheric
observations are available.
• The impact of solar activity is reflected in the planetary
atmospheres, for example, through geomagnetic storms and
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other effects. In the Earth’s case, strong geomagnetic storms
are correlated with high values of SSI in EUV at 1 AU,
preferentially during the maximum of each solar cycle.
Meanwhile, moderate geomagnetic storms occur along the
solar cycle, especially during the increasing, maximum, and
decreasing phases of the solar cycle. However, the relationship
between geomagnetic storms and exosphere variability is not
completely clear; Earth’s exosphere has a complex response
during geomagnetic storms. Thus, the CODET Re model at
different geocentric distances can be used to characterize
exosphere variability, such as enhancements of geocoronal
emissions during and after geomagnetic storms over long
timescales. It also captures more events from the last
solar cycles, providing insights into the exosphere’s response
and dynamics.
• The SSI time series obtained from the CODETMars
model provides a valuable opportunity to study Mars’
atmosphere–exosphere. It can be an important tool for
studying Mars’ exosphere, particularly the temperature
changes related to EUV variability (∼27 days). The current
version of the CODETMars model shows good performance
during the minimum between solar cycles 24 and 25 and
the ascending phase of solar cycle 25. However, SSI from
the CODET model can be improved in future versions by
incorporating the solar magnetic field contributions from the
far side and obtaining SSI at specific locations on Mars. The
Sun’s far-side magnetic flux can provide an accurate magnetic
field evolution and, in turn, improve SSI modeling. The Sun’s
far-side magnetic field cannot be directly observed; however,
helioseismic imaging techniques (Lindsey and Braun, 2000)
and, more recently, machine learning models (Chen et al.,
2022) can provide accurate global solar magnetic field maps,
including those of the near and far sides.
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