
 

TYPE Original Research
PUBLISHED 24 September 2025
DOI 10.3389/fspas.2025.1651953

OPEN ACCESS

EDITED BY

Josep M. Trigo-Rodríguez,
Spanish National Research Council 
(CSIC), Spain

REVIEWED BY

Pierfrancesco Novielli,
University of Bari Aldo Moro, Italy
Floyd Nichols,
Virginia Tech, United States

*CORRESPONDENCE

Brett A. McKinney,
 brett.mckinney@gmail.com

RECEIVED 22 June 2025
ACCEPTED 13 August 2025
PUBLISHED 24 September 2025

CITATION

Clough LA, Major JD, Seyler LM, Da Poian V, 
Theiling BP and McKinney BA (2025) 
Local-NPDR: a novel variable importance 
method for explainable machine learning and 
false discovery diagnosis for ocean worlds 
biosignatures.
Front. Astron. Space Sci. 12:1651953.
doi: 10.3389/fspas.2025.1651953

COPYRIGHT

© 2025 Clough, Major, Seyler, Da Poian, 
Theiling and McKinney. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in 
other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

Local-NPDR: a novel variable 
importance method for 
explainable machine learning 
and false discovery diagnosis for 
ocean worlds biosignatures

Lily A. Clough1,2,3, Jonathan D. Major4, Lauren M. Seyler5, 
Victoria Da Poian3,6,7, Bethany P. Theiling3 and 
Brett A. McKinney1*
1Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, United States, 2Aurora 
Engineering, Reston, VA, United States, 3Planetary Environments Laboratory, NASA Goddard Space 
Flight Center, Greenbelt, MD, United States, 4School of Geosciences, University of South Florida, 
Tampa, FL, United States, 5School of Natural Sciences and Mathematics, Stockton University, 
Galloway, NJ, United States, 6Earth and Planetary Science, Johns Hopkins University, Baltimore, MD, 
United States, 7Tyto Athene LLC, Reston, VA, United States

Explainable machine learning (ML) is important for biosignature prediction on 
future astrobiology missions to minimize the risk of false positives due to 
geochemical biotic mimicry and false negatives due to environmental factors 
that mask biosignatures. ML models often use feature importance scores 
to provide insights into model prediction mechanisms by quantifying each 
variable’s contribution to the prediction. Global variable importance methods 
aggregate information across all training samples and therefore do not provide 
interpretation for the classification of a single sample. In contrast, local variable 
importance scores quantify the contribution of variables to the classification of 
a single sample and can therefore help explain why the sample was predicted 
to be in a certain class and diagnose whether it is a false prediction. We 
present a new local variable importance method that handles nonlinearity, 
statistical interactions, and includes penalized feature selection. Our approach 
represents a local version of Nearest-neighbor Projected Distance Regression 
(NPDR) feature selection. We evaluate local-NPDR on complex simulated data 
and real data from a study of carbon and oxygen isotopic biosignatures using 
laboratory-generated ocean world analogue brines. The ability of local-NPDR 
to differentiate between true and false predictions is compared with other 
common local importance methods. Local-NPDR is able to diagnose individual 
false predictions using the concordance between global and local scores, and 
it can explain mechanisms of true and false predictions. These features allow 
local-NPDR to integrate scientific explanations of single-sample ML predictions 
to support a more comprehensive framework for biosignature detection.
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1 Introduction

“It is the desire for explanations which are at once systematic 
and controllable by factual evidence that generates science; 
and it is the organization and classification of knowledge on 
the basis of explanatory principles that is the distinctive goal 
of the sciences.”

–Ernest Nagel, The Structure of Science

Machine learning (ML) has become a widespread tool for 
scientific data analysis and is increasingly used in hybrid modeling 
to predict physical processes (Noordijk et al., 2024). In a utilitarian 
sense, the goals of ML and science parallel each other: both 
seek to make accurate and practical predictions. Science and ML 
achieve this by finding generalizable regularities in data that can 
be used for prediction. In science, these regularities may become 
elevated to the status of a law, which is a distillation of complex 
data in a form that services another, deeper goal: explanation 
or understanding. Indeed, one of the most important goals of 
science is to make nature intelligible to humans by providing 
insights into the mechanisms by which natural phenomena occur; 
i.e., to provide scientific explanations (Nagel, 1979). For ML, 
regularities found in data are encapsulated in a statistical model 
or algorithm; however, ML model predictions usually cannot be 
easily explained like a scientific law and are often likened to
“black boxes”.

Increasingly in critical and high-risk domains, the need 
for transparency, explainability, and interpretability in ML 
model predictions has been recognized (Linardatos et al., 2020; 
Roscher et al., 2020). Transparency means that the algorithmic 
mechanisms and parameter space through which ML predictions are 
made are understandable and reproducible, while interpretability 
refers to the ability to draw connections between model predictions 
and the scientific domain to be understood (Montavon et al., 
2018; Roscher et al., 2020). Explainability can be defined as a 
highly relevant feature (variable) space (Roscher et al., 2020) 
through which interpretations about model predictions can 
be made. To add explainability to ML model predictions, a 
variable space that is mathematically (and if possible, physically) 
understandable can be leveraged to connect the variables (and 
their physical/mathematical meanings) to the particular ML 
predictions being made and to the scientific problem at hand (i.e., 
interpretation). These tools provide a series of explanatory principles 
upon which the ML model prediction can be understood. In this 
way, trust and explainability in ML are inextricable, as they are
in science.

Astrobiology offers an enticing problem for ML: how can we 
accurately detect the presence of life in an unknown environment 
of unknown history? The ability to trust an ML model prediction 
is crucial for such a high-risk scientific question. In the remote 
locations of proposed astrobiological targets, it is not possible to 
directly verify whether a biosignature prediction is true or false. 
Therefore, explanatory false detection tools will be necessary for 
astrobiology missions. False positive (FP) and false negative (FN) 
biosignature detection using remote sensing is a well-documented 
challenge (National Academies of Sciences, Engineering, and 

Medicine, 2019). Abiotic environments with complex geochemistry 
can mimic a biosignature, leading to a FP, or the environment can 
mask a biosignature prediction, leading to a FN (Clough et al., 
2025). Autonomous decision making based on ML and artificial 
intelligence (AI) can make space missions more efficient, but the 
risk of false predictions must be mitigated, both to protect mission 
resources and to instill trust in real-time ML analysis of collected 
data (Theiling et al., 2022; Da Poian et al., 2025). These examples 
underscore the importance of interpreting ML predictions in 
the context of the geochemical environment, using training data 
that accurately reflects the target deployment environment, and 
diagnosing false predictions.

Although not universally the case, ML tends to suffer 
from an accuracy-explainability tradeoff (Ali et al., 2023). As 
data dimensionality (number of features) has increased across 
research fields, ML models have improved in accuracy but 
grown in complexity, often resulting in “black box” systems 
with limited transparency of their decision-making process and 
relevant predictors (variables). This high-dimensionality and 
increased opacity in algorithmic mechanisms results in decreased 
explainability. For scientific models, explanation is often built into 
the model in terms of the mathematical symbols that describe 
physical laws. In this way scientific and ML models have different 
levels of inherent transparency and explainability. The most 
transparent model is one whose exact mechanism for prediction 
is comprehensible to a human. For example, a decision tree model 
has a high level of transparency (i.e., a “transparent box”). Its 
decision-making process can be followed for each variable split 
in the tree for a given sample, and the structure of the tree gives 
some explainability as well: nodes (variables) at the top have the 
highest variable importance and branches connecting variables 
may suggest conditional relationships. Unfortunately, its prediction 
accuracy is not high enough in most applications, which led to 
resampling methods like Random Forest (RF) (Breiman, 2001). 
The many trees (forest) used by RF to vote on sample classes 
is responsible for its improved accuracy but also reduces its
explainability.

ML tools can provide global and/or local explainability; global 
explainability results from generalizations made across all training 
samples, while local explainability focuses on one sample or a 
neighborhood of samples (Roscher et al., 2020). While RF is on 
the opaque end of the transparency spectrum, it does provide 
tools for global and local explainability such as permutation 
variable importance (Breiman, 2001). For an important variable, 
the permutation importance score increases if the out-of-bag (oob) 
accuracy of the model decreases after permuting the variable. 
Permutation importance thus provides a degree of explanation by 
ranking which variables the RF model finds most necessary for 
prediction. This importance method is global in that it aggregates 
information across all training samples and the scores are not 
specific to explaining an individual sample’s prediction. To address 
this, RF has a local version of permutation importance that gives 
variable importance scores specific to the prediction for each sample 
in the training data.

Recently, we showed that local (single-sample) RF variable 
importance has the potential to add to the explainability of 
ML biosignature model predictions and can help diagnose false 
predictions (Clough et al., 2025). We used our Nearest-neighbors 
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Projected Distance Regression (NPDR) global feature selection with 
an RF classifier for biosignature prediction (Le et al., 2020), and 
we computed the discordance between global and local scores 
for single samples to diagnose false predictions. This global-local 
discordance provided important insights; however, existing local 
variable (or feature) importance methods face limitations such as 
needing samples to be in the training data, the lack of a statistical 
threshold for feature selection, and limited ability to account for 
statistical interactions. A statistical interaction occurs when the 
effect of a feature on the outcome variable depends on one or 
more other features (McKinney et al., 2006). An example of an 
interaction is conditional correlation between pairs of variables that 
depends on the outcome variable and may occur without either 
variable having a main effect. These interactions are likely to be 
important for uncovering biotic mimicry (Clough et al., 2025), 
and therefore techniques for evaluating the probability of true/false 
positive or negative predictions of biosignatures are needed for 
future astrobiology missions.

In high-dimensional variable spaces expected for data 
of astrobiological relevance (e.g., mass spectrometry and 
spectroscopy), RF has low power to detect statistical interactions 
between variables that may be important for classification because 
variables are selected in trees preferentially based on main effects 
(McKinney et al., 2009; Wright et al., 2016). However, our global 
feature selection method, NPDR, has shown high power to detect 
both main effects and statistical interactions in the biosignature 
model, and it uses a regression penalty to yield a reduced 
dimensionality space of independent features (Clough et al., 2025). 
In the current study, we present an additional mechanism for 
evaluating the reliability of biosignature predictions. We extend 
NPDR to compute local or single-sample importance scores to 
take advantage of NPDR’s ability to detect complex relationships 
between variables. Our global variable importance ML tool helps 
satisfy the deeper goal of science to provide explanations by allowing 
an ML model to be trained in a selected features space that is 
as relevant as possible to the outcome being analyzed. Our local 
feature importance ML tool introduced in the current study provides 
explanatory analysis for a single sample in the context of globally 
important variables and a given ML prediction. Crucially, this 
analysis allows for a determination of whether a single sample 
prediction is likely to be true or false without knowing the actual 
sample label.

The critical need for explainable ML methods across multiple 
disciplines has given rise to additional local methods since the 
advent of local-RF, such as Local Interpretable Model-Agnostic 
Explanations (LIME) and SHapley Additive exPlanations (SHAP). 
LIME creates local importance scores for models by fitting 
a surrogate linear model to synthetic samples in the local 
neighborhood of a query sample (Ribeiro et al., 2016). SHAP 
uses game theory concepts to provide model agnostic local scores 
that contribute to the prediction of a sample, while TreeSHAP 
provides local feature explanations specifically for tree based models 
like RF (Lundberg et al., 2020). These core tools have been used 
in a variety of scientific and medical domains including those 
related to geosciences such as physical oceanography (Navarra et al., 
2025), flood susceptibility (Choubin et al., 2025), and CO2 changes 
in the soil (Novielli et al., 2025). We compare local-NPDR and 
local-RF with these prominent methods.

The remainder of the manuscript is organized as follows. We 
describe the new local-NPDR method for single-sample variable 
importance, and we describe the simulated and real biosignature 
data. We compare local-NPDR with other local feature importance 
methods for the simulated data and real biosignature laboratory data 
based on the ability to explain and detect false predictions. The local-
NPDR method is not specific to a given (ML) classifier, and it is 
able to model nonlinear decision boundaries and detect statistical 
interactions between features. We use local scores to explain which 
features a classifier might find most important for classifying a 
specific sample, and we use the discordance between global and 
local scores combined with single-sample prediction probabilities 
to flag potential false predictions. We then discuss the necessity 
of explainability and false prediction assessment for high-stakes 
predictions such as astrobiology biosignatures. 

2 Methods

In this section, we first describe the local-NPDR algorithm 
and formalism in the context of global-NPDR feature selection 
along with an illustration of its use for diagnosing true and false 
predictions. Next, we describe the procedure for designating a 
prediction as likely true or false based on the total local scores 
for concordance (positive) and discordance (negative) for globally 
important features. Finally, we describe the simulated and real 
biosignature datasets for validation of the local-NPDR algorithm. 

2.1 Local-NPDR: feature importance for a 
single sample

Consider a pair of samples or neighbors i and j that are distinct 
rows of an m x p data matrix X with m samples and p variables. 
The class vector y has length m. To describe the NPDR contrastive 
loss, we use the contribution to the binary cross-entropy for a pair 
of neighbors given a set of regression coefficients represented by β,

Lij(βo, β⃑) = −δij(y) ln( ̂dij(X)) − (1− δij(y)) ln(1− ̂dij(X)), (1)

where δij is the hit/miss indicator variable and ̂dij(X) is the predicted 
probability that the two samples are in different classes (e.g., for 
the probability of a miss, δij = 1). The indicator variable can have 
two values: δij = 1 if the pair of samples are in a different class 
(yi ≠ yj) and δij = 0 if they are in the same class (yi = = yj). The 
predicted probability Equation 2 is computed using the following 
logit transformation

̂dij(X) =
1

1+ e−(β0+β⃑·d⃑ij(X))
(2)

of the multivariate model of projected distances, d⃑ij(X), of all 
independent variables in X. In other words, for a fixed pair of ij
neighbors, each element of the vector, d⃑ij(X), is an absolute difference 
between their values for each independent variable in X. We refer to 
these differences as projected distances onto a variable axis in the 
p-dimensional space. For example, if X were a numeric data matrix, 
the vector of projected distances (Equation 3) would be

d⃑ij(X) = (|Xi1 −Xj1|, |Xi2 −Xj2|,⋯, |Xip −Xjp|). (3)
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The goal of local-NPDR is to find the variable importance scores 
(β⃑) that minimize the penalized negative log-likelihood (or cross 
entropy) over the neighborhood Nk(i) of sample i

βlocal
i =min

βo,β⃑
( ∑

j∈Nk(i)
Lij(βo, β⃑) + λ(α‖β⃑‖

1
+ (1− α)‖β⃑‖

2
)). (4)

The penalty is implemented via the R library glmnet, which 
allows for a blend of L1 and L2 regularization in a method called 
the “elastic net” (Tibshirani, 1996), and it can be used for Ridge 
(L2, α = 0) or LASSO (L1, α = 1) penalized regression. We typically 
use LASSO (Least Absolute Shrinkage and Selection Operator) 
for global-NPDR feature selection and tune λ via cross-validation. 
This reduces the selected feature space and increases variable 
independence. The nature of the derivative of the absolute value 
function in LASSO prevents regression coefficients from shrinking 
further once reaching zero as λ increases, but rather they stay zero. 
For local-NPDR, we typically employ a Ridge penalty because we 
have already reduced the feature space using global-NPDR and 
want to keep the rankings of all selected features. The quantity 
Nk(i) is the set of neighbors of sample i, and the resulting NPDR 
attribute scores, β⃑local, are local to each sample i. The neighborhood 
is computed independently of the class status of samples and is 
defined using a distance matrix, discussed more below. These local 
variable importance scores indicate the importance of features that 
allow the single sample to discriminate whether neighbor samples 
are in the same or a different class as the target sample. If a 
variable were involved in an interaction, NPDR would reflect this 
in the importance score because it uses nearest neighbors that are 
computed in the higher dimensional space of all other variables. 
This makes NPDR multivariate even when scoring a single variable 
for a single sample. The Ridge or LASSO version of NPDR includes 
additional multivariate effects in its model.

We illustrate how local-NPDR feature selection can add support 
for true ML predictions of single samples (blue box sample 1, 
Figure 1a) and can help identify false positive predictions (red box 
sample 1, Figure 2a) by comparing the local score for a globally 
important variable (purple variable A on the vertical axis, Figure 1). 
The global importance can be determined using global-NPDR. For 
completeness, the global NPDR scores are computed by minimizing 
the following penalized cross entropy

β⃑global =min
βo,β⃑
(

m

∑
i=1
∑

j∈Nk(i)
Lij(βo, β⃑) + λ(α‖β⃑‖

1
+ (1− α)‖β⃑‖

2
)), (5)

which, in contrast to Equation 4, includes the sum over all samples 
i from 1 to m.

The fact that the purple variable A is globally important for 
classification can be seen by noticing that its mean for the ‘x’ 
class is larger than its mean for the ‘o’ class (Figure 1). Note that 
in contrastive feature selection methods such as NPDR, a sample 
contributes positively to a variable’s importance score if the projected 
distance along that variable axis to its opposite-class nearest 
neighbor (ΔM, delta miss) is greater than the projected distance 
to its same-class nearest neighbor (ΔH, delta hit). This differential 
ΔM −ΔH quantifies how well the variable keeps hits close together 
and misses farther apart in a neighborhood (McKinney et al., 2013).

First we consider how the globally important variable is affected 
locally in the local-NPDR contrastive loss (Equation 1) for Sample-1 

when the sample is in the correct ‘x’ class (x1 in blue box, Figure 1a). 
Specifically, we estimate the contributions to the contrastive loss 
(Equation 1) for variable A and Sample-1 using k = 2 neighbors. 
In this case, the two neighbors are Sample-2 (same class as Sample 
1 (hit): ‘x’) and Sample-3 (opposite class of Sample 1 (miss): ‘o’). 
The neighbor-pair loss for the miss L12 is low (good fit) because 
the projected distance d12 is small (Figure 1b) leading to a small 
̂d12 miss-probability, and their actual miss state is δ12 = 0, which 

causes the first term to be zero. That is, the non-zero quantity 
− ln(1− ̂d12(A)) will be a small positive loss (good fit), and the 
contribution to the local score from A for Sample-1would be 
relatively large. The neighbor-pair loss for the hit L13 is also low 
(good fit) because, while d13 is large, their actual miss state is 
δ13 = 1, causing the second term to be zero. The remaining non-
zero part of the loss −δ13 ln( ̂d13(A)) will be a small positive 
quantity, and the contribution of Sample-1 and Sample-3 neighbors 
to the local score for variable A will be relatively large. This high 
importance score in the local neighborhood of sample x1 for the 
globally important variable A (concordant local and global scores) 
is supporting evidence that sample x1 is a true positive (Figure 1c). 
In contrast, if we incorrectly label Sample-1 (‘o’ instead of ‘x’ in 
Figure 2A), the neighbor losses will be high (bad fit, Figure 2b) and 
the importance of variable A in the local neighborhood of Sample-1 
will be low (Figure 2c), discordant with the global importance of A
and suggesting that Sample-1 might be a false prediction.

The quantity k in Nk(i) is the number of nearest neighbors used 
for sample i in NPDR, sometimes referred to as knn (k-nearest 
neighbors). This number can vary from sample to sample or be 
uniform (same for all samples). For global-NPDR knn, we use 
k–Dσ1/2, which is the expected number of neighbors that are within 
½ standard deviation of the mean distance (Dσ1/2) between all 
sample pairs. For local-NPDR, which focuses on only one sample, we 
use knn_max =m− 1 because it maximizes the statistical power by 
using all possible samples in the neighborhood of the single sample. 
The tradeoff is a decreased ability to detect statistical interactions: 
using knn_max causes NPDR and Relief-based methods to become 
myopic; that is, focused on the importance of single variables 
(McKinney et al., 2013; Dawkins and McKinney, 2025). Once an 
appropriate neighborhood is determined, the imbalance between hit 
and miss groups in the neighborhood of the sample is accounted for 
by regression model weights using the ratio 1 - num_in_class/num_
samples.

The nearest neighbors are determined from a chosen distance 
metric in the full space of variables. For the current study, 
we employ a novel distance metric called the Unsupervised 
Random Forest Proximity (URFP), chosen due to its ability to 
account for a non-isotropic variable space and its performance in 
the biosignature dataset compared with a traditional Manhattan 
distance metric (Clough et al., 2025). 

2.2 Random forest variable importance

We compare local-NPDR with other local importance scores, 
including local-RF, a method native to the RF classifier (Breiman, 
2001). In global-RF variable permutation importance, the oob 
samples are fed into each tree of the forest to compute classification 
accuracy. By definition, the oob samples (about one-third of the 
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FIGURE 1
Local-NPDR mathematics for a correct classification with a positive (supporting) local feature importance score. (a) Consider hypothetical Sample-1 of 
class ‘x’ (blue highlighted x1) and two features, one simulated with a main effect for classification, i.e., for discriminating between class ‘x’ and ‘o’ samples 
(variable A, purple) and one unimportant variable with no effect. The nearest neighbors for Sample-1, indicated inside the dashed neighborhood circle, 
are Sample-2 (x2, same class as Sample-1) and Sample-3 (o3, different class than Sample-1). The projected distances between Samples-1 and 2 for 
variable A (d12(A)) and Samples-1 and 3 (d13(A)) are also indicated by ΔH (hit) and ΔM (miss) because their actual hit/miss statuses are δ12 = 0 (hit) and δ13

= 1 (miss). Note that the projected distances for these same samples onto the horizontal axis (unimportant variable) are negligible because this variable 
cannot discriminate between samples in class ‘x’ or class ‘o’. (b) Local-NPDR loss function for the two nearest neighbors of Sample-1 (see Equation 1). 
Note the total loss for variable A (for Sample-1) is the sum of all pairwise loss functions for all local neighbors. The loss functions for two pairs of 
neighbors (L12 and L13) are small because Sample-1 is correctly classified and the δ’s are correctly assigned as δ12 = 0 (hit) and δ13 = 1 (miss). (c) These 
low losses for the true classification of Sample-1 as class ‘x’ lead to positive local scores for important variable A in agreement with the global score.

FIGURE 2
Local-NPDR mathematics for an incorrect classification with a negative (contradicting) local feature importance score. (a) Same as Figure 1 except 
hypothetical Sample-1 is now incorrectly assigned class ‘o’ (red highlighted o1). Two features are simulated, one with a main effect for classification 
(variable A, purple) and one unimportant variable with no effect. The two nearest neighbors for Sample-1, indicated by the neighborhood circle, are 
Sample-2 (x2, different class as Sample-1) and Sample-3 (o3, same class as Sample-1). The projected distances between Samples-1 and 2 for variable A
(d12(A)) and Samples-1 and 3 (d13(A)) are indicated by ΔM (miss) and ΔH (hit)because δ12 = 1 (miss) and δ13 = 0 (hit). (b) Local-NPDR loss function for the 
two nearest neighbors of Sample 1 (see Equation 1). The loss functions for two pairs of neighbors (L12 andL13) are large because Sample 1 is incorrectly 
classified and the δ’s are incorrectly assigned as δ12 = 1 (miss) and δ13 = 0 (hit). (c) These large losses for the false classification of Sample-1 as class ‘o’
lead to negative local importance scores for variable A.
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training samples) are not seen by a particular tree during training 
(and varies depending on the tree in the forest). This accuracy 
calculation is repeated, but the order of the values for each variable is 
permuted in separate iterations. The change in average classification 
accuracy before and after permuting the variable is a measure of 
the variable’s importance. Because permutation of an important 
variable is expected to decrease classification accuracy, the greater 
the decrease in accuracy after permutation, the more important the 
variable is considered (globally) for prediction. The local-RF variable 
importance procedure also computes changes in accuracy before 
and after variable permutation. However, instead of permuting the 
variable for all oob samples, the value of each variable is permuted 
for a single sample. That sample is then run through all trees in the 
forest for which it is oob to yield an average accuracy before and 
after variable permutation. The difference in accuracy is the local RF 
variable importance for that sample. 

2.3 Procedure for reporting false 
predictions

We use NPDR to determine local and global feature importance. 
Because NPDR is a contrastive method, it predicts the class 
difference of neighbors, not the class of a given sample. To predict 
the class of individual samples, we use RF classification because 
of its robustness to skewed variables and mixed data types and its 
resistance to over-fitting. For each sample, we compute the local-
NPDR importance scores for the features that were selected globally 
by LASSO-NPDR using the URFP distance metric; these are the 
variables on which the RF classifier is trained, ensuring that the 
feature selection method is independent from the classification 
method. In this step, a new URFP distance metric using only the 
global-NPDR features is used. The local-NPDR variable importance 
scores can be concordant with the global-NPDR scores (manifested 
as positive variable importance scores) or discordant (negative 
importance scores). If the sum of the local scores is negative 
(overall discordant), the sample was likely classified based on 
variables that were not part of the general (global) pattern of the 
classifier. We hypothesize that such samples are more likely to be 
false predictions because they do not follow the general pattern 
learned by the classifier from the global dataset. We combine local-
NPDR feature importance scores with RF prediction probabilities 
to further constrain which samples are identified as potential 
false predictions, hypothesizing that samples classified with lower 
prediction probabilities are more likely to be incorrectly classified.

We further compare false prediction diagnosis of individual 
samples in holdout data using local-NPDR variable importance 
with local-RF. We compute the overall local variable importance 
scores for correctly and incorrectly classified samples (based on 
the RF classifier) to see whether discordance is associated with 
false predictions. An initial question is which globally important 
variables to include in the concordance calculation. NPDR can 
use a LASSO penalty that results in a statistical threshold for 
importance. However, RF does not have a threshold for feature 
selection. Thus, we use the global-NPDR features as the RF model 
variables to determine local-RF feature importance. NPDR feature 
selection thresholds can be defined either through P-values or via 
regularization (Tibshirani, 1996; Zou and Hastie, 2005). 

2.4 Validating local-NPDR: real and 
simulated datasets

We validate the local-NPDR variable importance method on 
both real and simulated datasets. Simulated datasets allow us to 
compare effects of variable correlation, main and interaction effects, 
and class imbalance on ML models. Furthermore, since it is known 
whether variables in the simulated datasets are functional (i.e., 
whether they have a main and/or an interaction effect), we can 
quantify the performance of our methods. Real datasets ensure that 
our methods work in real applications on imperfect or complex 
data. The real and simulated datasets used in this study are 
summarized in Table 1.

We perform RF classification and global-NPDR feature selection 
for all datasets using an 80:20 train:test split that preserves the 
class imbalance. Previously, we found 80:20 splits have very stable 
test accuracies across repeated 5 folds (Clough et al., 2025). 
In the current study, we use a single 80:20 split of the data to 
simplify the interpretation of the results while comparing the local 
score methods. We choose a split of the real data with a typical 
(median) test accuracy. RF hyperparameters are tuned using 5-fold 
cross-validation in the training set. The real astrobiology dataset 
consists of isotope ratio mass spectrometry (IRMS) measurements 
of volatile CO2 evolved from laboratory-generated ocean world 
(OW) analogue brines of biotic and abiotic samples (Clough et al., 
2025). This biosignature dataset, referred to as Benchmark Ocean 
Worlds-δCO2 dataset (BOW-δCO2), contains 174 samples of 
IRMS experiments (111 abiotic and 63 biotic), generated with 
0.3% CO2 by volume and containing different salt compositions 
relevant for both Europa and Enceladus. The imbalance 
in this dataset is 0.64, with biotic samples making up the
minority class.

We generate three simulated datasets (summarized at the top 
of Table 1) using the createSimulation2 function from our 
npdr R library based on the approach in Ref. (Lareau et al., 2015). 
These simulated data have the advantage of having known ground 
truth functional features (i.e., features associated with the outcome 
variable) while incorporating realistic effects found in real data. 
Simulations 1 and 2 datasets are designed to have similar properties 
to the real BOW-δCO2 dataset. Like our real dataset, these two 
simulated datasets have a similar number of features (p = 100), 
sample size (m = 240 train and 60 test samples) and class imbalance 
(0.6). In addition, the simulated data have a realistic correlation 
structure between variables and includes both interaction and main 
effects. We simulated 20% of the features to be functional, with 10 
main effects (“mainvars”) and 10 interaction variables (“intvars”). 
These two simulations have effect sizes of 1.5 for both main effects 
and interaction effects. The remaining features are noise variables 
that have no effect on classification outcome. Since the main and 
interaction effects are known for particular variables, this allows us 
to assess whether feature selection methods are selecting relevant 
variables for classification. The Simulation 3 dataset has the same 
number of features (p = 100) but a larger sample size (m = 
400 training samples and 100 test samples) with balanced classes 
instead of imbalance. This dataset has the same number of main 
effects and interactions as Simulations 1 and 2 but has smaller 
main effect sizes (main effect strength = 0.8, interaction effect
strength = 1.5). 
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TABLE 1  Summary of the real biosignature data and three simulated datasets (top). For the simulated data, the number and type of functional features 
are given (main effects, interaction effects or noise features). Random Forest is used for training and testing accuracies for all data (additional accuracy 
information in Figure 3) using global-NPDR-LURF feature selection (features listed at bottom). Biosignature features include IRMS and time-series 
derived features. Simulated data include functional features, which begin with “main” and “int” for main effects and interactions, respectively. Simulated 
features that begin with “var” are noise variables not involved in classification except by chance. Dashes are used for data that have fewer important 
features selected.

Biosignature data Simulation 1 Simulation 2 Simulation 3

class1: class0 (test)
samples

89:51 (22:12) abio:bio 144:96 (36:24) 144:96 (36:24) 200:200 (50:50)

main: interact: noise 104 total features 10:10:80 features 10:10:80 features 10:10:80 features

Strength: (main/interact) — 1.5/1.5 1.5/1.5 0.8/1.5

Train (Test) Accuracy 90.7% (91.2%) 77.9% (71.1%) 82.9% (78.3%) 84.3% (80.0%)

Global NPDR Features

 1 avg_rR45CO2/44CO2 mainvar9 mainvar8 mainvar5

 2 sd_δ18O/δ13C mainvar4 intvar8 mainvar9

 3 diff2_acf1 mainvar1 mainvar9 mainvar1

 4 fluctuation intvar8 mainvar7 mainvar4

 5 time_kl_shift intvar3 var14 mainvar7

 6 — mainvar8 var64 mainvar10

 7 — mainvar2 intvar7 mainvar3

 8 — var64 var6 mainvar8

 9 — var35 — intvar4

 10 — — — mainvar6

3 Results

3.1 Global-NPDR feature selection and RF 
classifiers

Before performing local-NPDR on individual samples, we first 
perform global-NPDR using all training samples and train RF 
classification models for the real biosignature data and the three 
simulated datasets. For global-NPDR feature selection, we use a 
LASSO penalty (see Equation 5 in Section 2.1) and URFP distance 
(global-NPDR-LURF) for training data splits. The dataset was split 
into train (89 abiotic and 22 biotic) and test (51 abiotic and 12 biotic) 
sets that reflect the global imbalance (see Table 1 for further details). 
We train RF classifiers with tuned hyperparameters in the selected-
feature spaces. For all datasets, we use weights to compensate 
for class imbalance in RF classifier training where class_weights = 
1/num_class. For the biosignature training data (m = 140 samples, 
89 abiotic and 51 biotic), global-NPDR with hyperparameter λ = 
0.01 results in five selected features (bottom left of Table 1) out 
of 104 total predictors. Using these five features, the RF classifier 
with tuned hyperparameters mtry = 5, splitrule = “extratrees”, min. 
node.size = 7, and ntrees = 5,000 yields a training accuracy of 90.7% 
and a test accuracy of 91.2% (Figure 3a). The accuracy breakdown 

by class (biotic/abiotic) shows high prediction accuracies for both 
classes in the train and test data alike for the biosignature dataset, 
despite the class imbalance. The abiotic class accuracy in the training 
data is 91.0% and in the test data it is 95.5%. For the biotic class, 
in the training data the RF prediction accuracy using NPDR-LURF 
features is 90.2% and in the test data it is 83.3%, slightly lower.

For datasets Simulations 1-3, global-NPDR selected nine, eight, 
and ten features out of 100 (bottom of Table 1) with hyperparameter 
λ = {0.02, 0.013, and 0.01} respectively. The simulated datasets 
include functional features, which begin with “main” and “int” for 
main effects and interactions, respectively. Simulated features that 
begin with “var” are noise features and are not functional. The two 
simulated datasets (Simulations 1 and 2) that contain noise variables 
are also imbalanced datasets. The Simulation 3 dataset has balanced 
classes, and global-NPDR found no noise variables. This lower false 
positive rate for functional variables may be due to class balance 
or larger sample size. The resulting RF training (test) accuracies for 
data Simulations 1-3 are 77.9% (71.7%), 82.9% (78.3%), and 84.3% 
(80.0%), respectively (Figures 3b–d). The dataset with the highest 
accuracy (Figure 3d) is balanced between classes and has a higher 
sample size. In addition, main effects play a more prominent role 
in feature selection (Table 1, bottom last column). For the respective 
simulated data, the tuned RF hyperparameters were: mtry = {5, 8, 2}, 
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FIGURE 3
Random Forest (RF) train and test accuracies for real biosignature data and simulated datasets. (a) The RF classifier for biosignatures yields a 90.7% 
training accuracy. There are 51 biotic samples and 89 abiotic samples in the training data; five biotic samples are misclassified as abiotic (false 
negatives) and eight abiotic sample are predicted to be biotic (false positives). The biosignature train and test data show a similar high-accuracy 
performance despite class imbalance (class imbalance = 0.64), where the overall test accuracy is 91.2%. (b) Simulation 1 is an imbalanced simulated 
dataset (class imbalance = 0.6) that contains 144 class-1 training samples and 96 class-0 training samples, yielding an overall training accuracy of 
77.9%. This dataset shows a more balanced class accuracy in the training data than the testing data. (c) Simulation 2 data is also imbalanced (class 
imbalance = 0.6) with the same The two imbalanced simulated datasets show a discrepancyclass breakdown as Simulation 1 and shows similar 
behavior in terms of class accuracy imbalance in the test data but is even more pronounced. (d) Simulation 3 data is balanced and has a higher sample 
size (training data contains 200 class-0 and class-1 samples each). The class accuracies are balanced in both train and test data.

splitrule = {“gini”, “extratrees”, “extratrees”}, min. node.size = {12, 3, 
7}, and ntrees = {5,000, 6,000, 6,000}. The two imbalanced simulated 
datasets show a discrepancy in class accuracy that is most notable 
in the test data (Figures 3b,c), while the balanced simulated dataset 
shows a more balanced RF class prediction accuracy in both the train 
and test data (Figure 3d). 

3.2 Local-NPDR feature importance for 
true and false ML predictions

In the following sections we present the results of our local-
NPDR feature importance method to discriminate between true and 
false ML predictions in the three simulated datasets as well as the real 
biosignature BOW-δCO2 dataset. 

3.2.1 Local-NPDR feature importance for 
simulated data

For each sample in the train and test data, we calculate 
local-NPDR feature importance scores using a Ridge penalty, 

“lambda.1se” hyperparameter, and URFP distance for the set 
of global-NPDR-LURF features. Results from the test data 
are discussed here; see Supplementary Section S3 for training 
data results. For each sample, the total local-NPDR variable 
importance scores are computed (for the globally important 
features), and we use a t-test to compare the total local scores 
(TLS) between samples with a true and false prediction by 
the RF model. For the three simulated datasets Table 1, the 
total local-NPDR scores are higher in the true versus false 
prediction groups for both training (Supplementary Figure S3) and 
test samples (Figure 4). The elevated TLS in true versus false groups 
in the test data is statistically significant (with P-values: 4.6 · 10−6 to
7.9 · 10−12).

True and false predictions can be further broken down into true 
positive/true negatives and false positives/false negatives. For the 
simulated datasets, class-0 is taken to be the positive class. For the 
imbalanced datasets, this corresponds to the minority class, chosen 
to mimic the study design for the biosignature data. This means 
the true positive (TP) and false negative (FN) predictions involve 
the minority class-0 for the two imbalanced simulated datasets, 
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FIGURE 4
Total local-NPDR variable importance scores for true and false predictions in three simulated test (holdout) datasets. Total Local Scores (TLS) are 
computed for the globally important features based on LASSO NDPR. In each dataset, the local-NPDR scores are higher in the true (blue) versus false 
(red) prediction samples with very low overlap (all t-tests statistically significant). Detailed properties of Simulation 1-3 are given in Table 1. (a)
Simulation 1 is class-imbalanced and the mean total local-NPDR feature importance scores are higher in the true prediction group (P = 4.6 · 10−6). (b)
Simulation 2 data is also imbalance and the mean local-NPDR variable importance scores is higher in the true prediction group ( P = 7.9 · 10−12). (c)

Simulation 3 has a larger sample size, and the classes are balanced. Local-NPDR importance scores are also higher for true predictions (P = 2.1 · 10−12 ).

while true negative (TN) and false positive (FP) predictions involve 
samples of majority class-1.

Mean total local-NPDR variable importance scores for the 
imbalanced simulated datasets show different values for false 
negative versus false positive predictions in both the train 
(Supplementary Figure S4) and test data (Figures 5a,b). In both 
cases, the FP group, composed of class-1 samples incorrectly 
predicted to be class-0, has higher mean TLS than the FN group, 
made of class-0 samples incorrectly predicted to be class-1. 
This effect is likely due to class imbalance and is absent in the 
balanced simulated dataset (compare Figures 5a,b with Figure 5c), 
suggesting that local importance methods may be less reliable in 
the presence of imbalance, which is also a perennial challenge 
for classification methods. During RF classifier training of 
imbalanced datasets, the majority class may be penalized, and the 
algorithm attempts to maximize the classification accuracy of the 
minority class. This results in a higher classification error for the
majority class.

However, the RF prediction probabilities can help differentiate 
the true and false predictions in these cases (Figures 5d,e), where 
the average probabilities for false predictions are lower than 
those for true predictions. For the imbalanced datasets, the mean 
RF prediction probability for true positives (∼70%), representing 
samples of the minority class, is lower than for true negatives (>90%), 
samples of the majority class.

The balanced simulated dataset is less prone to the discrepancies 
in false prediction mean total local-NPDR variable importance 
scores (Figure 5c). In this case, both the FP and FN predictions 
have similarly low mean total local-NPDR importance scores and 
both the TP and TN predictions have much higher scores. For 
this dataset, the average RF prediction probabilities are also more 
balanced among prediction types, with false prediction probabilities 
both appearing at ∼65% or below and mean true prediction 
probabilities both being ∼75% (Figure 5e). This average probability 
being lower than the probability for the majority class in the 
imbalanced simulated datasets could be related to the lower sample 
size. However, because of the potential for TLS overlap between 
individual true and false predictions, especially in imbalanced 
datasets, it can be beneficial to incorporate other information 
for diagnosing sample predictions, such as the RF classifier
probability. 

3.2.2 Local-NPDR feature importance for 
biosignature data

For the biosignature data, the biotic class corresponds to the 
positive class. This means that TP and FN predictions involve the 
minority biotic class, while TN and FP predictions involve samples 
of the majority abiotic class. Since the sample sizes are small for the 
biosignature test data (for example, one prediction type, FP, has only 
one sample), we will discuss the mean total local-NPDR variable 
importance scores for the training data. In Section 3.3, we present 
results using local-NPDR variable importance in combination with 
RF prediction probabilities to diagnose false predictions on holdout 
simulated and biosignature data.

For the biosignature training data, both the FP and FN 
mean total local-NPDR importance score is higher than the TN, 
representing the abiotic samples (Figure 6a). This could be due 
to the much smaller sample size. If more samples were added, 
we might expect a distribution that more resembles that of the 
local-NPDR mean TLS in the imbalanced simulated datasets. 
Like the imbalanced simulated data, the mean RF prediction 
probabilities for the false predictions in the biosignature data 
are much lower than those for the true predictions (Figure 6b). 
The combination of indicators provided by both the mean total 
local-NPDR variable importance scores and the RF prediction 
probabilities provide a complimentary approach for identifying 
possible false or problematic predictions (in which the model is 
unsure of classification) in samples whose actual class is unknown.

3.2.3 Comparison of local feature importance 
methods

Using our RF models trained in the global-NPDR-LURF feature 
space as the base classifier for each dataset, we compare local-NPDR 
with local-RF feature importance. Details for each algorithm can be 
found in the Methods section. As with local-NPDR, we perform 
a t-test for the local-RF TLS between true and false predictions. 
For the three simulated datasets, the total local-RF scores are 
higher in the true versus false prediction groups for both training 
(Supplementary Figure S3) and test samples (Figure 7). The elevated 
TLS in true versus false groups in the test data is statistically 
significant with P-values ranging from 1.6 · 10−6 to 2.2 · 10−16. Again, 
there is the potential for score overlap between individual true and 
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FIGURE 5
Mean total local-NPDR variable importance scores for three simulated datasets [left panel, (a–c)] and mean RF prediction probability for the same three 
simulated datasets [right panel, (d–f)]. Values are broken down by prediction type on the x-axes (FN = false negative, FP = false positive, TN = true 
negative, TP = true positive). False predictions are indicated by red circles, true predictions by blue, and the number of samples of each prediction type 
are given next to the points. Class sample sizes are indicated in the legend for each dataset. Each row of figures is one of the three simulated datasets 
(accuracies summarized in Figures 3b–d). (a) The distribution of mean total local-NPDR variable importance scores by prediction type is affected by 
the class imbalance. The mean total local-NPDR variable importance score is high for true positives (class-0 samples correctly predicted to be class-0), 
true negative samples (class-1 samples correctly classified), and false positives (class-1 samples incorrectly predicted to be class-0). (b) The mean total 
local-NPDR feature score distribution by prediction type is similarly distributed to those in (a) (compare simulation parameters). (c) The mean total 
local-NPDR variable importance scores show a different distribution. In this case, the classes are balanced, there are more samples, and the main effect 
size is decreased to 0.8, while the interaction effects are kept at 1.5. For this dataset, the false negative and false positive scores are both lower than the 
true negative and true positive scores. (d) The mean RF prediction probability for the same simulated test samples as in (a) shows lowest prediction 
probability for false negatives, followed by false positives. (e) False positive and false negative mean RF prediction probabilities are lower than for true 
predictions for the same dataset as in (b). (f) For the simulated samples in (c), mean RF prediction probabilities are again lower for false predictions than 
for true predictions.

FIGURE 6
Mean total local-NPDR variable importance and mean RF prediction probability for the four different prediction types in the biosignature training data. 
The number of samples representing each type of prediction are indicated next to the points. (a) Local-NPDR mean total local importance score for 
each prediction type for training samples in the RF biosignature classification model. The dataset has a class imbalance of 0.64, where biotic is the 
minority class (and is also designated the positive class). This dataset shows a mean total local-NPDR importance score for FP samples that is larger 
than the score for TN samples, which mirrors behavior seen in the imbalanced simulated data (compare a and Figures 4a,b). (b) The mean RF 
prediction probability is below 70% for both FN and FP samples and higher for TN (>85%) and TP (>77%) samples.
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FIGURE 7
Total local-RF variable importance scores for true and false predictions in three simulated test (holdout) datasets. Total Local Scores (TLS) are 
computed for the globally important features based on LASSO NDPR. In each dataset, the local-RF scores are higher in the true (blue) versus false (red) 
prediction samples (all t-tests statistically significant). Detailed properties of Simulation 1-3 are given in Table 1. (a) Simulation 1 is class-imbalanced has 
and the mean total local-RF importance scores that are higher in the true prediction group (P = 1.6 · 10−6). (b) Simulation 3 is also class imbalanced and 
the mean local-RF variable importance scores are higher in the true prediction group ( P < 2.2 · 10−16). (c) Local-RF importance scores are in the 

balanced dataset Simulation 3 are higher for true predictions (P = 2.0 · 10−10 ).

false predictions, meaning that information provided by the RF 
probability model could be useful in identifying false predictions.

An analysis of the mean TLS for local-RF for train and 
test samples in the three simulated and biosignature datasets 
versus prediction type (FP, FN, TP, and TN) shows separation 
between both classes of false predictions and true predictions 
(Figure 8; Supplementary Figure S4). While mean TLS for local-
NPDR in some false predictions are higher than mean TLS for 
some true predictions, local-RF mean-TLS for false predictions 
are always lower than mean-TLS for true predictions (compare 
Figures 5, 8). Local-RF variable importance is expected to have a 
good performance at identifying false predictions, since this method 
is native to the classifier, and these results show that local-RF 
importance is less affected by class imbalance than local-NPDR. 
Limitations to local-RF variable importance were mentioned in 
Section 1 are discussed more in Section 4.

Both local-NPDR and local-RF result in statistically significant 
differences in mean-TLS between true and false predictions in the 
simulated datasets (Figures 4, 7). For the biosignature data, local-
NPDR variable importance indicates less clear separation between 
true and false prediction scores (compare Figures 6a, 8d), indicating 
the sensitivity of the multivariate regression to both imbalance and 
small sample sizes, discussed in more detail in Section 4. In the 
next section, we compare the ability of local-RF and local-NPDR 
to diagnose false predictions in “unknown” samples across the four 
datasets. While the results in this section may lead one to conclude 
that local-RF will always outperform local-NPDR, two additional 
sets of analyses on the test samples reveal a comparable performance 
between the two methods.

We perform LIME and treeSHAP explanation on the three 
simulations (Table 1) using the same tuned RF model restricted 
to LURF features that was used for local-NPDR and local-RF. We 
train the LIME and treeSHAP explainers on this data and test 
TLS scores on the holdout data for differences between true and 
false RF predictions (Figure 9). The total LIME and tree SHAP 
total scores are higher in the true prediction aggregated group 
(TP and TN combined) than the false prediction groups (FP and 
FN combined). However, the differences are less significant than 
local-NPDR (Figure 4) and local-RF (Figure 7), with some of the 
LIME (Figure 9b) and treeSHAP (Figure 9f) true/false differences 

not being statistically significant. The treeSHAP TLS distributions 
in the true prediction groups are consistently bimodal. This is due to 
the TN scores being positive and TP scores being negative. The TP 
scores are consistently in the opposite of the desired direction.

3.3 Diagnosing false predictions in 
“unknown” samples

Four samples, each representing the four prediction types, 
are chosen for further analysis from test samples in each of the 
simulated datasets and the biosignature data. Local-NPDR and 
local-RF total local importance scores are calculated for each of 
the four samples, as well as the prediction probabilities; for each 
method, we attempt to characterize the results as either indicative of 
a true prediction or a false one. Results for the simulated datasets can 
be found in Supplementary Section S4, and we present the results of 
this analysis for the biosignature dataset here.

Consider the case where the actual class of the four test 
samples is unknown. Local importance methods and classification 
probabilities can help us identify potentially false predictions in this 
scenario by analyzing the variable importance TLS for the samples, 
the individual local feature importance scores, and the RF classifier 
prediction probability (Figure 10). For example, given the fact that 
an “unknown” sample has a positive total local-NPDR score of 19.4, 
that only one of the features has a negative local importance score, 
and that the classifier reports an 82.1% probability that the sample is 
biotic, we accept this prediction as a likely true positive (Figure 10a). 
Likewise, for an abiotic classification with a high-magnitude positive 
local-NPDR score of 100.6, small-magnitude negative local scores 
for individual variables, and a RF prediction probability of 81.3%, 
we accept this classification as a likely true negative (Figure 10b). 
If the TLS for local-NPDR is close to zero or negative, if there 
are large-magnitude negative local variable importance scores, and 
if the RF prediction probability is low, these samples are subject 
to being flagged as potential false predictions (Figures 10c,d). For 
a sample with a local-NPDR score of −33.35, a large-magnitude 
negative score for the top global-NPDR ranked feature and an RF 
prediction probability of 55.5%, this biotic prediction is flagged as a 
potential false positive (Figure 10c). For an abiotic prediction with 

Frontiers in Astronomy and Space Sciences 11 frontiersin.org

https://doi.org/10.3389/fspas.2025.1651953
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Clough et al. 10.3389/fspas.2025.1651953

FIGURE 8
Mean total local score (TLS) for local-RF variable importance for four datasets. The number of samples representing each type of prediction are 
indicated next to the points. (a) Local-RF mean TLS for each prediction type for test samples in the simulated dataset with 71.7% RF test accuracy. Both 
FP and FN predictions have lower scores than TN and TP predictions. (b) Local-RF mean TLS for each prediction type for test samples in the simulated 
dataset with 78.3% RF test accuracy. Again, both false prediction groups show lower mean TLS than true predictions. (c) Mean TLS using local-RF for 
the simulated dataset with 80.0% RF test accuracy shows the most similar distribution between the two false prediction groups and the two true 
prediction groups separately, likely driven by class balance. (d) The mean local-RF TLS for the biosignature data training samples (depicted for 
increased sample sizes) shows lower FN and FP scores than TN and TP scores. Although imbalanced, this dataset shows the most similar TLS 
distribution to the balanced simulated dataset in (c).

FIGURE 9
Total local variable importance scores for true and false predictions in three simulated test (holdout) datasets for LIME (a–c) and treeSHAP (d–f). Total 
Local Scores (TLS) are computed for the globally important features based on LASSO NDPR. The mean TLS are higher in the true (blue) versus false 
(red) prediction samples, but the P-values and distribution overlap are higher between true and false groups than local-NPDR and local-RF. Detailed 
properties of Simulation 1-3 are given in Table 1.

a similar large-magnitude negative score for the top global-NPDR 
feature, a TLS of −67.6, and an RF classification probability of 63.3%, 
this sample is flagged as a likely false negative (Figure 10d).

An analogous analysis using local-RF as the importance method 
for the same four test samples uses similar reasoning (Figure 11). The 
magnitude of local-RF and local-NPDR variable importance scores 
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FIGURE 10
Typical distributions of local-NPDR variable importance scores for true and false predictions. Variables shown are listed according to global-NPDR 
importance ranking, with the most important feature for classification at the top. “Contradicts” (red) means the local-NPDR score of a variable is 
negative, in disagreement with the global-NPDR importance. “Supports” (blue) means the local-NPDR score for a variable is positive, in agreement with 
the global-NPDR importance. (a) For a biotic sample correctly classified as biotic by the RF biosignature model, a true positive, the overall local variable 
importance score is 19.4. This positive score indicates the local variable importance scores are mostly concordant with the assigned class for this 
sample (biotic). Additionally, the RF probability model reports a high prediction probability of 82.1%, increasing the likelihood that this is a correct 
prediction. (b) For an abiotic sample correctly predicted to be abiotic, a true negative, the total local score (TLS) is 100.6 and the RF prediction 
probability is 81.3%, suggesting this is a correct prediction. (c) For an abiotic sample incorrectly predicted to be biotic, a false positive, the TLS is −33.4. 
This large negative score flags the sample as a potential false prediction in which the assigned classed, biotic, is not concordant with the local variable 
importance scores of the two most important global-NPDR features. In this case the RF probability model yields a low prediction probability of 55.5%, 
further increasing doubt in the validity of this classification. (d) For a biotic sample incorrectly predicted to be abiotic, a false negative, the local-NPDR 
TLS is −67.6, with a large-magnitude negative score for the top global-NPDR feature. The RF probability is reported as 63.3%, and this along with the 
large negative TLS, indicates the sample is likely incorrectly classified.

differs because the nature of the methods is fundamentally different; 
local-RF importance scores are changes in accuracy after and before 
variable permutation, while local-NPDR scores represent regression 
coefficients for the pairwise sample regression. This means the 
magnitudes for the local-NPDR scores will vary by dataset, while the 
local-RF importance scores will always represent a change in percent 
accuracy. While the particular variables that are negative differ 
between local-RF and local-RF, the TLS for the true predictions 
are positive, in agreement with local-NPDR for the true positive 
(Figure 11a) and true negative sample predictions (Figure 11b). The 
TLS is negative for the false positive (Figure 11c) and false negative 
(Figure 11d) predictions, again in agreement with local-NPDR for 
these samples. In general, the concordance/discordance in true/false 
predictions is more pronounced in the local-RF scores for these 
samples than for the local-NPDR scores (compare the amount of 
blue in true and red in false predictions in Figures 10, 11).

To illustrate an applied comparative analysis, consider the case 
where we have a set of test samples with unknown actual classes 
and trained RF classifier and probability models. Suppose models 
are trained with global-NPDR selected features; each test sample 

is run through the classifier and probability RF models and is 
labeled with a prediction and probability. The goal of the local 
variable importance analysis is to “quarantine” the test samples 
that could be falsely predicted from the samples that we are most 
confident are correctly classified. To do this, we consider the class 
and probability output of the RF models in the context of the TLSs 
discussed above (Figures 10, 11) and define an RF probability and an 
NPDR/RF TLS for which we accept samples. A challenge is to define 
an appropriate RF probability and TLS threshold to flag samples. 
A detailed discussion of potential strategies is deferred until the 
Discussion; for now, consider that the TLS threshold will be local 
importance method dependent (compare the differences in local-RF 
and local-NPDR importance scores) and subject to user preference, 
as will the probability threshold. For this analysis, we use an RF 
prediction probability threshold of 75% for all datasets and both 
local importance methods.

We use local-NPDR importance score thresholds of {0.25, 0.35, 
0.35} for Simulations 1-3 with RF test accuracies of {71.7%, 78.3%, 
and 80.0%} respectively. These thresholds differ because of the 
different distributions of local-NPDR scores in the three datasets 
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FIGURE 11
Local-RF variable importance scores for the cases analyzed by local-NPDR (Figure 10). The variables are listed according to global-NPDR importance 
scores. “Contradicts” (red bars) means the local-RF score is negative (unimportant for classification) for a variable that is globally important, while 
“Supports” (blue bars) means the local variable importance score is positive, agreeing with the global importance of the variable. (a) A sample classified 
as biotic shows all positive local-RF importance scores in agreement with (supporting) the global variable importance scores. The total local score (TLS) 
is 0.18 and the RF prediction probability is 82.1%, indicating that this is likely a true classification of a biosignature. (b) With only one small negative 
variable importance score, this abiotic prediction has a TLS of 0.22 and a RF probability of 81.3%. We accept this abiotic classification as a likely true 
prediction. (c) A sample classified as biotic with a local-RF TLS of −0.015 and a RF prediction probability of 55.5% is flagged as a potential false positive 
prediction. (d) An abiotic prediction with a TLS of −0.07 and several negative variable importance scores has a 63.3% RF probability. This abiotic
prediction is flagged as a potential false negative.

(see Supplementary Figure S7). For the biosignature data, we use 
a local-NPDR score threshold of 25 (see Supplementary Figure S8). 
Analysis of the distribution of local-RF importance scores for the 
training datasets show a similar distribution among the datasets 
due to the nature of the importance score calculation. We therefore 
define a threshold of 0 for local-RF importance for all datasets. 
False samples in the test data for each dataset can be detected 
using both methods (Table 2). For the arbitrary thresholds defined, 
local-RF and local-NPDR perform comparably well, showing similar 
or comparable overall false prediction diagnostic rates (compare 
third and fifth columns, Table 2). For the biosignature data, the two 
methods flag the same falsely predicted samples, one false positive 
and one false negative (compare biosignature data in columns 4 and 
6), and the miss the same false negative.

In this example analysis, local-RF quarantines fewer true 
predictions than local-NPDR in all datasets. For example, in 
the simulated dataset with 71.7% RF test accuracy, local-NPDR 
flags 26 total samples while local-RF only flags 12. Out of 
the 26 flagged by local-NPDR, 14 are true predictions with 
low TLS; out of the 12 flagged by local-RF, only two are true 
predictions. It is worth mentioning that global-NPDR feature 
selection has significantly enabled local-RF in this analysis; this 
will be discussed more in Section 4. To summarize this applied 
analysis: local-RF and local-NPDR do a comparable job flagging 

false predictions in the three simulated datasets and the biosignature 
dataset. However, local-RF, when supplied with a model trained 
on global-NPDR selected features, flags significantly fewer true 
predictions than local-NPDR for all datasets. 

4 Discussion

One minimal way of providing explainability for ML tools is to 
provide a set of variables or features that are important for predicting 
the outcome of interest (Montavon et al., 2018; Roscher et al., 
2020), essentially feature selection (e.g., global-NPDR). If ML 
model prediction is to provide a deeper level of explainability, 
analyses beyond global feature selection are needed. Previously, we 
provided tools for global feature selection, for network visualization 
of how those features work together to affect model predictions 
(Lareau et al., 2015; Le et al., 2020), and applied local-RF variable 
importance to assess the relative likelihood that an individual ML 
prediction is true or false (Clough et al., 2025).

Here we present a new local feature importance tool, local-
NPDR, by extending global-NPDR variable importance to compute 
importance scores in the neighborhood of a single sample. Local-
NPDR uses a generalized linear model to contrastively determine 
whether neighbors of a sample of interest are in the same or different 
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TABLE 2  False prediction diagnosis rates for local-RF and local-NPDR variable importance methods for four datasets using either a RF prediction 
probability <75% or a TLS less than an arbitrary threshold.

Dataset RF test accuracy Local-RF false 
prediction 

diagnostic rate

FP/FN diagnosis 
rate: local-RF

Local-NPDR 
false prediction 
diagnostic rate

FP/FN diagnosis 
rate: local-NPDR

Simulated 1 71.70% 52.90% 61.5%/25.0% 70.60% 61.5%/100.0%

Simulated 2 78.30% 76.90% 75.0%/100.0% 61.50% 58.3%/100.0%

Simulated 3 80.00% 75.00% 72.7%/77.8% 90.00% 81.8%/100.0%

Biosignature 91.20% 66.70% 100.0%/50.0% 66.70% 100.0%/50.0%

class (hits or misses). Variable importance scores are coefficients 
in the contrastive loss optimization, which can include LASSO 
or Ridge penalties. NPDR is sensitive to detecting interactions, a 
significant advantage in feature selection and importance ranking 
for high-dimensional datasets. We used an URFP distance metric 
to define the neighborhood because it effectively handles non-
isotropic variable spaces and reduces correlation between variables 
(Clough et al., 2025); however, NPDR can accept any number of 
different distance metrics. In addition to the distance metric, the 
choice of k affects NPDR’s ability to detect interactions (Dawkins 
and McKinney, 2025). For global-NPDR, we used a default sample-
size-dependent k that reliably balances interaction and main effects 
and accounts for class imbalance. For local-NPDR, we used the 
maximum number of neighbors to increase power to detect 
important variables.

We used the local-NPDR scores to explain RF predictions of 
individual samples, and we used the total local score (TLS) of 
the globally important variables to help diagnose false predictions. 
We showed that high positive TLS for samples is associated 
with true predictions, and low or negative TLS is associated 
with false predictions. The RF sample prediction probability 
provided additional true/false diagnostic evidence. Additional 
explainability of sample prediction can be provided by putting 
the local-NPDR feature importance scores in the context of main 
and interaction effects in a statistical interaction network. This 
interaction network (computed by the regain function in the 
NPDR R library) is a pxp matrix that contains each variable’s 
main effect on the diagonal and interaction effects with other 
features on the off-diagonal entries (Supplementary Figure S2). The 
centrality scores of the variables in this interaction network give 
the cumulative effects of the interactions and main effects of each 
variable (Supplementary Table S1) (Davis et al., 2010; Lareau et al., 
2015). The ability to go beyond an importance score and see 
the individual effects of each variable and interaction provides 
additional explainability.

The context of the interaction network and the local-NPDR 
score distributions for each prediction type can be used to 
understand which variables are important for each prediction type: 
FP, FN, TP, FN (Supplementary Figure S3). This means the relative 
reliability of each feature can be understood and used to make a final 
decision about the likelihood of a particular sample being correctly 
or incorrectly predicted, providing another level of explanation 
with implications for astrobiology missions seeking isotopic 
biosignatures. For example, the top-ranked global-NPDR feature, 

avg_rR45CO2/44CO2 has a large interaction network centrality, with 
a moderate main effect while participating in two large-magnitude 
interactions (see Supplementary Figure S2, node 1). From local-
NPDR feature importance analysis on the biosignature training 
data, this variable is an important indicator for TPs and FPs, but a 
poor indicator of FNs and TNs (see Supplementary Figure S2). This 
means for a sample labeled biotic, a large positive local-NPDR score 
for avg_rR45CO2/44CO2 indicates the prediction likely represents a 
true biosignature, and a negative or a low-magnitude score means 
a likely false biosignature prediction. However, this variable on 
average has negative scores for TN predictions while being on 
average positive for FNs. This contradictory behavior indicates that 
it is important to consider the interactions this variable participates 
in rather assume a large main effect is driving classification, since it 
is a good predictor for some biotic and abiotic samples but not all.

If a particular sample is predicted to be abiotic, the local-
NPDR score for avg_rR45CO2/44CO2 should be considered in the 
context of other local variable importance scores. One of the largest 
statistical interactions that avg_rR45CO2/44CO2 participates in is 
with diff2_acf1, the third-ranked global NPDR feature. This feature 
is important for diagnosing FNs and TPs, and unimportant for FPs 
(Supplementary Figure S2), meaning that the sign of diff2_acf1 can 
help determine if a sample labeled abiotic is likely to be a FN or 
a TN–if a sample labeled abiotic has a negative local-NPDR score 
for diff2_acf1 and a large positive score for avg_rR45CO2/44CO2,
it is likely that the prediction is false, despite the fact that the 
local score for the top-ranked global-NPDR feature is large and 
positive, and may dominate the TLS. This understanding may result 
in the acceptance of more true predictions and the rejection of 
more false predictions in our applied analysis in Section 3.3 if 
it were to be encoded in the algorithm to accept or quarantine 
individual samples. This analysis illustrates the complexity of an 
extremely small variable space in terms of variable interactions 
and main effects and how they work together to inform certain 
prediction types. Understanding and appreciating this nuance can 
enable increased explanation and scrutiny for individual sample 
predictions in biosignature classification.

We compared local-NPDR with widely-used local explainers: 
local-RF, LIME and treeSHAP. Local-NPDR and local-RF showed 
a statistically significant higher TLS for true versus false prediction 
samples for all simulated datasets (Figures 4 and 7). LIME and 
treeSHAP TLS were also higher in the true prediction samples, but 
there was more overlap between true and false distributions and 
some of the differences were not statistically significant (Figure 9). 
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Despite having the largest sample size and being class balanced, 
the treeSHAP TLS difference was not significant for Simulation 3 
(Figure 9f). This could be due to the stronger interaction effects 
in Simulation 3 compared to the main effects. Local-NPDR had 
the lowest P-value of its results for Simulation 3 (Figure 4c) while 
this simulation did not yield the lowest P-value for local-RF 
(Figure 7c). NPDR has been shown to have good power to detect 
interaction effects whereas RF has some limitations when detecting 
interactions. However, feature selection prior to running local-RF 
helps its sensitivity to interactions. The LIME TLS difference was not 
significant for Simulation 2 (Figure 9b), which is imbalanced and has 
a lower sample size than Simulation 3.

The simulated data enabled us to compare the differential effects 
of class imbalance, sample size, and the relative magnitudes of 
main/interaction effects for variables, and we can see through 
this analysis that it is a combination of interaction effects 
and class imbalance that affects both classification and feature 
importance methods in the biosignature dataset. This has immediate 
implications for the deployment of ML methods for astrobiology 
missions: for real complex datasets, as geochemical isotopic data 
for biosignatures is, the ability to detect statistical interactions is a 
significant advantage.

For RF permutation importance, the sample must be part of the 
training data, meaning that a new RF model must be trained to 
generate local-RF variable importance scores for a single new test 
sample. Local-RF does better with class imbalance and the small 
biosignature dataset in terms of separating true and false scores, but 
because it is a method used during classifier training, the nature 
of the model could change during the re-training process itself. 
For the analysis of a single new sample, the change to the base 
classifier is expected to be negligible; however, if many new samples 
are introduced in order to generate local-RF importance scores, 
this could significantly alter the model from the one that originally 
classified the sample, altering the explainability and in a worst-case 
scenario, the truth of the outcome variable.

As mentioned in Section 3, the practice of diagnosing false 
samples using a TLS method requires appropriate thresholds for 
the RF probability and the TLS to flag samples (see Table 2). 
While the probability and TLS thresholds used in our comparative 
analysis are based on properties specific to our training data, 
both local-NPDR and local-RF can successfully diagnose false 
predictions using various TLS and probability thresholds. Different 
TLS and probability thresholds result in different numbers of 
samples being quarantined, some of which will be true predictions 
that have a low TLS and/or low prediction probability. Future 
work will incorporate data-driven statistical thresholds such as 
two-mode Gaussian mixture modeling, where the two modes 
represent true and false predictions. One way to decide a reasonable 
TLS threshold is to analyze the distribution of scores in the 
training datasets for each local importance method and decide 
a threshold that will minimize samples being flagged in the 
training data (Supplementary Figures S6–S8). Regardless of the 
thresholding method, the acceptable risk for false predictions will 
be user and application dependent. For example, in terms of 
biosignature detection for a future astrobiology mission to an 
OW, there may be very little tolerance for a false ML prediction. 
Researchers may use a much stricter RF probability threshold than 
75%, and a lower TLS to diagnose potential false predictions. 

The tradeoff of using a stricter threshold is an increase in false 
negatives (true predictions quarantined). Additionally, knowledge 
of statistical interactions and the relative importance of each 
variable (e.g., as quantified in NPDR’s epistasis rank) for each 
prediction type may be incorporated into an analysis of a ML 
prediction, ensuring a more robust explanation of the likelihood 
of a true or false prediction. This type of nuanced analysis can 
be leveraged to preserve mission resources for future astrobiology 
missions by increasing the fidelity of the local-NPDR false prediction 
diagnosis method.

In the current study we show that local-RF variable importance 
benefits from global-NPDR feature selection. In our application 
example, local-RF flagged fewer true predictions potentially as 
false than local-NPDR, enabled by global-NPDR feature selection. 
It has been previously shown that the RF biosignature classifier 
benefits from global-NPDR feature selection using an URFP 
distance metric (Clough et al., 2025). Since RF has no statistical 
threshold for limiting the number of variables, if feature selection 
were not performed, the user would have to decide which of 
the ∼100 features (in our example datasets) to use in a local 
importance analysis. Using all ∼100 features, some of which are 
noise or highly correlated, is likely to result in overfitting, potentially 
compromising the performance of the local-RF false prediction 
diagnosis method. The LASSO version of NPDR provides a feature 
selection threshold that helps local-RF determine local variable 
importance and therefore to detect false predictions.

Global-NPDR feature selection also allows the RF classifiers 
to be computationally more lightweight than if the classifier were 
required to use the full variable space. In a case where training a new 
model is required–as is the case for the local-RF variable importance 
method–that process is much less computationally intensive. This 
has implications for applications such as onboard learning in 
automated space exploration. NDPR variable importance methods, 
both global and local, can contribute to ensuring ML models and 
data products are an appropriate size for use on flight computers 
while maintaining accuracy and increasing interpretability.

It is therefore the best practice to use some form of feature 
selection, like global-NPDR with LASSO penalty. This approach 
is sensitive to statistical interactions in high-dimensional datasets, 
making it a natural choice in complex real datasets such as IRMS 
measurements for astrobiology, or gene expression data for disease 
prediction. The URFP distance metric adds an additional ability 
to construct a neighborhood in a non-isotropic variable space, 
an advantage over traditional distance metrics. NPDR provides 
additional information about each variable’s contributions in terms 
of main effects and interactions, which enables a more in-depth 
analysis of each prediction based on the local-NPDR importance 
scores. This allows us to gain much more than a prediction label 
for each experimental sample we wish to classify. We can start 
to articulate how the black box RF is using individual variables 
to inform classification, and exactly how particular variables 
may be fooling the model in the case of false predictions. The 
implications for this increased understanding in the search for OW 
biosignatures are that we can encode our quantitative understanding 
of variable effects and each variable’s ability to classify samples 
of a particular class into our science autonomy framework for
exploration. 
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5 Conclusion

One of the primary goals of science is to explain how and 
why, however black box ML models in scientific applications are 
antithetical to this goal. We develop a new ML explanation tool, 
local-NPDR, and test it on three simulated datasets and one real 
dataset. Two of the simulated datasets are class imbalanced and one 
has decreased main effects. The real biosignature-analog dataset has 
a small sample size, is similarly imbalanced, and is known to have 
lower variable main effects. Our local-NPDR ML tool can be used 
to help explain why a single sample is predicted to be in a given 
class based on the variable importance weights. These weights are 
computed based on their ability to model the contrastive probability 
(hits and misses) for samples in the target sample’s neighborhood. 
The sign and magnitude of the NPDR TLS of globally important 
variables can be used for diagnosing the likelihood of the sample 
prediction (biotic or abiotic) to be true or false. In conjunction 
with single sample RF prediction probability, local-NPDR can be a 
useful tool for future astrobiology missions. The consensus of local-
NPDR and local-RF importance methods could improve the ability 
to detect false samples and discriminate them from flagged true 
predictions.

Local-NPDR variable importance has the potential advantage 
of being calculated independently of the classifier. The ability to 
apply a method that is independent from (agnostic to) the ML 
classifier to diagnose false predictions can be an advantage as it 
avoids biases in explainability caused by using the local importance 
method native to the classifier. If local-NPDR and local-RF were 
used together, the likelihood of successfully quarantining most if 
not all falsely predicted samples significantly increases. However, 
potential limitations of all methods should be considered in high-
risk applications. If new samples are very different from samples 
used to train the models, numeric instability in the local regression 
may result from distances that are too large between neighboring 
samples. While this is a potential limitation if not considered, with 
awareness it can be turned into an indication that the model being 
used is no longer appropriate, an important conclusion in any high-
risk domain.

Being independent of the classifier could also be a potential 
limitation, since it will not be a perfect explainer for the classifier. 
In other words, it may be preferrable to have a local explainer that 
explains the mechanisms of a particular classifier. We limit this by 
training the RF classifier with global-NPDR selected features, and 
then local-NPDR will be informative as to whether the outcome 
label generated by the classifier matches what is expected by the 
algorithm in the context of a neighborhood of samples in the global-
NPDR feature space. Another way to link local-NDPR to a specific 
classifier could be to use nested cross-validation feature selection 
(Parvandeh et al., 2020). Since local-NPDR requires a distance 
matrix, it still requires access to the training data, like local-RF. 
However, no model re-training or hyperparameter tuning is needed. 
Local-NPDR showed evidence of being sensitive to imbalance and 
small sample sizes while local-RF was less susceptible. Despite 
these challenges, local-NPDR performs similarly well to local-RF in 
diagnosing false test predictions in the biosignature dataset and in 
the simulated datasets (see Table 2).

Class imbalance can affect both global and local feature 
importance methods. Notably, the simulated dataset with class 

balance and an increased sample size contained zero noise features 
in the global-NPDR-LURF selected features space and was the 
best performing simulated dataset for local-NPDR analyses. An 
important area of future research will be to improve performance 
for imbalanced data. Additional future work will extend NPDR and 
local-NPDR to non-tabular data such as images or time series using 
representation learning, both of which would enable a lightweight 
version of traditionally computationally intensive methods with 
added interpretability. Another potential limitation is the need to 
have a neighborhood of labeled samples, rather than a statistical 
model, to compute local-NPDR score of a single sample. As 
mentioned, local-NPDR could be combined with classifier-specific 
local importance methods, if available, to further improve the 
detection of false predictions.

In addition to improvements in ML algorithms and 
explainability, improvements in biosignature detection require 
close attention to data collection. Both scientific and ML models 
inherently include some degree of bias, as they rely on initial 
assumptions or hypotheses before data collection. The resulting data 
with their biases are then used to identify generalizable patterns. 
Such assumptions, for example, make it challenging to develop fully 
agnostic biosignature models from laboratory data. However, both 
science and ML can guard against biases and discover more general 
models by making predictions on new data that test the limitations 
of the existing theory or model. For instance, precise measurements 
of blackbody radiation exposed shortcomings of classical mechanics 
(the ultraviolet catastrophe), ultimately leading to a more general 
atomic theory (quantum mechanics) (Gamow, 1985). Similarly, in 
ML, using data outside the training domain can identify limits of 
a model’s validity for prediction. For example, depending on the 
initial training data, an ocean world (OW) biosignature model may 
not be valid for certain ranges and combinations of temperature, 
volatiles, pressure, and salinity.

Both global- and local-NPDR feature importance methods add 
to the explainability tools currently available for ML methods, 
which is especially important for high-risk prediction domains. For 
such ML applications, it is expected that researchers (humans in 
the loop) will work with the ML algorithm output to ultimately 
reach the most informed conclusion possible about the prediction 
in question and mitigate risks associated with false predictions. 
It is essential to ensure the training data is representative of 
the deployment environment and its limitations understood, that 
models are responsibly trained and validated, that models limit 
noise features and highly correlated features, and tools are included 
that can help understand individual predictions and diagnose 
false predictions. Producing a prediction is only a first step 
in ML; as in science, it is more important to understand the 
nature of the prediction, how it was made, and whether it 
should be trusted. Our ML tools take this step in providing
explainability.
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