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This work investigates the bulk viscosity of warm, dense, neutrino-transparent,
color-superconducting quark matter, where damping of density oscillations
in the kHz frequency range arises from weak-interaction-driven direct Urca
processes involving quarks. We study the two-flavor red-green paired color-
superconducting (2SC) phase, while allowing for the presence of unpaired
strange quarks and blue color light quarks of all flavors. Our calculations are
based on the SU(3) Nambu–Jona–Lasinio model, extended to include both
vector interactions and the ‘t Hooft determinant term. The primary focus is on
how variations in the NJL Lagrangian parameters—specifically, the diquark and
vector coupling strengths—affect both the static properties of quarkmatter, such
as its equation of state and composition, and its dynamical behavior, including
bulk viscosity and associated damping timescales. We find that the bulk viscosity
and corresponding damping timescale can change by more than an order of
magnitude upon varying the vector coupling by a factor of two at high densities
and by a lesser degree at lower densities. This sensitivity primarily arises from
the susceptibility of 2SC matter, with a smaller contribution from modifications
to the weak interaction rates. In comparison, changes in the diquark coupling
have a more limited impact. The damping of density oscillations in 2SC matter
is similar quantitatively to nucleonic matter and can be a leading mechanism of
dissipation in merging hybrid stars containing color superconducting cores.

KEYWORDS

neutron stars, neutrino interactions, quark matter, gravitational waves, transport
coefficients

1 Introduction

The exploration of matter within the extreme environments of neutron star
mergers presents a fascinating way to understand the fundamental properties of
nuclear and quark matter at densities substantially exceeding the nuclear saturation
density. Although recent gravitational wave observations, such as the GW170817
event (The LIGO Scientific Collaboration et al., 2017), which was accompanied by
electromagnetic counterparts, have only captured the inspiral phase of the merger, it
is anticipated that the post-merger phase could become observable with the next-
generation of gravitational wave detectors. Nevertheless, numerical simulations of
mergers offer clues into the dynamics of the merger process and the spectrum of

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2025.1648066
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2025.1648066&domain=pdf&date_stamp=
2025-09-10
mailto:armen.sedrakian@uwr.edu.pl
mailto:armen.sedrakian@uwr.edu.pl
https://doi.org/10.3389/fspas.2025.1648066
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2025.1648066/full
https://www.frontiersin.org/articles/10.3389/fspas.2025.1648066/full
https://www.frontiersin.org/articles/10.3389/fspas.2025.1648066/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Alford et al. 10.3389/fspas.2025.1648066

gravitational waves that are emitted (Faber and Rasio, 2012; Baiotti
and Rezzolla, 2017; Baiotti, 2019; Bauswein et al., 2019; Radice
and Bernuzzi, 2023; Radice and Hawke, 2024). The gravitational
waves, emitted within the first tens to hundreds of milliseconds
after the merger, carry unique information about the state of matter
under extreme conditions. In particular, the post-merger matter is
extremely hot, produces a large number of neutrinos, and, unlike a
supernova, is highly neutron-rich.

The accuracy of the predictions of simulations of binary neutron
star (BNS) mergers depends on a number of factors, among
which we would like to address the need for including dissipation
in the typically nondissipative general-relativistic hydrodynamics.
Dissipationmay control the oscillations that source the gravitational
waves. The possible influence of various transport phenomena has
been addressed in recent years, including the electrical and thermal
conductivities (Alford et al., 2018; Harutyunyan and Sedrakian,
2016; Schmitt and Shternin, 2018; Harutyunyan et al., 2018;
Harutyunyan and Sedrakian, 2024; Harutyunyan et al., 2024), bulk
and shear viscosities (Alford et al., 2018), etc. In recent years,
much of the attention has been focused on the bulk viscosity-
driven weak β-decay processes on nucleons (Alford and Harris,
2019; Alford et al., 2020; Alford et al., 2021a; Alford et al., 2021b;
Alford et al., 2023), hyperons (Alford and Haber, 2021) and quarks
(Cruz Rojas et al., 2024; Hernández et al., 2024; Alford et al., 2024).
The microscopic computation of rates allows one to estimate the
damping timescales using local snapshots of matter conditions
provided by simulations (Alford et al., 2019; Alford et al., 2020;
Alford et al., 2021b; Alford et al., 2023).

The explicit inclusion of bulk viscosity in numerical simulations
is still an area under active development (Most et al., 2022;
Celora et al., 2022; Chabanov and Rezzolla, 2025a; Chabanov and
Rezzolla, 2025b). See also Hammond et al. (2021), Radice et al.
(2022), Camelio et al. (2023a), Camelio et al. (2023b) for related
studies that provide a more qualitative assessment of bulk viscous
effects based on simulations. Some works, such as (Most et al.,
2022; Celora et al., 2022), account for the bulk viscosity within
frameworks that evolve the system using ideal hydrodynamics,
thus neglecting the back-reaction of the bulk viscosity on the fluid
motion. Other studies incorporate bulk viscosity dynamically, but
assume it to be constant throughout the evolution (Chabanov and
Rezzolla, 2025a; Chabanov and Rezzolla, 2025b). Although many
details, such as the dependence of bulk viscosity on temperature,
density, and the composition of matter at supranuclear densities,
remain uncertain, it is generally expected that bulk viscosity can
significantly affect the gravitational wave emission during inspiral
(Ripley et al., 2023; Ghosh et al., 2025) and merger. In particular, it
may damp the oscillations of the remnant stellar core more rapidly,
potentially leading to a faster decay of the gravitational wave signal.

Within this context, the potential presence and behavior of
quark matter remains largely unexplored. Studies of cold quark
matter in hybrid and strange stars, particularly concerning the
damping of r-mode oscillations in cold stellar configurations have
spanned several decades (Madsen, 1992; Drago et al., 2005; Alford
and Schmitt, 2007; Blaschke et al., 2007; Sa’d et al., 2007a; Sa’d et al.,
2007b; Huang et al., 2010; Wang et al., 2010; Wang and Shovkovy,
2010). Notably, Alford and Schmitt (2007) examined 2SC quark
matter at finite temperatures using a model parameterized by
the 2SC gap and chemical potentials, though without enforcing

electric charge neutrality. That study focused primarily on non-
leptonic processes. Importantly, Alford and Schmitt (2007) also
derived the bulk viscosity resulting from coupled non-leptonic and
leptonic reactions—an approach similar in spirit to the one used
us recently (Alford et al., 2024) and expanded further here.

The investigation of bulk viscosity in quark matter within the
context of BNSmergers remains in its early stages (Cruz Rojas et al.,
2024; Hernández et al., 2024; Alford et al., 2024). Cruz Rojas et al.
(2024),Hernández et al. (2024) focused onbulk viscosity in unpaired
quark matter arising from non-leptonic and semi-leptonic weak
processes. Cruz Rojas et al. (2024) employed both perturbative
QCD and holographic methods to obtain improved weak- and
strong-coupling estimates of the bulk viscosity. Hernández et al.
(2024) computed the bulk viscosity using the MIT bag model
and perturbative QCD. Our previous work (Alford et al., 2024)
presented the first calculation of bulk viscosity that incorporates
the effects of color superconductivity at intermediate densities
and finite temperatures in the BNS context. In doing so, the
conditions specific to BNS mergers, such as the charge and color
neutrality, the density and temperature dependence of pairing
gaps and chemical potentials, were treated self-consistently within
the vector-interaction-enhanced NJL model. We assume that, in
the temperature range T ≤ 10 MeV and for densities relevant to
the quark cores of neutron stars, the matter remains transparent
to neutrinos. This assumption does not contradict the existing
studies of the neutrino mean free path in quark matter, although
the precise condition for trapping depends on the specific model
employed—such as the quark matter equation of state (EoS),
composition, and possible pairing patterns (see Carter and Reddy
(2000), Steiner et al. (2001), Colvero and Lugones (2014)). We
also expect that the bulk viscosity will be significantly suppressed
once neutrinos become trapped on microscopic scales and reach
equilibrium with the surrounding quark matter, consistent with
our findings in the neutrino-trapped regime of nucleonic matter
(Alford et al., 2020; Alford et al., 2021b; Alford et al., 2019).

Cruz Rojas et al. (2024), Hernández et al. (2024) found a
peak in the bulk viscosity at temperatures T ≤ 0.5 MeV, which is
due to non-leptonic processes, in agreement with earlier studies
of cold quark matter (Alford and Schmitt, 2007). Furthermore,
Hernández et al. (2024) identified a potential second peak at higher
temperatures, around T ∼ 2 MeV, which emerges for sufficiently
large strange quark masses and is driven by semi-leptonic processes.
In contrast, Alford et al. (2024) focuses on the high-temperature
regime, 1 ≤ T ≤ 10 MeV, and investigates semi-leptonic processes
after verifying that non-leptonic ones equilibrate too rapidly to
contribute significantly at these temperatures. Their analysis shows
a peak within this range, driven by semi-leptonic Urca processes.
Collectively, these studies indicate the presence of two distinct
peaks in the bulk viscosity: the first at low temperatures (T ≤ 0.5
MeV) driven by non-leptonic processes, and the second at higher
temperatures (on the order of a few MeV) associated with semi-
leptonic interactions.

This work aims to build upon our previous study (Alford et al.,
2024), preserving the essential modeling framework while focusing
on variations of the Lagrangian parameters within the vector-
interaction-enhanced NJL model (Bonanno and Sedrakian, 2012).
First, we investigate how the static composition and EoS of 2SC
quark matter with strange quarks depend on the strengths of
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the vector and diquark couplings. Second, we examine dynamical
properties, such as the bulk viscosity and corresponding damping
time scales. In this context, we also analyze how Urca process rates
are modified by variations in pairing strength and the repulsive
vector interaction.

Before proceeding, we point out that the 2SC phase studied
in this work competes with alternatives, which we briefly mention
here. One example is the quarkyonic phase which features elements
of the baryon spectrum for large momenta and quark spectrum
at small momenta (McLerran and Reddy, 2019; Han et al., 2019;
Kovensky and Schmitt, 2020; Kojo, 2024; Fujimoto et al., 2024;
Bluhm et al., 2025). The quarkyonic phase is expected to occupy
the finite-temperature, moderate density segment of the QCD
phase diagram and its competition with the 2SC phase depends
on several factors that are hard to pin down. Furthermore, it has
been realized that the chiral phase transition at low temperatures
and moderate densities may proceed via an inhomogeneous phase,
instead of the first-order homogeneous transition line (Buballa
and Carignano, 2016). This phase may have various realizations
such as plane-wave sinusoidal modulation or amplitude-modulated
“kink crystal” condensate, with periodically alternating positive and
negative values of (real-valued) solitonic profile (Karasawa et al.,
2016; Abuki, 2018; Ferrer and de la Incera, 2021; Tabatabaee, 2023;
Motta et al., 2025).

Although lattice QCD at finite density is hindered by the
sign problem, existing results at zero density (Bazavov et al.,
2012; Aoki et al., 2024) allow one to speculate that if the U(1)A
anomaly remains strong, it could suppress the emergence of
certain exotic phases through modifications of meson masses
(Kono et al., 2021). Conversely, if the anomaly becomes weaker
at finite chemical potential, this may favor the appearance or
extension of inhomogeneous chiral phases mentioned above.
In particular, the axial anomaly contributes to the effective
potential governing chiral condensate modulations. For spatially
inhomogeneous phases that rely on chiral spirals or solitonic
structures, any change in the strength of U(1)A breaking
could alter the relative stability of competing condensate
configurations (Carignano and Buballa, 2020; Gao et al.,
2022). Below we include the ’t Hooft interaction which
breaks the U(1)A symmetry and effectively resembles the axial
anomaly.

The present paper is organized as follows. In Section 2 we
discuss the equilibrium state of the 2SC phase, including the
key thermodynamic parameters that are required for computing
the bulk viscosity of quark matter. In Section 3 we discuss
the computations of the semi-leptonic Urca rates in the 2SC
phase. Section 4 presents the general formalism for computing
the bulk viscosity in quark matter based on Urca processes. Our
numerical results are presented in Section 5. We conclude and
summarize in Section 6. Our calculations use natural units where
ℏ = c = kB = 1.

2 Finite temperature 2SC phase

To describe the properties of 2SC quark matter, we adopt a
local vector-interaction-enhanced NJL Lagrangian, which is given
by (ignoring electromagnetism)

LNJL = ψ̄(iγ
μ∂μ − m̂)ψ+GS

8

∑
a=0
[(ψ̄λaψ)

2 + (ψ̄iγ5λaψ)
2]

+GV(ψ̄iγ
μψ)2 +GD∑

γ,c
[ψ̄a

αiγ5ϵ
αβγϵabc(ψC)

b
β][(ψ̄C)

r
ρiγ5ϵ

ρσγϵrscψ
s
σ]

−K{det f[ψ̄(1+ γ5)ψ] + det f[ψ̄(1− γ5)ψ]} , (1)

where the quark spinor fields ψa
α carry color a = r,g,b and flavor (α =

u,d, s) indices, the matrix of quark current masses is given by m̂ =
diag f(mu,md,ms), λa where a = 1,…,8 are the Gell-Mann matrices
in the color space, and λ0 = (2/3)1f, where 1f is the unit matrix in the
flavor space. The charge conjugate spinors are defined as ψC = Cψ̄

T

and ψ̄C = ψ
TC, whereC = iγ2γ0 is the charge conjugationmatrix.The

form of Equation 1 differs from the original NJL Lagrangian (which
contains only the kinetic energy terms and terms proportional to
GS). It has been extended by three additional terms: (i) the vector
interaction with coupling GV, which is assumed to be repulsive,
(ii) the pairing interaction with coupling GD, and (iii) the ’t Hooft
interaction with coupling K, which breaks theUA(1) symmetry.The
numerical values of the parameters of the Lagrangian aremu,d = 5.5
MeV, ms = 140.7 MeV, Λ = 602.3 MeV, GSΛ2 = 1.835, KΛ5 = 12.36
(Rehberg et al., 1996). These parameters of the SU(3) NJL model
were determined by fitting to empirical data, ensuring that themodel
accurately reproduces known properties of mesons and quarks. The
specific physical observables that are reproduced by the model are
the vacuum masses and decay constants of the pion, kaon, eta-
meson, and the mass of the eta prime meson, which is particularly
sensitive to theUA(1) anomaly modeled by the ’t Hooft determinant
term. We note that the temperature range where the matter is
neutrino transparent is limited to T ≲ 10 MeV, which implies that
the condition T/μ≪ 1 is always fulfilled for chemical potentials of
quarks of all flavors. We have checked that at the low temperatures
considered in this work, there are no cutoff artifacts, as the quantities
of interest are dominated by unpaired quarks near their thermally
smeared Fermi surfaces. In the temperature regime of interest, the
corresponding Fermi energies—approximately 300 MeV for light
quarks and 500 MeV for strange quarks—remain well below the
ultraviolet cutoff, placing our analysis in a regime where such effects
are safely suppressed. Nevertheless, should the cutoff approach the
Fermi surface, a renormalization group–based framework could be
employed to systematically account for and remove any emerging
artifacts (Gholami et al., 2025).

At intermediate densities, the 2SC phase is expected to be the
dominant pairing channel. More intricate pairing patterns, such as
crystalline and gapless color superconducting states, emerge at the
low temperatures typical of cold neutron stars. However, the 2SC
phase remains a robust feature at finite temperatures. In the 2SC
phase, pairing occurs in a color- and flavor-antisymmetric manner
between up (u) anddown (d) quarks, while strange (s) quarks remain
unpaired. The pairing gap in the quasiparticle spectrum is

Δc ∝ GD⟨(ψ̄C)
a
αiγ5ϵ

αβcϵabcψ
b
β⟩ . (2)

The overall quark pair wave function must be antisymmetric
under exchange of quarks, according to the Pauli exclusion principle.
It is seen that the color part of the wave function is antisymmetric,
specifically in the anti-triplet configuration ( ̄3) of the SU(3) color;
the flavor part is anti-symmetric as well and involves light up and
down quarks; finally, the spin part is anti-symmetric, implying spin-
0 pairing, that is, the Cooper pairs form a spin-singlet state.
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The quark-antiquark condensates are defined as

σα ∝ GS ⟨ψ̄αψα⟩ , (3)

and the constituent mass of each quark flavor is given by

Mα =mα − 4GSσα + 2Kσβσγ. (4)

The quark dispersion relations include energy shifts arising from
the quark interactionwith the vectormeanfieldsω0 andϕ0which are
defined asω0 = GV⟨(ψ

†
uψu +ψ

†
dψd)⟩ andϕ0 = 2GV⟨ψ

†
sψs⟩ and are the

mean field expectation values of the vector mesons ω and ϕ in quark
matter.Thequark (thermodynamic) chemical potentials are given by

μ f ,c =
1
3
μB + μQQ f + μ3T

c
3 + μ8T

c
8, (5)

with μB and μQ being the baryon and charge chemical potential, and

Q f = diag f (
2
3
,−1

3
,−1

3
) (6)

being the quark charge matrix in flavor space and

Tc
3 =

1
2
diagc(1,−1,0),T

c
8 =

1
2√3

diagc(1,1,−2) (7)

the diagonal generators of the SU(3) color gauge group related
to the third and eighth gluons. The values of μQ, μ3, and μ8 are
determined by the requirement of electrical and color neutrality. For
some purposes, such as calculating Fermi-Dirac factors, these can be
absorbed into “effective” quark chemical potentials

μ∗ = diag f (μu −ω0,μd −ω0,μs −ϕ0) . (8)

Starting from the Lagrangian (Equation 1) the partition function
and the thermodynamic potential Ω of the 2SC phase can be
computed in the mean-field approximation; see, for example,
Alford et al. (2008), Rüster et al. (2005), Blaschke et al. (2005),
Gómez Dumm et al. (2006), Bonanno and Sedrakian (2012). We
find the values of the chemical potentials μQ, μ3, μ8 by requiring
neutrality, i.e., setting ∂Ω/∂μi = 0. The mean fields, including the
pairing gaps, are also obtained by stationarizing Ω with respect to
their values. For the computation of the incompressibility of quark
matter, we will need the expression for the pressure which is given by

P = 1
2π2

18
∑
i=1
∫Λ0 dkk

2[|ϵi| + 2T ln(1+e−
|ϵi|
T )]+ 4Kσuσdσs −

1
4GD

3
∑
c=1
|Δc|

2

−2GS

3
∑
α=1

σ2α +
1

4GV
(2ω2

0 +ϕ
2
0) + ∑

l=e−,μ−
Pl − P0 −B∗,

(9)

where ϵi are the quasiparticle energies of quarks in quarkmatter, Pl is
lepton pressure (which is approximated as corresponding to an ideal
relativistic gas), P0 is the vacuum pressure, and B∗ is an effective bag
constant, which controls to deconfinement phase transition density.

In the following, wewill explore how theUrca rates and resultant
bulk viscosity depend on key parameters in the Lagrangian. In
doing so, we will vary the temperature in the range 1 ≤ T ≤ 10 MeV,
in which we assume the neutrinos are free-streaming. As a main
point of this work, we will vary the two additional couplings in the
Lagrangian that enhance the ordinary NJL model. Specifically, to
understand the role of pairing interaction strength, we consider two
values of diquark coupling GD/GS = 1 and 1.25. Similarly, we vary

the vector interaction in the range 0.6 ≤ GV/GS ≤ 1.2 to highlight its
role in the physics of the bulk viscosity of 2SC matter.

Figure 1 shows the density dependence of the gap for fixed
temperature T = 1 MeV and several values of GD/GS and GV/GS
in the range indicated above. The gaps predicted by the model
are much larger than the characteristic temperatures relevant for
untrapped neutrinos, i.e., we are working essentially in the limit
T≪ Δ. Therefore, the excitations are exponentially suppressed, and
the variations of the gap with temperature are insignificant. The
enhancement of the gap with increasing density may be associated
with the increase of the density of states at the Fermi surfaces
of quarks, while coupling being fixed. Further, it is seen that the
increase of the attractive pairing strength GD/GS from 1 to 1.25
increases the gap by ≥ 10%. Finally, the repulsive vector interaction
acts oppositely by reducing the pairing gap by at most a few
percent when going from GV/GS = 0.6 to GV/GS = 1.2. The energy
gap indicates how effectively the phase space of green and red
light quarks is suppressed in weak reactions, thereby limiting their
contribution to bulk viscosity. The gap variations across model
parameters seen in Figure 1 consistently maintain the effective
shutdown of these quark color-flavor channels.

Figure 2 shows the pressure of the NJL model for fixed
temperature T = 1 MeV and several values of GD/GS and GV/GS.
As expected, the pressure increases as both the diquark and vector
couplings are increased. The significance of the pressure in the
present context is that its derivative with respect to baryon density
enters the computation of compressibility of matter, which enters
the expression for damping timescale via the bulk viscosity, see
Equation 76 below. Note that we use in Equation 9 the value B∗ =
0 as we are interested only in the pressure derivative.

Figure 3 displays the composition of the 2SC phase in β-
equilibrium for varying diquark and vector couplings. It focuses
on the populations of unpaired (blue-colored) up and down
quarks, along with blue strange quarks, which are relevant for
the computation of the bulk viscosity. Note that blue strange
quarks have slightly different densities compared to their red-green
counterparts, with chemical potential differences of approximately
2% (roughly 10 MeV). The substantial strange quark population
rapidly equilibrates with the light flavor sector through non-
leptonic processes. Additionally, strange quarks are shown to
reduce the lepton fraction in matter, a phenomenon that was
identified decades ago (Duncan et al., 1983; Duncan et al.,
1984). Examining the variations in coupling constants, we observe
that increasing the attractive pairing strength GD/GS from 1
to 1.25 slightly raises the d-quark population while reducing
the u-quark population, accompanied by increased electron and
muon populations. Additionally, strengthening the repulsive vector
interaction increases the strange and u-quark populations while
reducing the d-blue quark populations. Through β-equilibrium,
electron and muon populations are suppressed as the vector
coupling increases.

Before discussing the reaction rates, we first examine the
(effective) chemical potentials and masses of quarks and leptons
shown in Figures 4, 5. For quarks, the masses are modified by
medium effects through the chiral condensate, which generally
depends on both density and temperature. This comparison
reveals to what degree the different particles are relativistic.
Nevertheless, the formalism applied in the following sections is
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FIGURE 1
2SC gap as a function of number density for temperature T = 1 MeV and varying values of vector and diquark couplings. The temperature dependence
of the gap is weak in the regime of interest, where T≪ Δ.

FIGURE 2
Pressure as a function of number density for temperature T = 1 MeV and various fixed values of vector and diquark couplings.

fully relativistic. Figure 4 shows the effective chemical potentials
defined by (Equation 8) as functions of density for fixed values
of temperatures as well as coupling constants GD/GS and GV/GS.
We show only the chemical potentials of blue quarks, which are
relevant for the computation of the bulk viscosity. The temperature
dependence of the chemical potentials is weak in the shown density
range. In addition, the lower panels show the chemical potentials of
electrons and muons, which are connected through β-equilibrium
conditions to the chemical potentials of quarks. The general trend
is that the quark chemical potentials rise with density, as one would
expect, and the lepton chemical potentials drop, as the rising fraction
of strange quarks means that fewer charged leptons are needed to
establish electrical neutrality. Rapid non-leptonic processes enforce
down-strange flavor equilibrium, ensuring μd = μs. Therefore, the
observed differences between the effective chemical potentials of
d and s quarks in Figure 4 arise from their respective couplings to
ω and ϕ mesons. Increasing the pairing interaction increases the
chemical potentials of strange and down quarks while reducing that

of up quarks. Simultaneously, the chemical potentials of electrons
and muons (which are equal) also increase. Finally, increasing
the repulsive vector interaction increases s-quark and u-quark
chemical potentials and decreases the d-quark chemical potential.
In parallel, through β-equilibrium, the electron and muon chemical
potentials decrease.

Figure 5 shows the masses of blue quarks as functions of density.
An increase in the diquark coupling leads to a rise in the mass of the
s and a decrease in the dynamically generated masses of d- and u-
quarks. Additionally, an increase in the vector coupling reduces the
s-quarkmass and raises the u- and d-quarkmasses.The temperature
dependence of the quark masses is observed to be very weak.
Comparing effective quark chemical potentials shown in Figure 4
to the respective masses of quarks, we conclude that the light
quarks are ultrarelativistic in the entire density range considered.
The strange quarks are mildly relativistic in the low-density limit
nb ≃ n0, where n0 is the saturation density, but become strongly
relativistic as the density increases.
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FIGURE 3
Composition of 2SC matter as a function of number density for T = 1 MeV and varying vector and diquark couplings, where Xi = ni/nb with ni being the
density of any given species. Top row: unpaired (blue) quark fractions. Bottom row: charged lepton (e− and μ−) fractions.

3 Urca reaction rates for ude and udse
compositions

We examine neutrino-transparent ude and udse matter, i.e.,
matter consisting of u,d or u,d, s quarks and electrons. Muons
are also included in the composition whenever they become
energetically favorable. Muonic contribution to the reaction rates is
subdominant and will be neglected below; the case of nuclear matter
has been studied in Alford et al. (2023). The fundamental (semi-
leptonic) β-equilibration processes in this system include d and
s-quark decay along with the electron capture processes of the direct
Urca type

d→ u+ e− + ̄νe, (10)

u+ e−→ d+ νe, (11)

s→ u+ e− + ̄νe, (12)

u+ e−→ s+ νe, (13)

where νe and ̄νe are the electron neutrino and antineutrino,
respectively. The processes (Equations 10–13) proceed exclusively
from left to right because in neutrino-transparent matter,
neutrinos/antineutrinos can only appear in final states.
The rates of the Urca processes (Equations 10–13) can be
written as

Γd/s→ue ̄ν = ∫
d3p
(2π)32p0

∫ d3p′

(2π)32p′0
∫ d3k
(2π)32k0

∫ d3k′
(2π)32k′0

∑|MUrca|
2

× ̄f(k) ̄f(p) f(p′)(2π)4δ(4)(k+ p+ k′ − p′),
(14)

Γue→(d/s)ν = ∫
d3p
(2π)32p0

∫ d3p′

(2π)32p′0
∫ d3k
(2π)32k0

∫ d3k′
(2π)32k′0

∑|MUrca|2

× f(k) f(p) ̄f(p′)(2π)4δ(k+ p− k′ − p′).
(15)

where f(p) = {exp (Ep − μ∗)/T+ 1}−1 etc., are the Fermi distribution

functions of fermions (quarks and leptons) with Ep = √p2 +m2

being the single-particle spectrum of particles with mass m,
and ̄f(p) = 1− f(p). The effective chemical potentials for quarks
are given by Equation 8, and for leptons we have simply μ∗l = μl.
The mapping between the particle labeling and their momenta is as
follows: (e) → k, (ν/ ̄ν) → k′, (u) → p, and (d/s) → p′.

The spin-averaged relativistic matrix element of the Urca
processes reads

∑|MUrca|2 = 128G2
F cos

2θc(k ⋅ p)(k′ ⋅ p′), (16)

where GF = 1.166 ⋅ 10
−5 GeV−2 is the Fermi coupling constant and

θc is the Cabibbo angle with cosθc = 0.974. For the matrix element
of the Urca processes including s-quark, one simply needs to replace
cosθc with sinθc. The twelve-dimensional phase-space integrals in
Equations 14, 15 can then be reduced to four-dimensional integrals.
We follow the method of Alford et al. (2021b).

Before doing so, we note that, as has previously been noted
(Alford and Schmitt, 2007; Cruz Rojas et al., 2024; Hernández et al.,
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FIGURE 4
Effective chemical potentials as functions of number density for T = 1 MeV and various fixed values of the vector and diquark couplings. The variations
of chemical potentials with temperature are insignificant in the range of interest and are not shown.

FIGURE 5
Quark masses as functions of number density for T = 1 MeV and various fixed values of vector and diquark couplings. The variations of masses with
temperature are insignificant in the range of interest and are not shown.
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2024), the non-leptonic processes
u+ d↔ u+ s (17)

equilibrate much faster than the other Urca processes. As a result, in
the regime where the semi-leptonic Urca process contributes to the
bulk viscosity significantly, the non-leptonic equilibration is already
completed and one can assume μs = μd at all times [see (Alford
and Schmitt, 2007)]. Under this condition, we have only a
single equilibrating quantity μΔ ≡ μd − μu − μe, which is the relevant
measure of howmuch the system is driven out of β-equilibrium state
by a cycle of compression and rarefaction.

Returning to Equations 14, 15, we carry out part of the
integrations, as described in Alford et al. (2021b), and obtain

Γd/s→ue ̄ν(μΔ)=−
G2T4

8π5
∫∞−∞dy∫

∞
0 dx[(μ∗d/s + yT)

2 −m2
d/s − x

2T2]

×[(μl + μ
∗
u + ̄yT)

2 −m2
e −m

2
u − x

2T2]
×∫αu+ ̄yme/T−αe

dz ̄f(z) f(z− ̄y)θx∫
∞
0 dz′ f(z′ + y)θy,

(18)

Γue→(d/s)ν(μΔ)=
G2T4

8π5
∫∞−∞dy∫

∞
0 dx[(μ∗d/s + yT)

2 −m2
d/s − x

2T2]

×[(μe + μ
∗
u + ̄yT)

2 −m2
e −m

2
u − x

2T2]
×∫αu+ ̄yme/T−αe

dz f(z) f( ̄y− z)θx∫
αd+y
0 dz′ f(z′ − y)θz,

(19)

where G = GF cosθc, me is the electron mass, αi = μ∗i /T = μi/T− ui,
with ud = uu = ω0/T, us = ϕ0/T and ue = uν = 0; ̄y = y+ μΔ/T with
μΔ = μd − μu − μe, and f(x) = (ex + 1)−1 is the Fermi distribution
function of the dimensionless variable x. The θ-functions in
Equations 18, 19 imply

θx : (zk − x)2 ≤ (z− αu − ̄y)
2 −m2

u/T2 ≤ (zk + x)2, (20)

θy : (z
′ − x)2 ≤ (z′ + αd/s + y)

2 −m2
d/s/T

2 ≤ (z′ + x)2, (21)

θz : (z′ − x)
2 ≤ (z′ − αd/s − y)

2 −m2
d/s/T

2 ≤ (z′ + x)2. (22)

The integration variables y and x are normalized-by-temperature
transferred energy and momentum, respectively; the variable z is
the normalized-by-temperature electron energy, computed from its
chemical potential, zk = √(z+ αl)2 −m2

l /T
2 is the normalized lepton

momentum, and z′ is the normalized neutrino/antineutrino energy.
Alternative forms of Equations 18, 19 can be obtained by

exploiting the relation f(x) f(y) = g(x+ y)[1− f(x) − f(y)] afterwhich
the inner two integrals can be done analytically. We find then

Γd/s→ue ̄ν(μΔ) =
G2T8

8π5
∫
∞

−∞
dy[1+ g( ̄y)]∫

∞

0
dx

[(αe + αu + ̄y)2 − x2 − (m2
e +m2

u)/T2][(αd/s + y)2 − x2 −m2
d/s/T

2] ln

|
1+ exp(−z2max − y)
1+ exp (−z2min − y)

| ln |
1+ exp (−z1min)

1+ exp (−z1min + ̄y)
1+ exp(−z1max + ̄y)
1+ exp(−z1max)

| ,

(23)

Γue→(d/s)ν(μΔ) =
G2T8

8π5
∫
∞

−∞
dyg( ̄y)∫

∞

0
dx

[(αe + αu + ̄y)2 − x2 − (m2
e +m2

u)/T2][(αd/s + y)2 − x2 −m2
d/s/T

2] ln

|
1+ exp(−z3max + y)
1+ exp(−z3min + y)

| ln |
1+ exp (−z1min)

1+ exp (−z1min + ̄y)
1+ exp(−z1max + ̄y)
1+ exp(−z1max)

| .

(24)

The energy integration limits zimax and zimin are determined
by solving Equations 20–22 and then comparing the results to the
initial energy integration bounds specified in Equations 18, 19.

As discussed above, the light-flavor quarks are ultrarelativistic
under the considered conditions, therefore, we take this limit in
Equations 20–22, afterwhich they simplify to (note that z,z′,y ∼ 1≪
x,αi).

θx :− z− αe + x ≤ −z+ αu + ̄y ≤ z+ αe + x ⇒ −2αe ≤ −αe + αu + ̄y− x ≤ 2z,
(25)

θy :− z′ + x ≤ z′ + αd + y ≤ z′ + x ⇒ 0 ≤ x− αd − y ≤ 2z′, (26)

θz :− z′ + x ≤ −z′ + αd + y ≤ z′ + x ⇒ 0 ≤ αd + y− x ≤ 2z′,
(27)

which, together with the limits of integration in
Equations 18, 19, imply

θx : θ(αe + αu + ̄y− x), z1min =
−αe + αu + ̄y− x

2
, z1max = αu + ̄y,

(28)

θy : θ(x− αd − y), z2min =
x− αd − y

2
, z2max =∞, (29)

θz : θ(αd + y− x), z3min =
αd + y− x

2
, z3max = αd + y. (30)

Further simplifications of Equations 23, 24 can be achieved in
the low temperature limit, which corresponds to αi ≫ 1. In this
case z1min→−∞, z1,2,3max→+∞, but z2,3min ∼ y ∼ 1 because x ≃ αd.
Using the limiting formula

lim
|z|→∞

L(z,y) ≡ lim
|z|→∞

ln |
1+ exp (−z)

1+ exp (−z− y)
| = yθ(−z), (31)

we can approximate the logarithms in Equations 23, 24 as

lim
|z|→∞

L1 = lim
|z|→∞
[L(z1min,− ̄y) − L(z1max,− ̄y)] ≃ − ̄yθ(−z1min) = − ̄y, (32)

lim
|z|→∞

L2 = lim
|z|→∞

ln |
1+ exp(−z2max − y)
1+ exp (−z2min − y)

| ≃ − ln |1+ exp (−z2min − y) |, (33)

lim
|z|→∞

L
3
= lim|z|→∞ ln |

1+ exp(−z3max + y)
1+ exp(−z3min + y)

| ≃ − ln |1+ exp(−z3min + y) |, (34)

after which we obtain

Γd→ue ̄ν(μΔ)=
G2T8

8π5
∫∞−∞dy  ̄y[1+ g( ̄y)]∫

αe+αu+ ̄y
αd+y

dx[(αe + αu + ̄y)2 − x2]

×[(αd + y)2 − x2] ln |1+ exp(−
x+ y− αd

2 )|

× θ(αe + αu + ̄y− αd − y),
(35)

Γue→dν(μΔ)=
G2T8

8π5
∫∞−∞dy  ̄yg( ̄y)∫

min{αd+y;αe+αu+ ̄y}
0 dx

× [(αe + αu + ̄y)2 − x2]

×[(αd + y)2 − x2] ln |1+ exp(
x+ y− αd

2 )| .

(36)

It is interesting to note that these expressions can be rewritten
in terms of the shift between the chemical potentials of u- and d-
quarks Δu = ud − uu (this shift vanishes in the case discussed here as
u and d quarks are coupled to the ω-meson due to Equation 8, but it
might be nonzero if isovector channel of interaction is included in
analogy to the ρ-meson in the case of nucleonic matter discussed in
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Alford et al. (2021b)). Indeed, using the relation
αe + αu + ̄y = αd + y+Δu, (37)

we obtain
Γd→ue ̄ν(μΔ)=

G2T8

8π5
θ(Δu)∫∞−∞dy  ̄y[1+ g( ̄y)]∫

αd+y+Δu
αd+y

dx

×[(αd + y+Δu)2 − x2]

×[(αd + y)2 − x2] ln |1+ exp(−
x+ y− αd

2 )| ,

(38)

Γue→dν(μΔ)=
G2T8

8π5
∫∞−∞dy  ̄yg( ̄y)∫

min{αd+y;αd+y+Δu}
0 dx

×[(αd + y+Δu)2 − x2]

×[(αd + y)2 − x2] ln |1+ exp(
x+ y− αd

2 )| ,

(39)

which demonstrates that for ud = uu the d-quark decay rate vanishes
in the ultrarelativistic limit according to (Equation 38). For the e-
capture rate, we find

Γue→dν(μΔ)=
G2T8

8π5
∫∞−∞dy  ̄yg( ̄y)∫

0
−αd−y

dx′

×[(αd + y+Δu)2 − (x′ + αd + y)
2]

×[−x′(2αd + 2y+ x′)] ln |1+ exp(x′/2+ y)| ,

(40)

where we made a variable change x = x′ + αd + y andmade sure that
Δu ≠ 0 in order to compute the derivative with respect to μΔ(Δu). If
we now assume that β-equilibrium is established with ̄y = y, and also
Δu = 0 we obtain from Equation 40

Γue→dν=
G2T8

8π5
∫∞−∞dy yg(y)∫

0
−αd−y

dx

×x2(2αd + 2y+ x)
2 ln |1+ exp (x/2+ y)|

≃
G2T8α2d
2π5
∫∞−∞dy yg(y)∫

0
−∞dx x

2 ln [1+ exp (x/2+ y)] ,

(41)

where we dropped the smaller than αd terms, and replaced the lower
boundary of integration by −∞ (as the logarithm is suppressed at
small values of x).

To compute the bulk viscosity, consider next small departures
from β-equilibrium μΔ ≪ T. Then, the net u-quark production rate
can be approximated as Γd→ue ̄ν − Γue→dν = λdμΔ, where λd is the
equilibration coefficient defined as

λd = −
∂Γue→dν
∂μΔ
|μΔ=0 = −

G2T7α2d
2π5
{∫
∞

−∞
dy g(y)[1− y(1+ g(y))]

∫
0

−∞
dx x2 ln×[1+ exp (x/2+ y)]

− ∫
∞

−∞
dy yg(y)∫

0

−∞
dxx ln [1+ exp (x/2+ y)]} .

(42)

Note that when computing λd, we also take the derivative of the
terms containing Δu.

The integrals in Equations 41, 42 can be computed numerically,
after which we obtain

Γue→dν ≃ 0.38G2p2FdT
6, λd ≃ 0.2G2p2FdT

5. (43)

We observe that, as has been noted in other treatments of Urca
processes in quark matter (Burrows, 1980; Duncan et al., 1984), the
u e−→ d rate contains an additional power of T as compared to the
low-TUrca reaction rates of nonrelativistic baryons. This is because
the u, d, and e are all ultrarelativistic, so their Fermi momenta are on
the borderline between the Urca process being allowed and being

forbidden: the u and e− momenta have to be collinear in order to
create a d. It is only the thermal blurring of the Fermi surfaces
that creates phase space for the process to occur. Consequently, the
product (k ⋅ p) in Equation 16 contributes an additional power of T
beyond the T5 scaling that emerges when the phase space includes a
range of angles even in the low temperature limit. It is worth noting
that the product (k′ ⋅ p′) does not introduce an additional power of
T because the angle between the d-quark and neutrinomomenta can
be arbitrary, since the neutrino is thermal.

Thus, the low-temperature direct Urca rates for light quarks
(when the isospin chemical shift is absent) differ qualitatively from
those of massive particles. For example, Urca reactions involving the
s quark instead of the d quarkwill have low-temperature rates similar
to the nucleonic Urca rates (Alford et al., 2023)

Γs→ue ̄ν = Γeu→sν = 0.0336G2T5μ∗s [(pFu + pFe)
2 − p2Fs]θ(pFe + pFu − pFs).

(44)

The relevant coefficient λs in the low-T limit is given by

λs =
17

120π
G2T4μ∗s [(pFu + pFe)

2 − p2Fs] . (45)

In this limit we have also the relations pFe = μe, pFu ≃ μ
∗
u =

μu −ω0, μ∗s = μs −ϕ0 = √p
2
Fs +m

2
s , therefore for the square brackets

in Equation 45 we can write (pFu + pFe)
2 − p2Fs ≃ (μu −ω0 + μe)

2 −
(μs −ϕ0)

2 +m∗2s = (2μs −ω0 −ϕ0)(ϕ0 −ω0) +m∗2s , where we used the
chemical equilibrium condition μu + μe = μs. Numerically, we find
that ω0,ϕ0 ≪m∗s ≃ μ∗s , therefore, the square brackets in Equation 45
can be approximated asm∗2s , which leads to the simple expressions

Γs→ue ̄ν = Γeu→sν = 0.0336G2μ∗s m
∗2
s T5, λs ≃ 0.03G2

F sin
2θcμ
∗
s m
∗2
s T4.
(46)

To estimate the rate of non-leptonic processes (Equation 17) we
will use below the low-temperature expression (Madsen, 1993).

λnon−lep =
64
5π3

G2
F sin

2θc cos2θcμ
∗5
d T2. (47)

4 Bulk viscosity of udse matter

In this section, we will derive the bulk viscosity that arises from
processes (Equations 10–13) in udse matter, i.e., matter consisting
of u,d, s quarks and electrons, with paired red-green light quarks;
the unpaired excitations are blue light quarks, strange quarks of all
colors, and leptons (electrons, and muons if energetically favored).
Consider small-amplitude density oscillations with a frequency ω.
Separating the oscillating parts from the static equilibrium values
of particle densities, we can write nj(t) = nj0 + δnj(t), where δnj(t) ∼
eiωt, and j = {d,u,e, s} labels the particles.

Oscillations drive the system out of chemical equilibrium,
leading to nonzero chemical imbalance μΔ = δμd − δμu − δμe in the
case of ude matter. To include strange quarks, note that the non-
leptonic reaction d+ u↔ s+ u proceeds much faster than the Urca
processes; therefore, the relation μd = μs always holds, and the shift
in chemical potentials is given by μΔ = δμd − δμu − δμe = δμs − δμu −
δμe, which can be written as

μΔ = Adδnd +Asδns −Auδnu −Aeδne, (48)
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where the susceptibilities Aj and are given as
Ad = Add −Aud, Au = Auu −Adu, As = Ads −Aus, Ae = Aee,

(49)

where Aij = ∂μi/∂nj, and the derivatives are computed in the beta-
equilibrium state. Note that off-diagonal elements i ≠ j do not vanish
because of strong interactions between quarks.

If the weak processes were switched off, then the number of all
particle species would be conserved separately, which implies

∂
∂t
δn0j (t) + θnj0 = 0, δn0j (t) = −

θ
iω

nj0, (50)

where θ = ∂ivi is the fluid velocity divergence. Once the weak
reactions are switched on, there is a net production of particles that
should be the neutrino production rates by quarks, given by

Γd→ue ̄ν − Γue→dν = λdμΔ, (51)

Γs→ue ̄ν − Γue→sν = λsμΔ, (52)

which define the equilibration coefficients λd and λs. Therefore, the
rate equations for each fermion species can be written in this case as

∂
∂t
δnd = −θnd0 − λdμΔ − Iud→us, (53)

∂
∂t
δns = −θns0 − λsμΔ + Iud→us, (54)

∂
∂t
δnu = −θnu0 + (λd + λs)μΔ, (55)

∂
∂t
δne = −θne0 + (λd + λs)μΔ. (56)

where Iud→us denotes the rate of the non-leptonic reaction d+ u→
s+ u, which is driven by a nearly vanishing chemical potential
difference, δμd − δμs ≪ μΔ. Despite its small magnitude, this shift
cannot be neglected because the corresponding λ-coefficient may be
very large; see Jones (2001) for a discussion of this point.

Among the resulting balance equations, only one is independent
due to the presence of three constraints: charge neutrality (both color
and electric) and baryon number conservation. These constraints
can be expressed in the form

̃nu + ̃nd + ̃ns = 2(nu + nd + ns) = 2nb, (57)

2
3
(nu + ̃nu) −

1
3
(nd + ns + ̃nd + ̃ns) = ne + nμ = nu + ̃nu − nb, (58)

where we denote with ni the densities of only blue quarks, and with
̃ni – the summed densities of red and green quarks, and nb is the

baryon density. Then we find
δnd + δns = δnb − δnu, δ ̃nd + δ ̃ns = 2δnb − δ ̃nu, (59)

δne + δnμ = δnu + δ ̃nu − δnb = δ ̃nu − δnd − δns, (60)

μΔ = (Ad +Ae)δnb −A1δnu −Ae(δ ̃nu − δnμ) + (As −Ad)δns, (61)

where A1 = Au +Ad +Ae.
Substituting Equation 61 into Equation 55, assuming δnj ∼ eiωt

and using Equation 50 for nb, ̃nu, and nμ (the paired quarks and
muons do not participate in reactions), we obtain

iωδnu = −θnu0 + λ(Ad +Ae)δnb − λA1δnu − λAe(δ ̃nu − δnμ) + λ(As −Ad)δns,
(62)

where λ = λd + λs is the summed rate of the u-quark production
by Equations 10–13. To eliminate δns from this equation, we
use the condition of chemical equilibrium with respect to non-
leptonic reaction

0=δμd − δμs = (Add −Asd)δnd + (Adu −Asu)δnu + (Ads −Ass)δns
=ABδnb +AUδnu +ASδns,

(63)

which can be solved for δns, and where we introduced
shorthand notations

AB = Add −Asd, AU = Adu −Asu −Add +Asd,

AS = Ads −Ass −Add +Asd. (64)

Substituting δns from Equation 63 back into Equation 62 and
using Equation 50 gives

δnu = −
iωnu0 + λ(B+Ae)nB0 − λAe( ̃nu0 − nμ0)

iω+ λA
θ
iω
. (65)

Subtracting from this expression δn0u = − θnu0/iω we obtain the
nonequilibrium shift.

δn′u = δnu − δn0u = −
C

iω+ λA
θλ
iω
, (66)

C ≡ B(nd0 + ns0) − (A−B−Ae)nu0 −Aene0, (67)

A ≡ A1 +
(As −Ad)AU

AS
, B ≡ Ad −

AUAB

AS
. (68)

Solving Equation 63 for δn′s (recall that the non-equilibrium
shifts of nb, nμ and the paired quarks are zero) we find

δn′s = −
AU

AS
δn′u. (69)

Then the bulk viscous pressure will be given by (using short-
hand notation cj = ∂p/∂nj)

Π =∑
j

∂p
∂nj

δn′j = [(cu − cd + ce) + (cd − cs)
AU

AS
]δn′u, (70)

where we used Equations 59, 60. Assuming isothermal
perturbations to compute the pressure derivatives, and
further using Equation 66 and the symmetry relation Aij =
Aji we find

Π = −Cδn′u =
C2 λ

iω+ λA
θ
iω
. (71)

The bulk viscosity is the real part of −Π/θ and is thus defined as

ζ = C
2

A
γ

ω2 + γ2
, (72)

which has the classic resonant form depending on two quantities:
the susceptibility prefactor C2/A, which depends only on the EoS,
and the relaxation rate γ = λA, which depends on the EoS and
the microscopic interaction rates. In the case where the non-
diagonal susceptibilities can be neglected, the quantitiesA and C are
given by

A =
AdAs

Ad +As
+Au +Ae = −

1
nb

∂μΔ
∂xu
|
nb

, (73)
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C =
AdAs

As +Ad
(nd0 + ns0) −Aunu0 −Aene0 = nb

∂μΔ
∂nb
|
xu

, (74)

where we redefined Ai = ∂μi/∂ni which are computed in chemical
equilibrium. If we neglect the contribution from s-quarks, then
ns0→ 0, As→∞, and we find the appropriate quantities for the ude
quark matter

A = Au +Ad +Ae, C = nd0Ad − nu0Au − ne0Ae. (75)

We note thatA can be interpreted as the beta-disequilibrium–u-
quark-fraction susceptibility: it quantifies how the out-of-beta-
equilibrium chemical potential responds to a change in the u-
quark fraction. Similarly, C is the beta-disequilibrium–baryon-
density susceptibility: it characterizes the response of the out-of-
beta-equilibrium chemical potential to a change in the baryon
density, while keeping the particle fractions fixed.

5 Numerical results

5.1 Equilibration coefficients and Urca rates

As expected, the non-leptonic processes described by
Equation 17 occur at significantly higher rates than the Urca
processes. This is evident in Figure 6, which shows the equilibration
coefficients for both the Urca processes (Equations 10–13) and the
non-leptonic processes (Equation 17). Notably, in the temperature
range 1 ≤ T ≤ 10 MeV the rates of the d-Urca and s-Urca processes
are comparable for the matter composition predicted by the vector-
enhanced NJL model. As a result, the bulk viscosity associated
with the nonleptonic channels is expected to peak at much lower
temperatures, well below the relevant range for BNSmergers, whose
oscillation frequencies lie in the kHz regime. This observation
supports our assumption that, in the temperature range 1 ≤ T ≤ 10
MeV, the bulk viscosity can be reliably calculated from the Urca
processes alone, under the additional condition μd = μs. The effects
of diquark and vector couplings enter the equilibration coefficients
through the composition (chemical potentials, pairing gap, etc.) of
the participating particles. It is seen that the combined effect on the
equilibration coefficients is to decrease both non-leptonic and Urca
processes with increasing vector coupling. The changes associated
with variations of the diquark coupling are insignificant.

Analytical expressions for λd and λs coefficients were derived
in the low-temperature limit, see Equations 43, 46 under the
assumptions that T≪ μi, md,ms→ 0 and ω0 −ϕ0 ≪ms. They are
accurate to within a few percent when compared to numerical
results that do not rely on these approximations and provide insight
into the scaling of these coefficients with various parameters. In
particular, it is seen that λs(T) is suppressed by a factor of sin2θc =
0.05 compared to λd(T)which has cos

2θc = 0.95; it also has a smaller
numerical prefactor from the phase space integration. Due to the
influence of interactions on the chemical potentials of light quarks
mediated by the isoscalar ω-field, the β-equilibrium for massless
particles requires that pFd = pFu + pFe. This condition implies that
the direct Urca process is only thermally allowed. In contrast, the
s-Urca channels are kinematically open, with a substantial available
energy range given by pFu + pFe − pFs ≥ 70MeV, primarily due to the
large mass of the strange quark (Duncan et al., 1983; Duncan et al.,

1984). We previously discussed the additional power of T arising
from the matrix element involving the four-product of the u-quark
and electron momenta, which are massless. In contrast, the phase-
space contributes the standard T5 scaling, which would be the
only temperature-dependent component if all particles weremassive
(implicit weak dependence of masses and other thermodynamic
parameters is understood). As a consequence, the difference in
temperature scaling leads to the intersection of the λd(T) and λs(T)
functions at a temperature in the MeV range, as seen in Figure 6.

We show in Figure 7 the temperature dependence of the total
β-relaxation rate γ due to the Urca processes (Equations 10–13)
as a function of temperature for different fixed values of density,
diquark, and vector couplings. It follows a power law scaling γ∝
T4.5 in the temperature range 1 ≤ T ≤ 10 MeV. A larger vector
coupling enhances the rate γ slightly, this enhancement being more
pronounced at higher density. There are no significant changes with
the diquark coupling in the limit T≪ Δ. Due to the Lorentzian
structure of bulk viscosity in the frequency domain, see Equation 72,
its maximum is located at the “resonance” temperature determined
by equating γ to the characteristic angular frequency ω = 2π f. For
illustration, we consider two representative frequencies. At f = 1
kHz, the intersection occurs near T ≃ 3− 4 MeV, while for f = 10
kHz, it shifts to approximately T ≃ 5− 6 MeV.

5.2 Bulk viscosity and damping timescales

Next, we turn to the main quantity of interest of this study
- the bulk viscosity of neutrino-transparent quark matter in the
2SC phase. Figure 8 shows the temperature dependence of bulk
viscosity for density oscillations at two frequencies f = 1 kHz and
f = 10 kHz and at two baryon densities nb = 4n0 and nb = 7n0. As a
key feature, the figure also shows the influence of the variation of
the vector coupling GV/GS. The diquark coupling is set to GD/GS =
1; results for GD/GS = 1.25 were also calculated but are not shown
because they are almost identical to those for GD/GS = 1. This is
understandable, since for either of these values of GD, the gap in the
spectrum of the paired quarks is much greater than the temperature,
so they are frozen out.

The curves of bulk viscosity as a function of temperature have
the Lorentzian shape expected from (72). For density oscillations
of angular frequency ω, the maximum is reached when γ(T) = ω,
so its location along the T axis is determined by the temperature
dependence of the relaxation rate γ.

As density increases, the maximum slowly moves to lower
temperatures because the relaxation rate γ rises with density (as the
increase in phase space near the Fermi surfaces leads to faster Urca
rates), so γ(T) = ω is achieved at lower temperatures. The leftward
shift in the curve is small because γ rises quickly, roughly asT4.5, so it
only takes a small reduction inT to compensate for the effect of rising
density. This temperature dependence differs from the T4 scaling
seen inHernández et al. (2024) because it is a combination of λs ∼ T

4

scaling for the u→ s e− ̄νe channel (Equation 44) and λd ∼ T5 for
the u→ d e− ̄νe Urca channel (Equation 43). The position of the
maximum is even less affected by changes in the vector couplingGV,
since it has only a small effect on the Urca rates, see Figure 6. We
also find that the effect of changing GD is quite small, therefore, we
do not show this case explicitly.
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FIGURE 6
The equilibration coefficients λ of Urca and non-leptonic processes as functions of temperature for fixed values of number density and various fixed
values of vector and diquark couplings.

FIGURE 7
The γ parameter as a function of temperature for two values of
number density and various fixed values of vector and diquark
couplings.

The overall scale of the bulk viscosity curve (e.g., the value
attained at the maximum) is controlled by the prefactor C2/A in
Equation 72. The susceptibilities C and A are affected by the density
and the couplings. As density increases, the overall scale decreases
considerably, mainly due to a decrease in the C susceptibility of
2SC matter. We also see a noticeable effect of the couplings. At
lower density nb/n0 = 4, doubling the vector coupling reduces the
bulk viscosity at all temperatures by a factor of 3. At higher density

nb/n0 = 7, doubling the vector coupling reduces the bulk viscosity
by more than an order of magnitude. Without explicitly showing
in the figure, let us point out that increasing the magnitude of the
diquark coupling GD/GS leads to a further decrease in the bulk
viscosity, which is more pronounced for a larger density nb/n0 =
7. The magnitude of the decrease is about a factor of two. The
temperature dependence of the bulk viscosity ζ(T) is seen to be self-
similar for the curves shown. From Equation 72 the rate goes as γ
well below the maximum and as 1/γ well above the maximum, so
from the scaling given in the previous paragraph one would expect
ζ∝ T4.5 and ζ∝ T−4.5 respectively. However, there is also a small
temperature dependence from the susceptibilities, so the scaling is
closer to ζ(T) ∝ T−4.2 on the descending side.

We also reiterate that, as noticed in Alford et al. (2024),
including/excluding the strange quarks increases/decreases the total
relaxation rate by a factor of 1–2, resulting in only a slight shift of the
viscosity peak toward lower/higher temperatures.

For comparison, we also show the bulk viscosity of neutrino-
transparent nucleonic matter, as calculated in Alford et al. (2023),
using the DDME2 (dotted line) and NL3 (dash-dotted line) models
at a baryon density of nb/n0 = 4. The key difference between these
two models lies in the behavior of the direct Urca process at low
temperatures: it is allowed for the NL3 model but remains blocked
for DDME2 at this density. Consequently, the bulk viscosities
predicted by the two models differ markedly at temperatures T ≤ 4
MeV, but are rather similar at T ≥ 4 MeV. In this temperature range,
the bulk viscosity of 2SC quark matter is similar to that of nucleonic
matter, and variations in the vector or diquark couplings do not
significantly affect this outcome.
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FIGURE 8
Bulk viscosity as a function of temperature for nb = 4n0 (solid lines) and nb = 7n0 (dashed lines) and various fixed values of vector and diquark couplings;
here n0 is the nuclear saturation density. For comparison, we also show the bulk viscosity of neutrino-transparent nucleonic matter, as was
computed in Alford et al. (2023) for models DDME2 (dotted line) and NL3 (dash-dotted line) for nb/n0 = 4.

At lower temperatures, the bulk viscosity of 2SC quark matter
falls between the values predicted by the two nucleonic models,
regardless of the specific values of the vector and diquark couplings.
This behavior can be attributed to the u-quark fraction being slightly
below, but very close to the threshold for the direct Urca processes
described in Equations 10, 11. Specifically, the difference in Fermi
momenta between initial-state and final-state particles, pFd − pFu −
pFe, is less than 1 MeV for densities in the range 4 ≤ nb/n0 ≤ 7. As
a result, thermal smearing at temperatures as low as T ≥ 1 MeV is
sufficient to provide the phase space required for light-quark Urca
processes to occur.

Since the bulk viscosity arises from semi-leptonic weak
interactions involving the unpaired blue quarks, one would expect
similar behavior in unpaired quark matter, specifically a peak in
the bulk viscosity at MeV-scale temperatures. This feature is indeed
observed in Alford and Schmitt (2007) (Figure 8), Sa’d et al. (2007b)
(Figure 3) and in Hernández et al. (2024) (Figure 4), although the
maximum viscosity reported in those studies is smaller due to their
assumption of a lighter strange quark.

In the aftermath of a BNS merger, the resulting remnant
undergoes rapid and large-amplitude density oscillations, driven
by strong differential rotation, internal thermal gradients, and
potentially turbulent motion. The remnant’s temperature is highly
variable over its density range, and some regions may pass
through or remain within the temperature window where the bulk
viscous damping is especially efficient. If so, the bulk viscosity can
significantly damp oscillationmodes, convertingmechanical energy
into heat (or radiated neutrinos) and altering the thermal evolution
of the remnant. The characteristic time scale of damping of local
oscillations (on the hydrodynamic scales characterized by fixed
density, temperature, entropy, etc.) is given by (Alford et al., 2018;
Alford and Harris, 2019; Alford et al., 2020)

τ = 1
9
Knb
ω2 ζ
, K = 9 ∂P

∂nb
, (76)

where K is the incompressibility and P is the pressure. Using
our results for the bulk viscosity, we have estimated the damping
timescale from Equation 76. The results are shown in Figure 9.
As τ∝ ζ−1, we see an inversion in the temperature dependence
in the damping time scale, which implies that it is shortest at
the resonant maximum of the bulk viscosity. We have verified
that the compressibility K in (Equation 76) is insensitive to the
temperature within the relevant range 1 ≤ T ≤ 10 MeV. Turning to
the dependence of the damping timescale τ on the diquark and
vector couplings, we find that its behavior is determined by that of
the bulk viscosity ζ. At lower density (nb/n0 = 4), varying the vector
coupling by a factor of two changes the maximum value of τ by
roughly a factor of 3, with the shortest damping times corresponding
to the smallest values of the vector and diquark couplings. At higher
density (nb/n0 = 7), the damping timescale becomes even more
sensitive to the vector coupling: varying the coupling by a factor
of two changes τ by more than an order of magnitude. While a
smaller diquark coupling GD/GS also leads to shorter damping
times for a fixed vector coupling, the variation it introduces is, in
comparison, not large.

Overall, we find that the damping timescales range from
a few milliseconds up to several hundred milliseconds, which
are comparable to the characteristic timescales of the short-term
evolution of the post-merger remnant. For longer-lived remnants,
which can survive for several seconds or more, bulk viscous
dissipationmay play an evenmore significant role in their dynamical
evolution.

Furthermore, a comparison with the results obtained for
nucleonic matter reveals that the damping timescales in 2SC
quark matter are remarkably similar. This suggests that, within
the framework of our NJL model, it would be challenging
to distinguish 2SC quark matter from nuclear matter based
solely on their bulk viscous dissipation properties in the
temperature range of 1–10 MeV.
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FIGURE 9
Dependence of bulk viscous damping timescales on temperature for two values of number density and various fixed values of vector and diquark
couplings. For comparison, we also show the damping timescales of neutrino-transparent nucleonic matter as was computed in Alford et al. (2023) for
models DDME2 (dotted line) and NL3 (dashed line) for nb/n0 = 4.

6 Conclusion

Expanding on our previous work (Alford et al., 2024), we
have studied the effects of variations in diquark and vector
couplings–specifically GD/GS = 1,1.25 and GV/GS = 0.6,0.8,1.0,1.2
– on the input parameters used to compute the weak interaction
rates and the bulk viscosity of the 2SC phase of finite-temperature
quark matter within the vector-enhanced NJL model. We focus on
the low temperature range 1 ≤ T ≤ 10MeV and the baryon density
range 4n0 ≤ nb ≤ 7n0, within which neutrinos are expected to be
free-streaming.

The primary effect of varying the vector coupling is a shift in
the quark chemical potentials, which affectsmaterial properties such
as bulk viscosity in two ways. Firstly, it changes the relevant static
susceptibilities in the EoS; secondly, it changes flavor-changing Urca
rates by altering the available phase space. In contrast, changing
the diquark coupling mainly affects the degree of suppression
of red-green quark contributions by changing the pairing gap.
However, because red-green quarks are indirectly coupled to the
unpaired blue-quark sector through β-equilibrium and charge
neutrality conditions, their influence on the overall thermodynamics
is nontrivial and cannot simply be neglected.

Quantitatively, we find that varying the vector coupling by
a factor of two changes the bulk viscosity and corresponding
damping timescale by a factor of 3–20 at densities from 4n0 to

7n0 This sensitivity primarily arises from the C susceptibility of
2SC matter, see Equation 74, with a smaller contribution from
modifications to the weak interaction rates. In comparison, changes
in the diquark coupling have a more limited impact. The bulk
viscosity and damping time for 2SC quark matter closely resemble
those of nucleonic matter (Alford et al., 2023), making it difficult to
distinguish these states via their bulk viscous behavior.

It is worth noting that at temperatures below the range studied
here, T ≲ 0.1 MeV, one can no longer rely on our assumption
that the nonleptonic flavor equilibration process can be treated as
instantaneous. When its finite rate is taken into account, the bulk
viscosity shows a second peak at T ∼ 0.05 MeV (Alford and Schmitt,
2007; Cruz Rojas et al., 2024; Hernández et al., 2024). This peak is
absent in nuclear matter. The peak we observe at temperatures in
the MeV range, arising from semi-leptonic processes, is also seen in
Hernández et al. (2024) (Figure 4) for their heaviest strange quark,
ms ≥ 200MeV. In our model the strange quark is even heavier, 300 ≤
ms ≤ 400 MeV so the semileptonic peak can be treated as a separate
feature. Note that the picturemay be quantitatively different in other
partly-paired phases. For example, Urca rates in the gapless 2SC
phase, as computed in Jaikumar et al. (2006), may allow the red-
green quarks to contribute to the Urca rates at levels comparable to
blue quarks. Furthermore, as in our setup, blue quarks are unpaired,
one could anticipate that semi-leptonic rates for unpaired quark
matter may be similar to those for 2SC matter studied here. By
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extrapolation, this suggests that the unpaired quark matter at T ≈ 1
to 10 MeV may also be difficult to distinguish from nuclear matter,
as was found for the 2SC phase.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

MA: Conceptualization, Investigation, Software, Writing –
original draft,Writing – review and editing. AH: Conceptualization,
Investigation, Software, Writing – original draft, Writing – review
and editing. AS: Conceptualization, Investigation, Software,Writing
– original draft,Writing – review and editing. ST:Conceptualization,
Investigation, Software, Writing – original draft, Writing – review
and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was partly
supported by the U.S. Department of Energy, Office of Science,
Office of Nuclear Physics under Award No. DE-FG02-05ER41375
(MA), the Higher Education and Science Committee (HESC) of the
Republic of Armenia through “Remote Laboratory” program, Grant
No. 24RL-1C010 (AH and AS), the Polish National Science Centre

(NCN) Grant 2023/51/B/ST9/02798 (AS and ST) and the Deutsche
Forschungsgemeinschaft (DFG) Grant No. SE 1836/6-1 (AS). ST is a
member of the IMPRS for “QuantumDynamics and Control” at the
Max Planck Institute for the Physics of Complex Systems, Dresden,
Germany, and acknowledges its partial support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that theywere an editorial boardmember
of Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abuki, H. (2018). Chiral crystallization in an external magnetic
background: chiral spiral versus real kink crystal. Phys. Rev. D. 98, 054006.
doi:10.1103/PhysRevD.98.054006

Alford, M., Harutyunyan, A., and Sedrakian, A. (2019). Bulk viscosity
of baryonic matter with trapped neutrinos. Phys. Rev. D. 100, 103021.
doi:10.1103/PhysRevD.100.103021

Alford, M., Harutyunyan, A., and Sedrakian, A. (2020). Bulk viscous
damping of density oscillations in neutron star mergers. Particles 3, 500–517.
doi:10.3390/particles3020034

Alford, M., Harutyunyan, A., and Sedrakian, A. (2021b). Bulk viscosity from urca
processes: npeμ matter in the neutrino-trapped regime. Phys. Rev. D. 104, 103027.
doi:10.1103/PhysRevD.104.103027

Alford, M., Harutyunyan, A., and Sedrakian, A. (2023). Bulk viscosity from Urca
processes: n p e μmatter in the neutrino-transparent regime. Phys. Rev. D. 108, 083019.
doi:10.1103/PhysRevD.108.083019

Alford, M., Harutyunyan, A., Sedrakian, A., and Tsiopelas, S. (2024). Bulk viscosity
of two-color superconducting quark matter in neutron star mergers. Phys. Rev. D. 110,
L061303. doi:10.1103/PhysRevD.110.L061303

Alford, M. G., Bovard, L., Hanauske, M., Rezzolla, L., and Schwenzer, K. (2018).
Viscous dissipation and heat conduction in binary neutron-starmergers.Phys. Rev. Lett.
120, 041101. doi:10.1103/PhysRevLett.120.041101

Alford, M. G., and Haber, A. (2021). Strangeness-changing rates and
hyperonic bulk viscosity in neutron star mergers. Phys. Rev. C 103, 045810.
doi:10.1103/PhysRevC.103.045810

Alford, M. G., Haber, A., Harris, S. P., and Zhang, Z. (2021a). Beta equilibrium under
neutron star merger conditions. Universe 7, 399. doi:10.3390/universe7110399

Alford, M. G., and Harris, S. P. (2019). Damping of density oscillations
in neutrino-transparent nuclear matter. Phys. Rev. C 100, 035803.
doi:10.1103/PhysRevC.100.035803

Alford, M. G., and Schmitt, A. (2007). Bulk viscosity in 2SC quark matter. J. Phys.
G34, 67–101. doi:10.1088/0954-3899/34/1/005

Alford, M. G., Schmitt, A., Rajagopal, K., and Schäfer, T. (2008). Color
superconductivity in dense quark matter. Rev. Mod. Phys. 80, 1455–1515.
doi:10.1103/RevModPhys.80.1455

Aoki, S., Aoki, Y., Fukaya, H., Hashimoto, S., Kanamori, I., Kaneko, T., et al. (2024).
Axial U(1) symmetry near the pseudocritical temperature in N f = 2 + 1 lattice QCD
with chiral fermions. PoS, 185. doi:10.22323/1.453.0185

Baiotti, L. (2019). Gravitational waves from neutron star mergers and their
relation to the nuclear equation of state. Prog. Part. Nucl. Phys. 109, 103714.
doi:10.1016/j.ppnp.2019.103714

Baiotti, L., and Rezzolla, L. (2017). Binary neutron-starmergers: a review of Einstein’s
richest laboratory. Rept. Prog. Phys. 80, 096901. doi:10.1088/1361-6633/aa67bb

Bauswein, A., Bastian, N. U. F., Blaschke, D. B., Chatziioannou, K., Clark,
J. A., Fischer, T., et al. (2019). Identifying a first-order phase transition in
neutron-star mergers through gravitational waves. Phys. Rev. Lett. 122, 061102.
doi:10.1103/PhysRevLett.122.061102

Bazavov, A., Bhattacharya, T., Buchoff, M. I., Cheng, M., Christ, N. H., Ding, H. T.,
et al. (2012). Chiral transition and U(1)A symmetry restoration from lattice QCD using
domain wall fermions. Phys. Rev. D. 86, 094503. doi:10.1103/PhysRevD.86.094503

Blaschke,D., Fredriksson, S., Grigorian,H., Öztaş, A.M., and Sandin, F. (2005). Phase
diagram of three-flavor quark matter under compact star constraints. Phys. Rev. D. 72,
065020. doi:10.1103/PhysRevD.72.065020

Frontiers in Astronomy and Space Sciences 15 frontiersin.org

https://doi.org/10.3389/fspas.2025.1648066
https://doi.org/10.1103/PhysRevD.98.054006
https://doi.org/10.1103/PhysRevD.100.103021
https://doi.org/10.3390/particles3020034
https://doi.org/10.1103/PhysRevD.104.103027
https://doi.org/10.1103/PhysRevD.108.083019
https://doi.org/10.1103/PhysRevD.110.L061303
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevC.103.045810
https://doi.org/10.3390/universe7110399
https://doi.org/10.1103/PhysRevC.100.035803
https://doi.org/10.1088/0954-3899/34/1/005
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.22323/1.453.0185
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.1103/PhysRevD.86.094503
https://doi.org/10.1103/PhysRevD.72.065020
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Alford et al. 10.3389/fspas.2025.1648066

Blaschke, D. B., Berdermann, J., Colangelo, P., Creanza, D., De Fazio, F., Fini, R. A.,
et al. (2007). Neutrino emissivity and bulk viscosity of iso-CSL quark matter in neutron
stars. Am. Inst. Phys. Conf. Ser. 964, 290–295. doi:10.1063/1.2823866

Bluhm, M., Fujimoto, Y., McLerran, L., and Nahrgang, M. (2025). Quark saturation
in the qcd phase diagram. Phys. Rev. C 111, 044914. doi:10.1103/PhysRevC.111.
044914

Bonanno, L., and Sedrakian, A. (2012). Composition and stability of hybrid stars
with hyperons and quark color-superconductivity. A&A 539, A16. doi:10.1051/0004-
6361/201117832

Buballa, M., and Carignano, S. (2016). Inhomogeneous chiral symmetry breaking in
dense neutron-star matter. Eur. Phys. J. A 52, 57. doi:10.1140/epja/i2016-16057-6

Burrows, A. (1980). Beta decay in quark stars. Phys. Rev. Lett. 44, 1640–1643.
doi:10.1103/PhysRevLett.44.1640

Camelio, G., Gavassino, L., Antonelli, M., Bernuzzi, S., and Haskell, B. (2023a).
Simulating bulk viscosity in neutron stars. I. Formalism. Phys. Rev. D. 107, 103031.
doi:10.1103/PhysRevD.107.103031

Camelio, G., Gavassino, L., Antonelli, M., Bernuzzi, S., and Haskell, B. (2023b).
Simulating bulk viscosity in neutron stars. II. Evolution in spherical symmetry. Phys.
Rev. D. 107, 103032. doi:10.1103/PhysRevD.107.103032

Carignano, S., and Buballa, M. (2020). Inhomogeneous chiral condensates in
three-flavor quark matter. Phys. Rev. D. 101, 014026. doi:10.1103/PhysRevD.101.
014026

Carter, G. W., and Reddy, S. (2000). Neutrino propagation in color superconducting
quark matter. Phys. Rev. D. 62, 103002. doi:10.1103/PhysRevD.62.103002

Celora, T., Hawke, I., Hammond, P. C., Andersson, N., and Comer, G. L. (2022).
Formulating bulk viscosity for neutron star simulations. Phys. Rev. D. 105, 103016.
doi:10.1103/PhysRevD.105.103016

Chabanov, M., and Rezzolla, L. (2025a). Impact of bulk viscosity on the postmerger
gravitational-wave signal from merging neutron stars. Phys. Rev. Lett. 134, 071402.
doi:10.1103/PhysRevLett.134.071402

Chabanov, M., and Rezzolla, L. (2025b). Numerical modeling of bulk viscosity in
neutron stars. Phys. Rev. D. 111, 044074. doi:10.1103/PhysRevD.111.044074

Colvero, G. C., and Lugones, G. (2014). Neutrino diffusive transport in hot
quark matter: a detailed analysis. Phys. Rev. C 89, 055803. doi:10.1103/PhysRevC.89.
055803

Cruz Rojas, J., Gorda, T., Hoyos, C., Jokela, N., Järvinen,M., Kurkela, A., et al. (2024).
Estimate for the bulk viscosity of strongly coupled quark matter using perturbative
QCD and holography. Phys. Rev. Lett. 133, 071901. doi:10.1103/PhysRevLett.133.
071901

Drago, A., Lavagno, A., and Pagliara, G. (2005). Bulk viscosity in hybrid stars. Phys.
Rev. D. 71, 103004. doi:10.1103/PhysRevD.71.103004

Duncan, R. C., Shapiro, S. L., and Wasserman, I. (1983). Equilibrium composition
and neutrino emissivity of interacting quark matter in neutron stars.ApJ 267, 358–370.
doi:10.1086/160875

Duncan, R. C., Wasserman, I., and Shapiro, S. L. (1984). Neutrino emissivity of
interacting quark matter in neutron stars. II - finite neutrino momentum effects. ApJ
278, 806–812. doi:10.1086/161850

Faber, J. A., and Rasio, F. A. (2012). Binary neutron star mergers. Living Rev. rel. 15,
8. doi:10.12942/lrr-2012-8

Ferrer, E. J., and de la Incera, V. (2021). Magnetic dual chiral density wave: a
candidate quark matter phase for the interior of neutron stars. Universe 7, 458.
doi:10.3390/universe7120458

Fujimoto, Y., Kojo, T., and McLerran, L. D. (2024). Momentum shell in quarkyonic
matter from explicit duality: a dual model for cold, dense qcd. Phys. Rev. Lett. 132,
112701. doi:10.1103/PhysRevLett.132.112701

Gao, B., Minamikawa, T., Kojo, T., and Harada, M. (2022). Impacts of the U (1)A
anomaly on nuclear and neutron star equation of state based on a parity doublet model.
Phys. Rev. C 106, 065205. doi:10.1103/PhysRevC.106.065205

Gholami, H., Hofmann, M., and Buballa, M. (2025). Renormalization-group
consistent treatment of color superconductivity in the NJL model. Phys. Rev. D. 111,
014006. doi:10.1103/PhysRevD.111.014006

Ghosh, S., Hernández, J. L., Keshari Pradhan, B., Manuel, C., Chatterjee, D., and
Tolos, L. (2025). Tidal heating in binary inspiral of strange quark stars. arXiv e-prints
arXiv:2504.07659. doi:10.48550/arXiv.2504.07659

Gómez Dumm, D., Blaschke, D. B., Grunfeld, A. G., and Scoccola, N. N. (2006).
Phase diagram of neutral quark matter in nonlocal chiral quark models. Phys. Rev. D.
73, 114019. doi:10.1103/PhysRevD.73.114019

Hammond, P., Hawke, I., and Andersson, N. (2021). Thermal aspects of neutron star
mergers. Phys. Rev. D. 104, 103006. doi:10.1103/PhysRevD.104.103006

Han, S., Mamun, M. A. A., Lalit, S., Constantinou, C., and Prakash, M.
(2019). Treating quarks within neutron stars. Phys. Rev. D. 100, 103022.
doi:10.1103/PhysRevD.100.103022

Harutyunyan, A., Nathanail, A., Rezzolla, L., and Sedrakian, A. (2018). Electrical
resistivity and hall effect in binary neutron star mergers. Eur. Phys. J. A 54, 191.
doi:10.1140/epja/i2018-12624-1

Harutyunyan, A., and Sedrakian, A. (2016). Electrical conductivity of
a warm neutron star crust in magnetic fields. Phys. Rev. C 94, 025805.
doi:10.1103/PhysRevC.94.025805

Harutyunyan, A., and Sedrakian, A. (2024). Thermal conductivity and
thermal hall effect in dense electron-ion plasma. Particles 7, 967–983.
doi:10.3390/particles7040059

Harutyunyan, A., Sedrakian, A., Gevorgyan, N. T., and Hayrapetyan,
M. V. (2024). Electrical conductivity of a warm neutron star crust
in magnetic fields: neutron-Drip regime. Phys. Rev. C 109, 055804.
doi:10.1103/PhysRevC.109.055804

Hernández, J. L., Manuel, C., and Tolos, L. (2024). Damping of density
oscillations from bulk viscosity in quark matter. Phys. Rev. D. 109, 123022.
doi:10.1103/PhysRevD.109.123022

Huang, X. G., Huang, M., Rischke, D. H., and Sedrakian, A. (2010).
Anisotropic hydrodynamics, bulk viscosities, and r-modes of strange
quark stars with strong magnetic fields. Phys. Rev. D. 81, 045015.
doi:10.1103/PhysRevD.81.045015

Jaikumar, P., Roberts, C. D., and Sedrakian, A. (2006). Direct urca neutrino
rate in color superconducting quark matter. Phys. Rev. C 73, 042801.
doi:10.1103/PhysRevC.73.042801

Jones, P. B. (2001). Bulk viscosity of neutron-star matter. Phys. Rev. D. 64, 084003.
doi:10.1103/PhysRevD.64.084003

Karasawa, S., Lee, T. G., and Tatsumi, T. (2016). Brazovskii–dyugaev effect on the
inhomogeneous chiral transition in quarkmatter. Prog.Theor. Exp. Phys. 2016, 043D02.
doi:10.1093/ptep/ptw025

Kojo, T. (2024). Stiffening of matter in quark-hadron continuity: a mini-review. arXiv
e-prints arXiv:2412.20442. doi:10.48550/arXiv.2412.20442

Kono, S., Jido, D., Kuroda, Y., and Harada, M. (2021). The role of the ua(1) breaking
term in dynamical chiral symmetry breaking of chiral effective theories. Prog. Theor.
Exp. Phys. 2021, 093D02. doi:10.1093/ptep/ptab084

Kovensky, N., and Schmitt, A. (2020). Holographic quarkyonic matter. J. High Energy
Phys. 2020, 112. doi:10.1007/JHEP09(2020)112

Madsen, J. (1992). Bulk viscosity of strange quark matter, damping of quark star
vibration, and the maximum rotation rate of pulsars. Phys. Rev. D. 46, 3290–3295.
doi:10.1103/PhysRevD.46.3290

Madsen, J. (1993). Rate of the weak reaction s + u → u + d in quark matter. Phys. Rev.
D. 47, 325–330. doi:10.1103/PhysRevD.47.325

McLerran, L., and Reddy, S. (2019). Quarkyonic matter and neutron stars. Phys. Rev.
Lett. 122, 122701. doi:10.1103/PhysRevLett.122.122701

Most, E. R., Harris, S. P., Plumberg, C., Alford, M. G., Noronha, J., Noronha-
Hostler, J., et al. (2022). Projecting the likely importance of weak-interaction-
driven bulk viscosity in neutron s tar mergers. Mon. Not. Ras. 509, 1096–1108.
doi:10.1093/mnras/stab2793

Motta, T. F., Bernhardt, J., Buballa, M., and Fischer, C. S. (2025). New tool
to detect inhomogeneous chiral-symmetry breaking. Phys. Rev. D. 111, 074030.
doi:10.1103/PhysRevD.111.074030

Radice, D., and Bernuzzi, S. (2023). Ab-initio general-relativistic neutrino-
radiation hydrodynamics simulations of long-lived neutron star merger remnants
to neutrino cooling timescales. Astrophys. J. 959, 46. doi:10.3847/1538-4357/
ad0235

Radice, D., Bernuzzi, S., Perego, A., and Haas, R. (2022). A new moment-based
general-relativistic neutrino-radiation transport code: methods and first applications
to neutron star mergers. Mon. Not. Ras. 512, 1499–1521. doi:10.1093/mnras/
stac589

Radice, D., and Hawke, I. (2024). Turbulence modelling in neutron star
merger simulations. Liv. Rev. Comput. Astrophys. 10, 1. doi:10.1007/s41115-023-
00019-9

Rehberg, P., Klevansky, S. P., and Hüfner, J. (1996). Hadronization in the
su(3) nambu–jona-lasinio model. Phys. Rev. C 53, 410–429. doi:10.1103/PhysRevC.
53.410

Ripley, J. L., Hegade, K. R. A., and Yunes, N. (2023). Probing internal dissipative
processes of neutron stars with gravitational waves during the inspiral of
neutron star binaries. Phys. Rev. D. 108, 103037. doi:10.1103/PhysRevD.108.
103037

Rüster, S. B.,Werth, V., Buballa, M., Shovkovy, I. A., and Rischke, D. H. (2005). Phase
diagram of neutral quark matter: self-Consistent treatment of quark masses. Phys. Rev.
D. 72, 034004. doi:10.1103/PhysRevD.72.034004

Sa’d, B. A., Shovkovy, I. A., and Rischke, D. H. (2007a). Bulk viscosity of
spin-one color superconductors with two quark flavors. Phys. Rev. D. 75, 065016.
doi:10.1103/PhysRevD.75.065016

Frontiers in Astronomy and Space Sciences 16 frontiersin.org

https://doi.org/10.3389/fspas.2025.1648066
https://doi.org/10.1063/1.2823866
https://doi.org/10.1103/PhysRevC.111.-✐044914
https://doi.org/10.1103/PhysRevC.111.-✐044914
https://doi.org/10.1051/0004-6361/201117832
https://doi.org/10.1051/0004-6361/201117832
https://doi.org/10.1140/epja/i2016-16057-6
https://doi.org/10.1103/PhysRevLett.44.1640
https://doi.org/10.1103/PhysRevD.107.103031
https://doi.org/10.1103/PhysRevD.107.103032
https://doi.org/10.1103/PhysRevD.101.-✐014026
https://doi.org/10.1103/PhysRevD.101.-✐014026
https://doi.org/10.1103/PhysRevD.62.103002
https://doi.org/10.1103/PhysRevD.105.103016
https://doi.org/10.1103/PhysRevLett.134.071402
https://doi.org/10.1103/PhysRevD.111.044074
https://doi.org/10.1103/PhysRevC.89.-✐055803
https://doi.org/10.1103/PhysRevC.89.-✐055803
https://doi.org/10.1103/PhysRevLett.133.-✐071901
https://doi.org/10.1103/PhysRevLett.133.-✐071901
https://doi.org/10.1103/PhysRevD.71.103004
https://doi.org/10.1086/160875
https://doi.org/10.1086/161850
https://doi.org/10.12942/lrr-2012-8
https://doi.org/10.3390/universe7120458
https://doi.org/10.1103/PhysRevLett.132.112701
https://doi.org/10.1103/PhysRevC.106.065205
https://doi.org/10.1103/PhysRevD.111.014006
https://doi.org/10.48550/arXiv.2504.07659
https://doi.org/10.1103/PhysRevD.73.114019
https://doi.org/10.1103/PhysRevD.104.103006
https://doi.org/10.1103/PhysRevD.100.103022
https://doi.org/10.1140/epja/i2018-12624-1
https://doi.org/10.1103/PhysRevC.94.025805
https://doi.org/10.3390/particles7040059
https://doi.org/10.1103/PhysRevC.109.055804
https://doi.org/10.1103/PhysRevD.109.123022
https://doi.org/10.1103/PhysRevD.81.045015
https://doi.org/10.1103/PhysRevC.73.042801
https://doi.org/10.1103/PhysRevD.64.084003
https://doi.org/10.1093/ptep/ptw025
https://doi.org/10.48550/arXiv.2412.20442
https://doi.org/10.1093/ptep/ptab084
https://doi.org/10.1007/JHEP09(2020)112
https://doi.org/10.1103/PhysRevD.46.3290
https://doi.org/10.1103/PhysRevD.47.325
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1093/mnras/stab2793
https://doi.org/10.1103/PhysRevD.111.074030
https://doi.org/10.3847/1538-4357/-✐ad0235
https://doi.org/10.3847/1538-4357/-✐ad0235
https://doi.org/10.1093/mnras/-✐stac589
https://doi.org/10.1093/mnras/-✐stac589
https://doi.org/10.1007/s41115-023--✐00019-9
https://doi.org/10.1007/s41115-023--✐00019-9
https://doi.org/10.1103/PhysRevC.-✐53.410
https://doi.org/10.1103/PhysRevC.-✐53.410
https://doi.org/10.1103/PhysRevD.108.-✐103037
https://doi.org/10.1103/PhysRevD.108.-✐103037
https://doi.org/10.1103/PhysRevD.72.034004
https://doi.org/10.1103/PhysRevD.75.065016
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Alford et al. 10.3389/fspas.2025.1648066

Sa’d, B. A., Shovkovy, I. A., and Rischke, D. H. (2007b). Bulk viscosity of
strange quark matter: urca versus nonleptonic processes. Phys. Rev. D. 75, 125004.
doi:10.1103/PhysRevD.75.125004

Schmitt, A., and Shternin, P. (2018). Reaction rates and transport in neutron stars.
Astrophys. Space Sci. Libr. 457, 455–574. doi:10.1007/978-3-319-97616-7_9

Steiner, A. W., Prakash, M., and Lattimer, J. M. (2001). Diffusion of neutrinos in
proto-neutron star matter with quarks. Phys. Lett. B 509, 10–18. doi:10.1016/S0370-
2693(01)00434-8

Tabatabaee, M. (2023). Chiral symmetry breaking and phase diagram of dual
chiral density wave in a rotating quark matter. Phys. Rev. D. 108, 094042.
doi:10.1103/PhysRevD.108.094042

The LIGO Scientific Collaboration, The Virgo Collaboration, Abbott,
R., Abbott, T., Acernese, F., Ackley, K., Adams, C., et al. (2017).
Gw170817: observation of gravitational waves from a binary neutron
star inspiral. Phys. Rev. Lett. 119, 161101. doi:10.1103/PhysRevLett.119.
161101

Wang, X., Malekzadeh, H., and Shovkovy, I. A. (2010). Nonleptonic weak
processes in spin-one color superconducting quark matter. Phys. Rev. D. 81, 045021.
doi:10.1103/PhysRevD.81.045021

Wang, X., and Shovkovy, I. A. (2010). Bulk viscosity of spin-one
color superconducting strange quark matter. Phys. Rev. D. 82, 085007.
doi:10.1103/PhysRevD.82.085007

Frontiers in Astronomy and Space Sciences 17 frontiersin.org

https://doi.org/10.3389/fspas.2025.1648066
https://doi.org/10.1103/PhysRevD.75.125004
https://doi.org/10.1007/978-3-319-97616-7\string_9
https://doi.org/10.1016/S0370-2693(01)00434-8
https://doi.org/10.1016/S0370-2693(01)00434-8
https://doi.org/10.1103/PhysRevD.108.094042
https://doi.org/10.1103/PhysRevLett.119.-✐161101
https://doi.org/10.1103/PhysRevLett.119.-✐161101
https://doi.org/10.1103/PhysRevD.81.045021
https://doi.org/10.1103/PhysRevD.82.085007
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

	1 Introduction
	2 Finite temperature 2SC phase
	3 Urca reaction rates for ude and udse compositions
	4 Bulk viscosity of udse matter
	5 Numerical results
	5.1 Equilibration coefficients and Urca rates
	5.2 Bulk viscosity and damping timescales

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

