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Explainable machine learning (ML) is important for biosignature prediction on
future astrobiology missions to minimize the risk of false positives due to
geochemical biotic mimicry and false negatives due to environmental factors
that mask biosignatures. ML models often use feature importance scores
to provide insights into model prediction mechanisms by quantifying each
variable’s contribution to the prediction. Global variable importance methods
aggregate information across all training samples and therefore do not provide
interpretation for the classification of a single sample. In contrast, local variable
importance scores quantify the contribution of variables to the classification of
a single sample and can therefore help explain why the sample was predicted
to be in a certain class and diagnose whether it is a false prediction. We
present a new local variable importance method that handles nonlinearity,
statistical interactions, and includes penalized feature selection. Our approach
represents a local version of Nearest-neighbor Projected Distance Regression
(NPDR) feature selection. We evaluate local-NPDR on complex simulated data
and real data from a study of carbon and oxygen isotopic biosignatures using
laboratory-generated ocean world analogue brines. The ability of local-NPDR
to differentiate between true and false predictions is compared with other
common local importance methods. Local-NPDR is able to diagnose individual
false predictions using the concordance between global and local scores, and
it can explain mechanisms of true and false predictions. These features allow
local-NPDR to integrate scientific explanations of single-sample ML predictions
to support a more comprehensive framework for biosignature detection.
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1 Introduction

“It is the desire for explanations which are at once systematic
and controllable by factual evidence that generates science;
and it is the organization and classification of knowledge on
the basis of explanatory principles that is the distinctive goal
of the sciences”

-Ernest Nagel, The Structure of Science

Machine learning (ML) has become a widespread tool for
scientific data analysis and is increasingly used in hybrid modeling
to predict physical processes (Noordijk et al., 2024). In a utilitarian
sense, the goals of ML and science parallel each other: both
seek to make accurate and practical predictions. Science and ML
achieve this by finding generalizable regularities in data that can
be used for prediction. In science, these regularities may become
elevated to the status of a law, which is a distillation of complex
data in a form that services another, deeper goal: explanation
or understanding. Indeed, one of the most important goals of
science is to make nature intelligible to humans by providing
insights into the mechanisms by which natural phenomena occur;
i.e., to provide scientific explanations (Nagel, 1979). For ML,
regularities found in data are encapsulated in a statistical model
or algorithm; however, ML model predictions usually cannot be
easily explained like a scientific law and are often likened to
“black boxes”

Increasingly in critical and high-risk domains, the need
for transparency, explainability, and interpretability in ML
model predictions has been recognized (Linardatos et al., 2020;
Roscher et al., 2020). Transparency means that the algorithmic
mechanisms and parameter space through which ML predictions are
made are understandable and reproducible, while interpretability
refers to the ability to draw connections between model predictions
and the scientific domain to be understood (Montavon et al.,
2018; Roscher et al., 2020). Explainability can be defined as a
highly relevant feature (variable) space (Roscher et al, 2020)
through which interpretations about model predictions can
be made. To add explainability to ML model predictions, a
variable space that is mathematically (and if possible, physically)
understandable can be leveraged to connect the variables (and
their physical/mathematical meanings) to the particular ML
predictions being made and to the scientific problem at hand (i.e.,
interpretation). These tools provide a series of explanatory principles
upon which the ML model prediction can be understood. In this
way, trust and explainability in ML are inextricable, as they are
in science.

Astrobiology offers an enticing problem for ML: how can we
accurately detect the presence of life in an unknown environment
of unknown history? The ability to trust an ML model prediction
is crucial for such a high-risk scientific question. In the remote
locations of proposed astrobiological targets, it is not possible to
directly verify whether a biosignature prediction is true or false.
Therefore, explanatory false detection tools will be necessary for
astrobiology missions. False positive (FP) and false negative (FN)
biosignature detection using remote sensing is a well-documented
and

challenge

(National Academies of Sciences, Engineering,
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Medicine, 2019). Abiotic environments with complex geochemistry
can mimic a biosignature, leading to a FP, or the environment can
mask a biosignature prediction, leading to a FN (Clough et al,
2025). Autonomous decision making based on ML and artificial
intelligence (AI) can make space missions more efficient, but the
risk of false predictions must be mitigated, both to protect mission
resources and to instill trust in real-time ML analysis of collected
data (Theiling et al., 2022; Da Poian et al., 2025). These examples
underscore the importance of interpreting ML predictions in
the context of the geochemical environment, using training data
that accurately reflects the target deployment environment, and
diagnosing false predictions.

Although not universally the case, ML tends to suffer
from an accuracy-explainability tradeoft (Ali et al, 2023). As
data dimensionality (number of features) has increased across
research fields, ML models have improved in accuracy but
grown in complexity, often resulting in “black box” systems
with limited transparency of their decision-making process and
relevant predictors (variables). This high-dimensionality and
increased opacity in algorithmic mechanisms results in decreased
explainability. For scientific models, explanation is often built into
the model in terms of the mathematical symbols that describe
physical laws. In this way scientific and ML models have different
levels of inherent transparency and explainability. The most
transparent model is one whose exact mechanism for prediction
is comprehensible to a human. For example, a decision tree model
has a high level of transparency (i.e, a “transparent box”). Its
decision-making process can be followed for each variable split
in the tree for a given sample, and the structure of the tree gives
some explainability as well: nodes (variables) at the top have the
highest variable importance and branches connecting variables
may suggest conditional relationships. Unfortunately, its prediction
accuracy is not high enough in most applications, which led to
resampling methods like Random Forest (RF) (Breiman, 2001).
The many trees (forest) used by RF to vote on sample classes
is responsible for its improved accuracy but also reduces its
explainability.

ML tools can provide global and/or local explainability; global
explainability results from generalizations made across all training
samples, while local explainability focuses on one sample or a
neighborhood of samples (Roscher et al., 2020). While RF is on
the opaque end of the transparency spectrum, it does provide
tools for global and local explainability such as permutation
variable importance (Breiman, 2001). For an important variable,
the permutation importance score increases if the out-of-bag (oob)
accuracy of the model decreases after permuting the variable.
Permutation importance thus provides a degree of explanation by
ranking which variables the RF model finds most necessary for
prediction. This importance method is global in that it aggregates
information across all training samples and the scores are not
specific to explaining an individual sample’s prediction. To address
this, RF has a local version of permutation importance that gives
variable importance scores specific to the prediction for each sample
in the training data.

Recently, we showed that local (single-sample) RF variable
importance has the potential to add to the explainability of
ML biosignature model predictions and can help diagnose false
predictions (Clough et al., 2025). We used our Nearest-neighbors
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Projected Distance Regression (NPDR) global feature selection with
an RF classifier for biosignature prediction (Le et al., 2020), and
we computed the discordance between global and local scores
for single samples to diagnose false predictions. This global-local
discordance provided important insights; however, existing local
variable (or feature) importance methods face limitations such as
needing samples to be in the training data, the lack of a statistical
threshold for feature selection, and limited ability to account for
statistical interactions. A statistical interaction occurs when the
effect of a feature on the outcome variable depends on one or
more other features (McKinney et al., 2006). An example of an
interaction is conditional correlation between pairs of variables that
depends on the outcome variable and may occur without either
variable having a main effect. These interactions are likely to be
important for uncovering biotic mimicry (Clough et al., 2025),
and therefore techniques for evaluating the probability of true/false
positive or negative predictions of biosignatures are needed for
future astrobiology missions.

In high-dimensional variable spaces expected for data
(e.g.
spectroscopy), RF has low power to detect statistical interactions

of astrobiological relevance mass spectrometry and
between variables that may be important for classification because
variables are selected in trees preferentially based on main effects
(McKinney et al., 2009; Wright et al., 2016). However, our global
feature selection method, NPDR, has shown high power to detect
both main effects and statistical interactions in the biosignature
model, and it uses a regression penalty to yield a reduced
dimensionality space of independent features (Clough et al., 2025).
In the current study, we present an additional mechanism for
evaluating the reliability of biosignature predictions. We extend
NPDR to compute local or single-sample importance scores to
take advantage of NPDR’s ability to detect complex relationships
between variables. Our global variable importance ML tool helps
satisfy the deeper goal of science to provide explanations by allowing
an ML model to be trained in a selected features space that is
as relevant as possible to the outcome being analyzed. Our local
feature importance ML tool introduced in the current study provides
explanatory analysis for a single sample in the context of globally
important variables and a given ML prediction. Crucially, this
analysis allows for a determination of whether a single sample
prediction is likely to be true or false without knowing the actual
sample label.

The critical need for explainable ML methods across multiple
disciplines has given rise to additional local methods since the
advent of local-RF, such as Local Interpretable Model-Agnostic
Explanations (LIME) and SHapley Additive exPlanations (SHAP).
LIME creates local importance scores for models by fitting
a surrogate linear model to synthetic samples in the local
2016). SHAP
uses game theory concepts to provide model agnostic local scores

neighborhood of a query sample (Ribeiro et al,

that contribute to the prediction of a sample, while TreeSHAP
provides local feature explanations specifically for tree based models
like RF (Lundberg et al., 2020). These core tools have been used
in a variety of scientific and medical domains including those
related to geosciences such as physical oceanography (Navarra et al.,
2025), flood susceptibility (Choubin et al., 2025), and CO, changes
2025). We compare local-NPDR and
local-RF with these prominent methods.

in the soil (Novielli et al.,
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The remainder of the manuscript is organized as follows. We
describe the new local-NPDR method for single-sample variable
importance, and we describe the simulated and real biosignature
data. We compare local-NPDR with other local feature importance
methods for the simulated data and real biosignature laboratory data
based on the ability to explain and detect false predictions. The local-
NPDR method is not specific to a given (ML) classifier, and it is
able to model nonlinear decision boundaries and detect statistical
interactions between features. We use local scores to explain which
features a classifier might find most important for classifying a
specific sample, and we use the discordance between global and
local scores combined with single-sample prediction probabilities
to flag potential false predictions. We then discuss the necessity
of explainability and false prediction assessment for high-stakes
predictions such as astrobiology biosignatures.

2 Methods

In this section, we first describe the local-NPDR algorithm
and formalism in the context of global-NPDR feature selection
along with an illustration of its use for diagnosing true and false
predictions. Next, we describe the procedure for designating a
prediction as likely true or false based on the total local scores
for concordance (positive) and discordance (negative) for globally
important features. Finally, we describe the simulated and real
biosignature datasets for validation of the local-NPDR algorithm.

2.1 Local-NPDR: feature importance for a
single sample

Consider a pair of samples or neighbors i and j that are distinct
rows of an m x p data matrix X with m samples and p variables.
The class vector y has length m. To describe the NPDR contrastive
loss, we use the contribution to the binary cross-entropy for a pair
of neighbors given a set of regression coefficients represented by 3,

£4(8F) =5, (3,00) - (1-8,0))n(1-4,00)

where 5 is the hit/miss indicator variable and d (X) is the predicted

1

probablhty that the two samples are in dlfferent classes (e.g., for
the probability of a miss, 8,7 =1). The indicator variable can have
two values: §;; =1 if the pair of samples are in a different class
(y; # ;) and §; = 0 if they are in the same class (y; = =y,). The
predicted probability Equation 2 is computed using the following
logit transformation

1

dj(X) = ————
/ 1+ ¢ (BotBd;(0)

()
of the multivariate model of projected distances, :iij(X), of all
independent variables in X. In other words, for a fixed pair of ij
neighbors, each element of the vector, d (X) is an absolute difference
between their values for each 1ndependent variable in X. We refer to
these differences as projected distances onto a variable axis in the
p-dimensional space. For example, if X were a numeric data matrix,
the vector of projected distances (Equation 3) would be

;) = (|X: - X, | [ X, X,|)- 3)

_ijl)...) X,

frontiersin.org


https://doi.org/10.3389/fspas.2025.1651953
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Clough et al.

The goal of local-NPDR is to find the variable importance scores
() that minimize the penalized negative log-likelihood (or cross

). (4)

The penalty is implemented via the R library glmnet, which

entropy) over the neighborhood N, (i) of sample i

ﬁgocal = min
B,

PRI RN
i JEN, (i

allows for a blend of L, and L, regularization in a method called
the “elastic net” (Tibshirani, 1996), and it can be used for Ridge
(L,, «=0) or LASSO (L, & = 1) penalized regression. We typically
use LASSO (Least Absolute Shrinkage and Selection Operator)
for global-NPDR feature selection and tune A via cross-validation.
This reduces the selected feature space and increases variable
independence. The nature of the derivative of the absolute value
function in LASSO prevents regression coeflicients from shrinking
further once reaching zero as A increases, but rather they stay zero.
For local-NPDR, we typically employ a Ridge penalty because we
have already reduced the feature space using global-NPDR and
want to keep the rankings of all selected features. The quantity
N, (i) is the set of neighbors of sample 7, and the resulting NPDR
attribute scores, Elaml, are local to each sample i. The neighborhood
is computed independently of the class status of samples and is
defined using a distance matrix, discussed more below. These local
variable importance scores indicate the importance of features that
allow the single sample to discriminate whether neighbor samples
are in the same or a different class as the target sample. If a
variable were involved in an interaction, NPDR would reflect this
in the importance score because it uses nearest neighbors that are
computed in the higher dimensional space of all other variables.
This makes NPDR multivariate even when scoring a single variable
for a single sample. The Ridge or LASSO version of NPDR includes
additional multivariate effects in its model.

We illustrate how local-NPDR feature selection can add support
for true ML predictions of single samples (blue box sample I,
Figure la) and can help identify false positive predictions (red box
sample 1, Figure 2a) by comparing the local score for a globally
important variable (purple variable A on the vertical axis, Figure 1).
The global importance can be determined using global-NPDR. For
completeness, the global NPDR scores are computed by minimizing
the following penalized cross entropy

(3 % aehaelfl, - a-wlfl)). ©

i=1jeN,(i)
which, in contrast to Equation 4, includes the sum over all samples

>global .
P = min
BoP

i from 1 to m.

The fact that the purple variable A is globally important for
classification can be seen by noticing that its mean for the %
class is larger than its mean for the ‘0’ class (Figure 1). Note that
in contrastive feature selection methods such as NPDR, a sample
contributes positively to a variable’s importance score if the projected
distance along that variable axis to its opposite-class nearest
neighbor (A,;, delta miss) is greater than the projected distance
to its same-class nearest neighbor (Ag, delta hit). This differential
Ay — Ay quantifies how well the variable keeps hits close together
and misses farther apart in a neighborhood (McKinney et al., 2013).

First we consider how the globally important variable is affected
locally in the local-NPDR contrastive loss (Equation 1) for Sample-1
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when the sample is in the correct X’ class (x; in blue box, Figure 1a).
Specifically, we estimate the contributions to the contrastive loss
(Equation 1) for variable A and Sample-1 using k = 2 neighbors.
In this case, the two neighbors are Sample-2 (same class as Sample
1 (hit): X’) and Sample-3 (opposite class of Sample 1 (miss): ©).
The neighbor-pair loss for the miss L;, is low (good fit) because
the projected distance d,, is small (Figure 1b) leading to a small
d,, miss-probability, and their actual miss state is &,, = 0, which
causes the first term to be zero. That is, the non-zero quantity
—ln(l —QIZ(A)) will be a small positive loss (good fit), and the
contribution to the local score from A for Sample-1would be
relatively large. The neighbor-pair loss for the hit L,; is also low
(good fit) because, while d,; is large, their actual miss state is
0,3 =1, causing the second term to be zero. The remaining non-
zero part of the loss -85 ln(ciw(A)) will be a small positive
quantity, and the contribution of Sample-1 and Sample-3 neighbors
to the local score for variable A will be relatively large. This high
importance score in the local neighborhood of sample x, for the
globally important variable A (concordant local and global scores)
is supporting evidence that sample x; is a true positive (Figure 1c).
In contrast, if we incorrectly label Sample-1 (‘0’ instead of X in
Figure 2A), the neighbor losses will be high (bad fit, Figure 2b) and
the importance of variable A in the local neighborhood of Sample-1
will be low (Figure 2c¢), discordant with the global importance of A
and suggesting that Sample-1 might be a false prediction.

The quantity k in N (i) is the number of nearest neighbors used
for sample i in NPDR, sometimes referred to as knn (k-nearest
neighbors). This number can vary from sample to sample or be
uniform (same for all samples). For global-NPDR knn, we use
k-Do,,, which is the expected number of neighbors that are within
Y, standard deviation of the mean distance (Do,;,) between all
sample pairs. For local-NPDR, which focuses on only one sample, we
use knn_max = m— 1 because it maximizes the statistical power by
using all possible samples in the neighborhood of the single sample.
The tradeoff is a decreased ability to detect statistical interactions:
using knn_max causes NPDR and Relief-based methods to become
myopic; that is, focused on the importance of single variables
(McKinney et al., 2013; Dawkins and McKinney, 2025). Once an
appropriate neighborhood is determined, the imbalance between hit
and miss groups in the neighborhood of the sample is accounted for
by regression model weights using the ratio 1 - num_in_class/num_
samples.

The nearest neighbors are determined from a chosen distance
metric in the full space of variables. For the current study,
we employ a novel distance metric called the Unsupervised
Random Forest Proximity (URFP), chosen due to its ability to
account for a non-isotropic variable space and its performance in
the biosignature dataset compared with a traditional Manhattan
distance metric (Clough et al., 2025).

2.2 Random forest variable importance

We compare local-NPDR with other local importance scores,
including local-RE, a method native to the RF classifier (Breiman,
2001). In global-RF variable permutation importance, the oob
samples are fed into each tree of the forest to compute classification
accuracy. By definition, the oob samples (about one-third of the
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Positive/Supporting Local Score: True Prediction x, (Sample-1 correctly classified)

a. i b. Lossfunction or cross-entropy i c.
| Li]' =—6ijln(¢ii,-(A))—(l—Sij)ln (1—&11(A)) !
Important Variable x X d;;(A): probability of prediction Variable Aimportance (Samples)
ﬁ JUEEERRED “x X 8;j = 1 (miss) or 0 (hit)
. ! !

! Small d;,(4) and low d;,(4) miss-probability ! Global Score
Leads to small loss and positive score

(612=0) AO . Sample 1
1 le =_}24((Vd12(14)) - (1 - 612)111 (1 - dlZ(A) 1 (supports prediction)

Large d13(4) and high d;3(A) miss-probability 0
° o Leads to small loss and positive score Ay > Ay for miss 8=1
° ! (613=1) # 0 I Agrees with global result

T Lyz =-653ln (313 (A)) - (14 613)In (1 —dy3 (A)) I Positive Local Score
Unimportant Variable

Neighbor Pair Losses L1, and L43 are low, leading
1 toahigh local score for attribute A from sample 1
1 1

FIGURE 1

Local-NPDR mathematics for a correct classification with a positive (supporting) local feature importance score. (a) Consider hypothetical Sample-1 of
class %’ (blue highlighted x;) and two features, one simulated with a main effect for classification, i.e., for discriminating between class x"and ‘o’ samples
(variable A, purple) and one unimportant variable with no effect. The nearest neighbors for Sample-1, indicated inside the dashed neighborhood circle,
are Sample-2 (x,, same class as Sample-1) and Sample-3 (o3, different class than Sample-1). The projected distances between Samples-1 and 2 for
variable A (d;,»(A)) and Samples-1 and 3 (d;3(A)) are also indicated by A (hit) and Ay (miss) because their actual hit/miss statuses are §,, = 0 (hit) and 8,3
=1 (miss). Note that the projected distances for these same samples onto the horizontal axis (unimportant variable) are negligible because this variable
cannot discriminate between samples in class x” or class 0". (b) Local-NPDR loss function for the two nearest neighbors of Sample-1 (see Equation 1).
Note the total loss for variable A (for Sample-1) is the sum of all pairwise loss functions for all local neighbors. The loss functions for two pairs of
neighbors (£, and L;3) are small because Sample-1is correctly classified and the §'s are correctly assigned as 8;, = 0 (hit) and 8,5 = 1 (miss). (c) These
low losses for the true classification of Sample-1 as class X" lead to positive local scores for important variable A in agreement with the global score.

Negative/Contradicting Local Score: False Prediction o, (Sample-1 misclassified as o,)
! Loss function or cross-entropy !
a. i b. i C.
1 - - 1
i Ly == (dy () - (1= 8;)n (1= dyy(a)) 1
Important Variable x X i d;j(A): probability of prediction | Variable Aimportance (Samples)
A JUPEET. x X 8;j = 1 (miss) or 0 (hit)
Iy . RS
// ™\ Small d,,(4) and low d;,(A) miss-probability Global Score
d12(A) = Ay { 512= 1 ! Xz N Leads to large loss and negative score
T N 0
:‘ :: R (612=1) R Sample 1
dialA) = Ay 1 | 83=0 % Liz = 8yaln (dia (1)) - LABi)n (1 - dip () | 1 FEEEE
\ o /I : | prediction)
- "; H Large d;3(A) and high d,3(4) miss-probability H 0
o o o Leads to larg; loss and negative score Ay < Ay, for miss 8=0
o (6,3=0) R R Contradicts global result
> L3 =‘}4(¢13(/’)) -(1=813)n (1 - dla(/l)) Negative Local Score
Unimportant Variable
Neighbor Pair Losses Ly, and L;3 are high,
leading to a low local attribute A score from sample 1
FIGURE 2
Local-NPDR mathematics for an incorrect classification with a negative (contradicting) local feature importance score. (a) Same as Figure 1 except
hypothetical Sample-1 is now incorrectly assigned class ‘o (red highlighted o,). Two features are simulated, one with a main effect for classification
(variable A, purple) and one unimportant variable with no effect. The two nearest neighbors for Sample-1, indicated by the neighborhood circle, are
Sample-2 (x,, different class as Sample-1) and Sample-3 (03, same class as Sample-1). The projected distances between Samples-1 and 2 for variable A
(d1,(A)) and Samples-1 and 3 (d3(A)) are indicated by Ay (miss) and Ay (hit)because §;, = 1 (miss) and 8,z = O (hit). (b) Local-NPDR loss function for the
two nearest neighbors of Sample 1 (see Equation 1). The loss functions for two pairs of neighbors (L£,and L,3) are large because Sample 1 is incorrectly
classified and the &'s are incorrectly assigned as §;, = 1 (miss) and 8,3 = O (hit). (c) These large losses for the false classification of Sample-1 as class ‘'0°
lead to negative local importance scores for variable A.

Frontiers in Astronomy and Space Sciences 05 frontiersin.org


https://doi.org/10.3389/fspas.2025.1651953
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Clough et al.

training samples) are not seen by a particular tree during training
(and varies depending on the tree in the forest). This accuracy
calculation is repeated, but the order of the values for each variable is
permuted in separate iterations. The change in average classification
accuracy before and after permuting the variable is a measure of
the variable’s importance. Because permutation of an important
variable is expected to decrease classification accuracy, the greater
the decrease in accuracy after permutation, the more important the
variable is considered (globally) for prediction. The local-RF variable
importance procedure also computes changes in accuracy before
and after variable permutation. However, instead of permuting the
variable for all oob samples, the value of each variable is permuted
for a single sample. That sample is then run through all trees in the
forest for which it is oob to yield an average accuracy before and
after variable permutation. The difference in accuracy is the local RF
variable importance for that sample.

2.3 Procedure for reporting false
predictions

We use NPDR to determine local and global feature importance.
Because NPDR is a contrastive method, it predicts the class
difference of neighbors, not the class of a given sample. To predict
the class of individual samples, we use RF classification because
of its robustness to skewed variables and mixed data types and its
resistance to over-fitting. For each sample, we compute the local-
NPDR importance scores for the features that were selected globally
by LASSO-NPDR using the URFP distance metric; these are the
variables on which the RF classifier is trained, ensuring that the
feature selection method is independent from the classification
method. In this step, a new URFP distance metric using only the
global-NPDR features is used. The local-NPDR variable importance
scores can be concordant with the global-NPDR scores (manifested
as positive variable importance scores) or discordant (negative
importance scores). If the sum of the local scores is negative
(overall discordant), the sample was likely classified based on
variables that were not part of the general (global) pattern of the
classifier. We hypothesize that such samples are more likely to be
false predictions because they do not follow the general pattern
learned by the classifier from the global dataset. We combine local-
NPDR feature importance scores with RF prediction probabilities
to further constrain which samples are identified as potential
false predictions, hypothesizing that samples classified with lower
prediction probabilities are more likely to be incorrectly classified.

We further compare false prediction diagnosis of individual
samples in holdout data using local-NPDR variable importance
with local-RE. We compute the overall local variable importance
scores for correctly and incorrectly classified samples (based on
the RF classifier) to see whether discordance is associated with
false predictions. An initial question is which globally important
variables to include in the concordance calculation. NPDR can
use a LASSO penalty that results in a statistical threshold for
importance. However, RF does not have a threshold for feature
selection. Thus, we use the global-NPDR features as the RF model
variables to determine local-RF feature importance. NPDR feature
selection thresholds can be defined either through P-values or via
regularization (Tibshirani, 1996; Zou and Hastie, 2005).
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2.4 Validating local-NPDR: real and
simulated datasets

We validate the local-NPDR variable importance method on
both real and simulated datasets. Simulated datasets allow us to
compare effects of variable correlation, main and interaction effects,
and class imbalance on ML models. Furthermore, since it is known
whether variables in the simulated datasets are functional (i.e.,
whether they have a main and/or an interaction effect), we can
quantify the performance of our methods. Real datasets ensure that
our methods work in real applications on imperfect or complex
data. The real and simulated datasets used in this study are
summarized in Table 1.

We perform RF classification and global-NPDR feature selection
for all datasets using an 80:20 train:test split that preserves the
class imbalance. Previously, we found 80:20 splits have very stable
test accuracies across repeated 5 folds (Clough et al, 2025).
In the current study, we use a single 80:20 split of the data to
simplify the interpretation of the results while comparing the local
score methods. We choose a split of the real data with a typical
(median) test accuracy. RF hyperparameters are tuned using 5-fold
cross-validation in the training set. The real astrobiology dataset
consists of isotope ratio mass spectrometry (IRMS) measurements
of volatile CO, evolved from laboratory-generated ocean world
(OW) analogue brines of biotic and abiotic samples (Clough et al.,
2025). This biosignature dataset, referred to as Benchmark Ocean
Worlds-8CO, dataset (BOW-8CO,), contains 174 samples of
IRMS experiments (111 abiotic and 63 biotic), generated with
0.3% CO, by volume and containing different salt compositions
relevant for both Europa and Enceladus. The imbalance
in this dataset is 0.64, with biotic samples making up the
minority class.

We generate three simulated datasets (summarized at the top
of Table 1) using the createSimulation?2 function from our
npdr R library based on the approach in Ref. (Lareau et al,, 2015).
These simulated data have the advantage of having known ground
truth functional features (i.e., features associated with the outcome
variable) while incorporating realistic effects found in real data.
Simulations 1 and 2 datasets are designed to have similar properties
to the real BOW-8CO, dataset. Like our real dataset, these two
simulated datasets have a similar number of features (p = 100),
sample size (m = 240 train and 60 test samples) and class imbalance
(0.6). In addition, the simulated data have a realistic correlation
structure between variables and includes both interaction and main
effects. We simulated 20% of the features to be functional, with 10
main effects (“mainvars”) and 10 interaction variables (“intvars”).
These two simulations have effect sizes of 1.5 for both main effects
and interaction effects. The remaining features are noise variables
that have no effect on classification outcome. Since the main and
interaction effects are known for particular variables, this allows us
to assess whether feature selection methods are selecting relevant
variables for classification. The Simulation 3 dataset has the same
number of features (p = 100) but a larger sample size (m =
400 training samples and 100 test samples) with balanced classes
instead of imbalance. This dataset has the same number of main
effects and interactions as Simulations 1 and 2 but has smaller
main effect sizes (main effect strength = 0.8, interaction effect
strength = 1.5).
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TABLE 1 Summary of the real biosignature data and three simulated datasets (top). For the simulated data, the number and type of functional features
are given (main effects, interaction effects or noise features). Random Forest is used for training and testing accuracies for all data (additional accuracy
information in Figure 3) using global-NPDR-LURF feature selection (features listed at bottom). Biosignature features include IRMS and time-series
derived features. Simulated data include functional features, which begin with “main” and “int” for main effects and interactions, respectively. Simulated
features that begin with “var” are noise variables not involved in classification except by chance. Dashes are used for data that have fewer important
features selected.

Biosignature data Simulation 1 Simulation 2 Simulation 3
class1: classO (test) 89:51 (22:12) abio:bio 144:96 (36:24) 144:96 (36:24) 200:200 (50:50)
samples
main: interact: noise 104 total features 10:10:80 features 10:10:80 features 10:10:80 features
Strength: (main/interact) — 1.5/1.5 1.5/1.5 0.8/1.5
Train (Test) Accuracy 90.7% (91.2%) 77.9% (71.1%) 82.9% (78.3%) 84.3% (80.0%)
Global NPDR Features
1 avg_rR*CO,/*C0, mainvar9 mainvar8 mainvar5
2 sd_&"0/8"C mainvar4 intvar8 mainvar9
3 diff2_acf1 mainvarl mainvar9 mainvarl
4 fluctuation intvar8 mainvar?7 mainvar4
5 time_kl_shift intvar3 varl4 mainvar7
6 — mainvar8 var64 mainvarl0
7 — mainvar2 intvar7 mainvar3
8 — var64 var6 mainvar8
9 — var35 — intvar4
10 — — — mainvar6

3 Results

3.1 Global-NPDR feature selection and RF
classifiers

Before performing local-NPDR on individual samples, we first
perform global-NPDR using all training samples and train RF
classification models for the real biosignature data and the three
simulated datasets. For global-NPDR feature selection, we use a
LASSO penalty (see Equation 5 in Section 2.1) and URFP distance
(global-NPDR-LUREF) for training data splits. The dataset was split
into train (89 abiotic and 22 biotic) and test (51 abiotic and 12 biotic)
sets that reflect the global imbalance (see Table 1 for further details).
We train RF classifiers with tuned hyperparameters in the selected-
feature spaces. For all datasets, we use weights to compensate
for class imbalance in RF classifier training where class_weights =
1/num_class. For the biosignature training data (m = 140 samples,
89 abiotic and 51 biotic), global-NPDR with hyperparameter A =
0.01 results in five selected features (bottom left of Table 1) out
of 104 total predictors. Using these five features, the RF classifier
with tuned hyperparameters mtry = 5, splitrule = “extratrees’, min.
node.size = 7, and ntrees = 5,000 yields a training accuracy of 90.7%
and a test accuracy of 91.2% (Figure 3a). The accuracy breakdown
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by class (biotic/abiotic) shows high prediction accuracies for both
classes in the train and test data alike for the biosignature dataset,
despite the class imbalance. The abiotic class accuracy in the training
data is 91.0% and in the test data it is 95.5%. For the biotic class,
in the training data the RF prediction accuracy using NPDR-LURF
features is 90.2% and in the test data it is 83.3%, slightly lower.

For datasets Simulations 1-3, global-NPDR selected nine, eight,
and ten features out of 100 (bottom of Table 1) with hyperparameter
A = {0.02, 0.013, and 0.01} respectively. The simulated datasets
include functional features, which begin with “main” and “int” for
main effects and interactions, respectively. Simulated features that
begin with “var” are noise features and are not functional. The two
simulated datasets (Simulations 1 and 2) that contain noise variables
are also imbalanced datasets. The Simulation 3 dataset has balanced
classes, and global-NPDR found no noise variables. This lower false
positive rate for functional variables may be due to class balance
or larger sample size. The resulting RF training (test) accuracies for
data Simulations 1-3 are 77.9% (71.7%), 82.9% (78.3%), and 84.3%
(80.0%), respectively (Figures 3b—d). The dataset with the highest
accuracy (Figure 3d) is balanced between classes and has a higher
sample size. In addition, main effects play a more prominent role
in feature selection (Table 1, bottom last column). For the respective
simulated data, the tuned RF hyperparameters were: mtry = {5, 8, 2},
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a. Biosignature Data
Abiotic Class
Accuracy
Abiotic 91.0%
90.2%
Class
Accuracy
Abiotic 95.5%
83.3%
C. Simulation 2
Class 1 Class0 | Class
Accuracy
105 39 72.9%
Class 0 2 94 97.9%
Class0 | Class
Accuracy
Class 1 12 66.7%
Class 0 1 23 95.8%
FIGURE 3

Random Forest (RF) train and test accuracies for real biosignature data and simulated datasets. (a) The RF classifier for biosignatures yields a 90.7%
training accuracy. There are 51 biotic samples and 89 abiotic samples in the training data; five biotic samples are misclassified as abiotic (false
negatives) and eight abiotic sample are predicted to be biotic (false positives). The biosignature train and test data show a similar high-accuracy
performance despite class imbalance (class imbalance = 0.64), where the overall test accuracy is 91.2%. (b) Simulation 1 is an imbalanced simulated
dataset (class imbalance = 0.6) that contains 144 class-1 training samples and 96 class-0 training samples, yielding an overall training accuracy of
77.9%. This dataset shows a more balanced class accuracy in the training data than the testing data. (c) Simulation 2 data is also imbalanced (class
imbalance = 0.6) with the same The two imbalanced simulated datasets show a discrepancyclass breakdown as Simulation 1 and shows similar
behavior in terms of class accuracy imbalance in the test data but is even more pronounced. (d) Simulation 3 data is balanced and has a higher sample
size (training data contains 200 class-0 and class-1 samples each). The class accuracies are balanced in both train and test data.

b.

Simulation 1

Train
accuracy = Class 0 Class
77.9% Accuracy
Class 1 81.3%
Class 0 75.7%
Test
accuracy = [NeFEECE Class0 | Class
71.7% Accuracy
Class 1 13 63.9%
Class 0 4 20 83.3%
d. Simulation3
Class 1 Class0 | Class
Accuracy
168 32 84.0%
Class 0 31 169 84.5%
Class0 | Class
Accuracy
Class 1 11 78.0%
Class 0 9 41 82.0%

PR » «

splitrule = {“gini”, “extratrees”, “extratrees’}, min. node.size = {12, 3,
7}, and ntrees = {5,000, 6,000, 6,000}. The two imbalanced simulated
datasets show a discrepancy in class accuracy that is most notable
in the test data (Figures 3b,c), while the balanced simulated dataset
shows a more balanced RF class prediction accuracy in both the train
and test data (Figure 3d).

3.2 Local-NPDR feature importance for
true and false ML predictions

In the following sections we present the results of our local-
NPDR feature importance method to discriminate between true and
false ML predictions in the three simulated datasets as well as the real
biosignature BOW-8CO, dataset.

3.2.1 Local-NPDR feature importance for
simulated data

For each sample in the train and test data, we calculate
local-NPDR feature importance scores using a Ridge penalty,
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“lambda.1se” hyperparameter, and URFP distance for the set
of global-NPDR-LURF features. Results from the test data
are discussed here; see Supplementary Section S3 for training
data results. For each sample, the total local-NPDR variable
importance scores are computed (for the globally important
features), and we use a t-test to compare the total local scores
(TLS) between samples with a true and false prediction by
the RF model. For the three simulated datasets Table 1, the
total local-NPDR scores are higher in the true versus false
prediction groups for both training (Supplementary Figure S3) and
test samples (Figure 4). The elevated TLS in true versus false groups
in the test data is statistically significant (with P-values: 4.6-107° to
7.9-107'%).

True and false predictions can be further broken down into true
positive/true negatives and false positives/false negatives. For the
simulated datasets, class-0 is taken to be the positive class. For the
imbalanced datasets, this corresponds to the minority class, chosen
to mimic the study design for the biosignature data. This means
the true positive (TP) and false negative (FN) predictions involve
the minority class-0 for the two imbalanced simulated datasets,
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a. Simulation 1 b. Simulation 2 c. Simulation 3
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FIGURE 4

Total local-NPDR variable importance scores for true and false predictions in three simulated test (holdout) datasets. Total Local Scores (TLS) are
computed for the globally important features based on LASSO NDPR. In each dataset, the local-NPDR scores are higher in the true (blue) versus false
(red) prediction samples with very low overlap (all t-tests statistically significant). Detailed properties of Simulation 1-3 are given in Table 1. (a)
Simulation 1 is class-imbalanced and the mean total local-NPDR feature importance scores are higher in the true prediction group (P = 4.6-107°). (b)
Simulation 2 data is also imbalance and the mean local-NPDR variable importance scores is higher in the true prediction group (P = 7.9~1O’12). (c)
Simulation 3 has a larger sample size, and the classes are balanced. Local-NPDR importance scores are also higher for true predictions (P: 2.1-107%2).

while true negative (TN) and false positive (FP) predictions involve
samples of majority class-1.

Mean total local-NPDR variable importance scores for the
imbalanced simulated datasets show different values for false
negative versus false positive predictions in both the train
(Supplementary Figure S4) and test data (Figures 5a,b). In both
cases, the FP group, composed of class-1 samples incorrectly
predicted to be class-0, has higher mean TLS than the FN group,
made of class-0 samples incorrectly predicted to be class-1.
This effect is likely due to class imbalance and is absent in the
balanced simulated dataset (compare Figures 5a,b with Figure 5¢),
suggesting that local importance methods may be less reliable in
the presence of imbalance, which is also a perennial challenge
for classification methods. During RF classifier training of
imbalanced datasets, the majority class may be penalized, and the
algorithm attempts to maximize the classification accuracy of the
minority class. This results in a higher classification error for the
majority class.

However, the RF prediction probabilities can help differentiate
the true and false predictions in these cases (Figures 5d,e), where
the average probabilities for false predictions are lower than
those for true predictions. For the imbalanced datasets, the mean
RF prediction probability for true positives (~70%), representing
samples of the minority class, is lower than for true negatives (>90%),
samples of the majority class.

The balanced simulated dataset is less prone to the discrepancies
in false prediction mean total local-NPDR variable importance
scores (Figure 5¢). In this case, both the FP and FN predictions
have similarly low mean total local-NPDR importance scores and
both the TP and TN predictions have much higher scores. For
this dataset, the average RF prediction probabilities are also more
balanced among prediction types, with false prediction probabilities
both appearing at ~65% or below and mean true prediction
probabilities both being ~75% (Figure 5e). This average probability
being lower than the probability for the majority class in the
imbalanced simulated datasets could be related to the lower sample
size. However, because of the potential for TLS overlap between
individual true and false predictions, especially in imbalanced
datasets, it can be beneficial to incorporate other information
for diagnosing sample predictions, such as the RF classifier
probability.
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3.2.2 Local-NPDR feature importance for
biosignature data

For the biosignature data, the biotic class corresponds to the
positive class. This means that TP and FN predictions involve the
minority biotic class, while TN and FP predictions involve samples
of the majority abiotic class. Since the sample sizes are small for the
biosignature test data (for example, one prediction type, FP, has only
one sample), we will discuss the mean total local-NPDR variable
importance scores for the training data. In Section 3.3, we present
results using local-NPDR variable importance in combination with
RF prediction probabilities to diagnose false predictions on holdout
simulated and biosignature data.

For the biosignature training data, both the FP and FN
mean total local-NPDR importance score is higher than the TN,
representing the abiotic samples (Figure 6a). This could be due
to the much smaller sample size. If more samples were added,
we might expect a distribution that more resembles that of the
local-NPDR mean TLS in the imbalanced simulated datasets.
Like the imbalanced simulated data, the mean RF prediction
probabilities for the false predictions in the biosignature data
are much lower than those for the true predictions (Figure 6b).
The combination of indicators provided by both the mean total
local-NPDR variable importance scores and the RF prediction
probabilities provide a complimentary approach for identifying
possible false or problematic predictions (in which the model is
unsure of classification) in samples whose actual class is unknown.

3.2.3 Comparison of local feature importance
methods

Using our RF models trained in the global-NPDR-LUREF feature
space as the base classifier for each dataset, we compare local-NPDR
with local-RF feature importance. Details for each algorithm can be
found in the Methods section. As with local-NPDR, we perform
a t-test for the local-RF TLS between true and false predictions.
For the three simulated datasets, the total local-RF scores are
higher in the true versus false prediction groups for both training
(Supplementary Figure S3) and test samples (Figure 7). The elevated
TLS in true versus false groups in the test data is statistically
significant with P-values ranging from 1.6 - 107 t0 2.2 - 10!, Again,
there is the potential for score overlap between individual true and
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FIGURE 5

Mean total local-NPDR variable importance scores for three simulated datasets [left panel, (a—c)] and mean RF prediction probability for the same three
simulated datasets [right panel, (d—f)]. Values are broken down by prediction type on the x-axes (FN = false negative, FP = false positive, TN = true
negative, TP = true positive). False predictions are indicated by red circles, true predictions by blue, and the number of samples of each prediction type
are given next to the points. Class sample sizes are indicated in the legend for each dataset. Each row of figures is one of the three simulated datasets
(accuracies summarized in Figures 3b—d). (a) The distribution of mean total local-NPDR variable importance scores by prediction type is affected by
the class imbalance. The mean total local-NPDR variable importance score is high for true positives (class-0 samples correctly predicted to be class-0),
true negative samples (class-1 samples correctly classified), and false positives (class-1 samples incorrectly predicted to be class-0). (b) The mean total
local-NPDR feature score distribution by prediction type is similarly distributed to those in (a) (compare simulation parameters). (c) The mean total
local-NPDR variable importance scores show a different distribution. In this case, the classes are balanced, there are more samples, and the main effect
size is decreased to 0.8, while the interaction effects are kept at 1.5. For this dataset, the false negative and false positive scores are both lower than the
true negative and true positive scores. (d) The mean RF prediction probability for the same simulated test samples as in (a) shows lowest prediction
probability for false negatives, followed by false positives. (e) False positive and false negative mean RF prediction probabilities are lower than for true
predictions for the same dataset as in (b). (f) For the simulated samples in (c), mean RF prediction probabilities are again lower for false predictions than
for true predictions.

Local-NPDR importance score Random Forest probability

i
1
1
i
I
L 2 oo
1 E 0
x  150- @ o | 2 b. o
o 5 | 8 81
Z 5 RF train accuracy = 90.7% ' o
« 3 10- Imbalance = 0.64 46 i 2- 08 ®
(ST Positive class = biotic (minority class) o
2 E . [~ Same dataset as (a) 46
= k]
@ @© ——
2 £ 50 . ©
2 S 8 1 g_ 07 5
E £ . 81 . False prediction || | u . 8 . False prediction
= 1
2 04 . True prediction || | < . . True prediction
® 38
=
FN FP ™ TP | FN FP ™ TP
1
1
FIGURE 6

Mean total local-NPDR variable importance and mean RF prediction probability for the four different prediction types in the biosignature training data.
The number of samples representing each type of prediction are indicated next to the points. (a) Local-NPDR mean total local importance score for
each prediction type for training samples in the RF biosignature classification model. The dataset has a class imbalance of 0.64, where biotic is the
minority class (and is also designated the positive class). This dataset shows a mean total local-NPDR importance score for FP samples that is larger
than the score for TN samples, which mirrors behavior seen in the imbalanced simulated data (compare a and Figures 4a,b). (b) The mean RF
prediction probability is below 70% for both FN and FP samples and higher for TN (>85%) and TP (>77%) samples.
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FIGURE 7

Total local-RF variable importance scores for true and false predictions in three simulated test (holdout) datasets. Total Local Scores (TLS) are
computed for the globally important features based on LASSO NDPR. In each dataset, the local-RF scores are higher in the true (blue) versus false (red)
prediction samples (all t-tests statistically significant). Detailed properties of Simulation 1-3 are given in Table 1. (a) Simulation 1 is class-imbalanced has
and the mean total local-RF importance scores that are higher in the true prediction group (P = 1.6-107%). (b) Simulation 3 is also class imbalanced and
the mean local-RF variable importance scores are higher in the true prediction group (P < 2.2»10’16). (c) Local-RF importance scores are in the
balanced dataset Simulation 3 are higher for true predictions (P =2.0-1071).

false predictions, meaning that information provided by the RF
probability model could be useful in identifying false predictions.

An analysis of the mean TLS for local-RF for train and
test samples in the three simulated and biosignature datasets
versus prediction type (FP, FN, TP, and TN) shows separation
between both classes of false predictions and true predictions
(Figure 8; Supplementary Figure S4). While mean TLS for local-
NPDR in some false predictions are higher than mean TLS for
some true predictions, local-RF mean-TLS for false predictions
are always lower than mean-TLS for true predictions (compare
Figures 5, 8). Local-RF variable importance is expected to have a
good performance at identifying false predictions, since this method
is native to the classifier, and these results show that local-RF
importance is less affected by class imbalance than local-NPDR.
Limitations to local-RF variable importance were mentioned in
Section 1 are discussed more in Section 4.

Both local-NPDR and local-RF result in statistically significant
differences in mean-TLS between true and false predictions in the
simulated datasets (Figures 4, 7). For the biosignature data, local-
NPDR variable importance indicates less clear separation between
true and false prediction scores (compare Figures 6a, 8d), indicating
the sensitivity of the multivariate regression to both imbalance and
small sample sizes, discussed in more detail in Section 4. In the
next section, we compare the ability of local-RF and local-NPDR
to diagnose false predictions in “unknown” samples across the four
datasets. While the results in this section may lead one to conclude
that local-RF will always outperform local-NPDR, two additional
sets of analyses on the test samples reveal a comparable performance
between the two methods.

We perform LIME and treeSHAP explanation on the three
simulations (Table 1) using the same tuned RF model restricted
to LURF features that was used for local-NPDR and local-RE. We
train the LIME and treeSHAP explainers on this data and test
TLS scores on the holdout data for differences between true and
false RF predictions (Figure 9). The total LIME and tree SHAP
total scores are higher in the true prediction aggregated group
(TP and TN combined) than the false prediction groups (FP and
FN combined). However, the differences are less significant than
local-NPDR (Figure 4) and local-RF (Figure 7), with some of the
LIME (Figure 9b) and treeSHAP (Figure 9f) true/false differences
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not being statistically significant. The treeSHAP TLS distributions
in the true prediction groups are consistently bimodal. This is due to
the TN scores being positive and TP scores being negative. The TP
scores are consistently in the opposite of the desired direction.

3.3 Diagnosing false predictions in
“unknown” samples

Four samples, each representing the four prediction types,
are chosen for further analysis from test samples in each of the
simulated datasets and the biosignature data. Local-NPDR and
local-RF total local importance scores are calculated for each of
the four samples, as well as the prediction probabilities; for each
method, we attempt to characterize the results as either indicative of
atrue prediction or a false one. Results for the simulated datasets can
be found in Supplementary Section S4, and we present the results of
this analysis for the biosignature dataset here.

Consider the case where the actual class of the four test
samples is unknown. Local importance methods and classification
probabilities can help us identify potentially false predictions in this
scenario by analyzing the variable importance TLS for the samples,
the individual local feature importance scores, and the RF classifier
prediction probability (Figure 10). For example, given the fact that
an “unknown” sample has a positive total local-NPDR score of 19.4,
that only one of the features has a negative local importance score,
and that the classifier reports an 82.1% probability that the sample is
biotic, we accept this prediction as a likely true positive (Figure 10a).
Likewise, for an abiotic classification with a high-magnitude positive
local-NPDR score of 100.6, small-magnitude negative local scores
for individual variables, and a RF prediction probability of 81.3%,
we accept this classification as a likely true negative (Figure 10b).
If the TLS for local-NPDR is close to zero or negative, if there
are large-magnitude negative local variable importance scores, and
if the RF prediction probability is low, these samples are subject
to being flagged as potential false predictions (Figures 10¢,d). For
a sample with a local-NPDR score of —33.35, a large-magnitude
negative score for the top global-NPDR ranked feature and an RF
prediction probability of 55.5%, this biotic prediction is flagged as a
potential false positive (Figure 10c). For an abiotic prediction with
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FIGURE 8
Mean total local score (TLS) for local-RF variable importance for four datasets. The number of samples representing each type of prediction are

indicated next to the points. (a) Local-RF mean TLS for each prediction type for test samples in the simulated dataset with 71.7% RF test accuracy. Both
FP and FN predictions have lower scores than TN and TP predictions. (b) Local-RF mean TLS for each prediction type for test samples in the simulated
dataset with 78.3% RF test accuracy. Again, both false prediction groups show lower mean TLS than true predictions. (c) Mean TLS using local-RF for
the simulated dataset with 80.0% RF test accuracy shows the most similar distribution between the two false prediction groups and the two true
prediction groups separately, likely driven by class balance. (d) The mean local-RF TLS for the biosignature data training samples (depicted for
increased sample sizes) shows lower FN and FP scores than TN and TP scores. Although imbalanced, this dataset shows the most similar TLS
distribution to the balanced simulated dataset in (c).
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FIGURE 9
Total local variable importance scores for true and false predictions in three simulated test (holdout) datasets for LIME (a—c) and treeSHAP (d—f). Total

Local Scores (TLS) are computed for the globally important features based on LASSO NDPR. The mean TLS are higher in the true (blue) versus false
(red) prediction samples, but the P-values and distribution overlap are higher between true and false groups than local-NPDR and local-RF. Detailed
properties of Simulation 1-3 are given in Table 1.

a similar large-magnitude negative score for the top global-NPDR An analogous analysis using local-RF as the importance method
feature, a TLS of —67.6, and an RF classification probability of 63.3%,  for the same four test samples uses similar reasoning (Figure 11). The
this sample is flagged as a likely false negative (Figure 10d). magnitude of local-RF and local-NPDR variable importance scores
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FIGURE 10

Typical distributions of local-NPDR variable importance scores for true and false predictions. Variables shown are listed according to global-NPDR
importance ranking, with the most important feature for classification at the top. “Contradicts” (red) means the local-NPDR score of a variable is

negative, in disagreement with the global-NPDR importance. “Supports” (blue) means the local-NPDR score for a variable is positive, in agreement with
the global-NPDR importance. (a) For a biotic sample correctly classified as biotic by the RF biosignature model, a true positive, the overall local variable
importance score is 19.4. This positive score indicates the local variable importance scores are mostly concordant with the assigned class for this
sample (biotic). Additionally, the RF probability model reports a high prediction probability of 82.1%, increasing the likelihood that this is a correct
prediction. (b) For an abiotic sample correctly predicted to be abiotic, a true negative, the total local score (TLS) is 100.6 and the RF prediction
probability is 81.3%, suggesting this is a correct prediction. (c) For an abiotic sample incorrectly predicted to be biotic, a false positive, the TLS is —33.4.
This large negative score flags the sample as a potential false prediction in which the assigned classed, biotic, is not concordant with the local variable
importance scores of the two most important global-NPDR features. In this case the RF probability model yields a low prediction probability of 55.5%,
further increasing doubt in the validity of this classification. (d) For a biotic sample incorrectly predicted to be abiotic, a false negative, the local-NPDR
TLS is —67.6, with a large-magnitude negative score for the top global-NPDR feature. The RF probability is reported as 63.3%, and this along with the

large negative TLS, indicates the sample is likely incorrectly classified.

differs because the nature of the methods is fundamentally different;
local-RF importance scores are changes in accuracy after and before
variable permutation, while local-NPDR scores represent regression
coefficients for the pairwise sample regression. This means the
magnitudes for the local-NPDR scores will vary by dataset, while the
local-RF importance scores will always represent a change in percent
accuracy. While the particular variables that are negative differ
between local-RF and local-RE the TLS for the true predictions
are positive, in agreement with local-NPDR for the true positive
(Figure 11a) and true negative sample predictions (Figure 11b). The
TLS is negative for the false positive (Figure 11c) and false negative
(Figure 11d) predictions, again in agreement with local-NPDR for
these samples. In general, the concordance/discordance in true/false
predictions is more pronounced in the local-RF scores for these
samples than for the local-NPDR scores (compare the amount of
blue in true and red in false predictions in Figures 10, 11).

To illustrate an applied comparative analysis, consider the case
where we have a set of test samples with unknown actual classes
and trained RF classifier and probability models. Suppose models
are trained with global-NPDR selected features; each test sample

Frontiers in Astronomy and Space Sciences

13

is run through the classifier and probability RF models and is
labeled with a prediction and probability. The goal of the local
variable importance analysis is to “quarantine” the test samples
that could be falsely predicted from the samples that we are most
confident are correctly classified. To do this, we consider the class
and probability output of the RF models in the context of the TLSs
discussed above (Figures 10, 11) and define an RF probability and an
NPDR/RF TLS for which we accept samples. A challenge is to define
an appropriate RF probability and TLS threshold to flag samples.
A detailed discussion of potential strategies is deferred until the
Discussion; for now, consider that the TLS threshold will be local
importance method dependent (compare the differences in local-RF
and local-NPDR importance scores) and subject to user preference,
as will the probability threshold. For this analysis, we use an RF
prediction probability threshold of 75% for all datasets and both
local importance methods.

We use local-NPDR importance score thresholds of {0.25, 0.35,
0.35} for Simulations 1-3 with RF test accuracies of {71.7%, 78.3%,
and 80.0%} respectively. These thresholds differ because of the
different distributions of local-NPDR scores in the three datasets
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FIGURE 11

Local-RF variable importance scores for the cases analyzed by local-NPDR (Figure 10). The variables are listed according to global-NPDR importance
scores. "Contradicts” (red bars) means the local-RF score is negative (unimportant for classification) for a variable that is globally important, while
“Supports” (blue bars) means the local variable importance score is positive, agreeing with the global importance of the variable. (a) A sample classified
as biotic shows all positive local-RF importance scores in agreement with (supporting) the global variable importance scores. The total local score (TLS)
is 0.18 and the RF prediction probability is 82.1%, indicating that this is likely a true classification of a biosignature. (b) With only one small negative
variable importance score, this abiotic prediction has a TLS of 0.22 and a RF probability of 81.3%. We accept this abiotic classification as a likely true
prediction. (c) A sample classified as biotic with a local-RF TLS of —0.015 and a RF prediction probability of 55.5% is flagged as a potential false positive
prediction. (d) An abiotic prediction with a TLS of —0.07 and several negative variable importance scores has a 63.3% RF probability. This abiotic

(see Supplementary Figure S7). For the biosignature data, we use
a local-NPDR score threshold of 25 (see Supplementary Figure S8).
Analysis of the distribution of local-RF importance scores for the
training datasets show a similar distribution among the datasets
due to the nature of the importance score calculation. We therefore
define a threshold of 0 for local-RF importance for all datasets.
False samples in the test data for each dataset can be detected
using both methods (Table 2). For the arbitrary thresholds defined,
local-RF and local-NPDR perform comparably well, showing similar
or comparable overall false prediction diagnostic rates (compare
third and fifth columns, Table 2). For the biosignature data, the two
methods flag the same falsely predicted samples, one false positive
and one false negative (compare biosignature data in columns 4 and
6), and the miss the same false negative.

In this example analysis, local-RF quarantines fewer true
predictions than local-NPDR in all datasets. For example, in
the simulated dataset with 71.7% RF test accuracy, local-NPDR
flags 26 total samples while local-RF only flags 12. Out of
the 26 flagged by local-NPDR, 14 are true predictions with
low TLS; out of the 12 flagged by local-RE, only two are true
predictions. It is worth mentioning that global-NPDR feature
selection has significantly enabled local-RF in this analysis; this
will be discussed more in Section 4. To summarize this applied
analysis: local-RF and local-NPDR do a comparable job flagging
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false predictions in the three simulated datasets and the biosignature
dataset. However, local-RE, when supplied with a model trained
on global-NPDR selected features, flags significantly fewer true
predictions than local-NPDR for all datasets.

4 Discussion

One minimal way of providing explainability for ML tools is to
provide a set of variables or features that are important for predicting
the outcome of interest (Montavon et al., 2018; Roscher et al.,
2020), essentially feature selection (e.g., global-NPDR). If ML
model prediction is to provide a deeper level of explainability,
analyses beyond global feature selection are needed. Previously, we
provided tools for global feature selection, for network visualization
of how those features work together to affect model predictions
(Lareau et al., 2015; Le et al., 2020), and applied local-RF variable
importance to assess the relative likelihood that an individual ML
prediction is true or false (Clough et al., 2025).

Here we present a new local feature importance tool, local-
NPDR, by extending global-NPDR variable importance to compute
importance scores in the neighborhood of a single sample. Local-
NPDR uses a generalized linear model to contrastively determine
whether neighbors of a sample of interest are in the same or different
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TABLE 2 False prediction diagnosis rates for local-RF and local-NPDR variable importance methods for four datasets using either a RF prediction

probability <75% or a TLS less than an arbitrary threshold.

RF test accuracy Local-RF false

prediction

FP/FN diagnosis
rate: local-RF

Local-NPDR
false prediction

FP/FN diagnosis
rate: local-NPDR

diagnostic rate

diagnostic rate

Simulated 1 71.70% 52.90% 61.5%/25.0% 70.60% 61.5%/100.0%
Simulated 2 78.30% 76.90% 75.0%/100.0% 61.50% 58.3%/100.0%
Simulated 3 80.00% 75.00% 72.7%/77.8% 90.00% 81.8%/100.0%
Biosignature 91.20% 66.70% 100.0%/50.0% 66.70% 100.0%/50.0%

class (hits or misses). Variable importance scores are coefficients
in the contrastive loss optimization, which can include LASSO
or Ridge penalties. NPDR is sensitive to detecting interactions, a
significant advantage in feature selection and importance ranking
for high-dimensional datasets. We used an URFP distance metric
to define the neighborhood because it effectively handles non-
isotropic variable spaces and reduces correlation between variables
(Clough et al., 2025); however, NPDR can accept any number of
different distance metrics. In addition to the distance metric, the
choice of k affects NPDR’s ability to detect interactions (Dawkins
and McKinney, 2025). For global-NPDR, we used a default sample-
size-dependent k that reliably balances interaction and main effects
and accounts for class imbalance. For local-NPDR, we used the
maximum number of neighbors to increase power to detect
important variables.

We used the local-NPDR scores to explain RF predictions of
individual samples, and we used the total local score (TLS) of
the globally important variables to help diagnose false predictions.
We showed that high positive TLS for samples is associated
with true predictions, and low or negative TLS is associated
with false predictions. The RF sample prediction probability
provided additional true/false diagnostic evidence. Additional
explainability of sample prediction can be provided by putting
the local-NPDR feature importance scores in the context of main
and interaction effects in a statistical interaction network. This
interaction network (computed by the regain function in the
NPDR R library) is a pxp matrix that contains each variable’s
main effect on the diagonal and interaction effects with other
features on the off-diagonal entries (Supplementary Figure S2). The
centrality scores of the variables in this interaction network give
the cumulative effects of the interactions and main effects of each
variable (Supplementary Table S1) (Davis et al., 2010; Lareau et al.,
2015). The ability to go beyond an importance score and see
the individual effects of each variable and interaction provides
additional explainability.

The context of the interaction network and the local-NPDR
score distributions for each prediction type can be used to
understand which variables are important for each prediction type:
FP, EN, TP, FN (Supplementary Figure S3). This means the relative
reliability of each feature can be understood and used to make a final
decision about the likelihood of a particular sample being correctly
or incorrectly predicted, providing another level of explanation
with implications for astrobiology missions seeking isotopic
biosignatures. For example, the top-ranked global-NPDR feature,
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avg_rR*CO,/**CO, has a large interaction network centrality, with
a moderate main effect while participating in two large-magnitude
interactions (see Supplementary Figure S2, node 1). From local-
NPDR feature importance analysis on the biosignature training
data, this variable is an important indicator for TPs and FPs, but a
poor indicator of FNs and TN (see Supplementary Figure S2). This
means for a sample labeled biotic, a large positive local-NPDR score
for avg_rR*CO,/*CO, indicates the prediction likely represents a
true biosignature, and a negative or a low-magnitude score means
a likely false biosignature prediction. However, this variable on
average has negative scores for TN predictions while being on
average positive for FNs. This contradictory behavior indicates that
it is important to consider the interactions this variable participates
in rather assume a large main effect is driving classification, since it
is a good predictor for some biotic and abiotic samples but not all.

If a particular sample is predicted to be abiotic, the local-
NPDR score for avg_rR* CO,/*CO, should be considered in the
context of other local variable importance scores. One of the largest
statistical interactions that avg_rR**CO,/**CO, participates in is
with diff2_acfl, the third-ranked global NPDR feature. This feature
is important for diagnosing FNs and TPs, and unimportant for FPs
(Supplementary Figure S2), meaning that the sign of diff2_acfI can
help determine if a sample labeled abiotic is likely to be a FN or
a TN-if a sample labeled abiotic has a negative local-NPDR score
for diff2_acfl and a large positive score for avg_rR*CO,/**CO,,
it is likely that the prediction is false, despite the fact that the
local score for the top-ranked global-NPDR feature is large and
positive, and may dominate the TLS. This understanding may result
in the acceptance of more true predictions and the rejection of
more false predictions in our applied analysis in Section 3.3 if
it were to be encoded in the algorithm to accept or quarantine
individual samples. This analysis illustrates the complexity of an
extremely small variable space in terms of variable interactions
and main effects and how they work together to inform certain
prediction types. Understanding and appreciating this nuance can
enable increased explanation and scrutiny for individual sample
predictions in biosignature classification.

We compared local-NPDR with widely-used local explainers:
local-RE, LIME and treeSHAP. Local-NPDR and local-RF showed
a statistically significant higher TLS for true versus false prediction
samples for all simulated datasets (Figures 4 and 7). LIME and
treeSHAP TLS were also higher in the true prediction samples, but
there was more overlap between true and false distributions and
some of the differences were not statistically significant (Figure 9).
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Despite having the largest sample size and being class balanced,
the treeSHAP TLS difference was not significant for Simulation 3
(Figure 9f). This could be due to the stronger interaction effects
in Simulation 3 compared to the main effects. Local-NPDR had
the lowest P-value of its results for Simulation 3 (Figure 4c) while
this simulation did not yield the lowest P-value for local-RF
(Figure 7c). NPDR has been shown to have good power to detect
interaction effects whereas RF has some limitations when detecting
interactions. However, feature selection prior to running local-RF
helps its sensitivity to interactions. The LIME TLS difference was not
significant for Simulation 2 (Figure 9b), which is imbalanced and has
a lower sample size than Simulation 3.

The simulated data enabled us to compare the differential effects
of class imbalance, sample size, and the relative magnitudes of
main/interaction effects for variables, and we can see through
this analysis that it is a combination of interaction effects
and class imbalance that affects both classification and feature
importance methods in the biosignature dataset. This has immediate
implications for the deployment of ML methods for astrobiology
missions: for real complex datasets, as geochemical isotopic data
for biosignatures is, the ability to detect statistical interactions is a
significant advantage.

For RF permutation importance, the sample must be part of the
training data, meaning that a new RF model must be trained to
generate local-RF variable importance scores for a single new test
sample. Local-RF does better with class imbalance and the small
biosignature dataset in terms of separating true and false scores, but
because it is a method used during classifier training, the nature
of the model could change during the re-training process itself.
For the analysis of a single new sample, the change to the base
classifier is expected to be negligible; however, if many new samples
are introduced in order to generate local-RF importance scores,
this could significantly alter the model from the one that originally
classified the sample, altering the explainability and in a worst-case
scenario, the truth of the outcome variable.

As mentioned in Section 3, the practice of diagnosing false
samples using a TLS method requires appropriate thresholds for
the RF probability and the TLS to flag samples (see Table 2).
While the probability and TLS thresholds used in our comparative
analysis are based on properties specific to our training data,
both local-NPDR and local-RF can successfully diagnose false
predictions using various TLS and probability thresholds. Different
TLS and probability thresholds result in different numbers of
samples being quarantined, some of which will be true predictions
that have a low TLS and/or low prediction probability. Future
work will incorporate data-driven statistical thresholds such as
two-mode Gaussian mixture modeling, where the two modes
represent true and false predictions. One way to decide a reasonable
TLS threshold is to analyze the distribution of scores in the
training datasets for each local importance method and decide
a threshold that will minimize samples being flagged in the
training data (Supplementary Figures S6-58). Regardless of the
thresholding method, the acceptable risk for false predictions will
be user and application dependent. For example, in terms of
biosignature detection for a future astrobiology mission to an
OW, there may be very little tolerance for a false ML prediction.
Researchers may use a much stricter RF probability threshold than
75%, and a lower TLS to diagnose potential false predictions.
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The tradeoff of using a stricter threshold is an increase in false
negatives (true predictions quarantined). Additionally, knowledge
of statistical interactions and the relative importance of each
variable (e.g., as quantified in NPDR’s epistasis rank) for each
prediction type may be incorporated into an analysis of a ML
prediction, ensuring a more robust explanation of the likelihood
of a true or false prediction. This type of nuanced analysis can
be leveraged to preserve mission resources for future astrobiology
missions by increasing the fidelity of the local-NPDR false prediction
diagnosis method.

In the current study we show that local-RF variable importance
benefits from global-NPDR feature selection. In our application
example, local-RF flagged fewer true predictions potentially as
false than local-NPDR, enabled by global-NPDR feature selection.
It has been previously shown that the RF biosignature classifier
benefits from global-NPDR feature selection using an URFP
distance metric (Clough et al., 2025). Since RF has no statistical
threshold for limiting the number of variables, if feature selection
were not performed, the user would have to decide which of
the ~100 features (in our example datasets) to use in a local
importance analysis. Using all ~100 features, some of which are
noise or highly correlated, is likely to result in overfitting, potentially
compromising the performance of the local-RF false prediction
diagnosis method. The LASSO version of NPDR provides a feature
selection threshold that helps local-RF determine local variable
importance and therefore to detect false predictions.

Global-NPDR feature selection also allows the RF classifiers
to be computationally more lightweight than if the classifier were
required to use the full variable space. In a case where training a new
model is required-as is the case for the local-RF variable importance
method-that process is much less computationally intensive. This
has implications for applications such as onboard learning in
automated space exploration. NDPR variable importance methods,
both global and local, can contribute to ensuring ML models and
data products are an appropriate size for use on flight computers
while maintaining accuracy and increasing interpretability.

It is therefore the best practice to use some form of feature
selection, like global-NPDR with LASSO penalty. This approach
is sensitive to statistical interactions in high-dimensional datasets,
making it a natural choice in complex real datasets such as IRMS
measurements for astrobiology, or gene expression data for disease
prediction. The URFP distance metric adds an additional ability
to construct a neighborhood in a non-isotropic variable space,
an advantage over traditional distance metrics. NPDR provides
additional information about each variable’s contributions in terms
of main effects and interactions, which enables a more in-depth
analysis of each prediction based on the local-NPDR importance
scores. This allows us to gain much more than a prediction label
for each experimental sample we wish to classify. We can start
to articulate how the black box RF is using individual variables
to inform classification, and exactly how particular variables
may be fooling the model in the case of false predictions. The
implications for this increased understanding in the search for OW
biosignatures are that we can encode our quantitative understanding
of variable effects and each variable’s ability to classify samples
of a particular class into our science autonomy framework for
exploration.

frontiersin.org


https://doi.org/10.3389/fspas.2025.1651953
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Clough et al.

5 Conclusion

One of the primary goals of science is to explain how and
why, however black box ML models in scientific applications are
antithetical to this goal. We develop a new ML explanation tool,
local-NPDR, and test it on three simulated datasets and one real
dataset. Two of the simulated datasets are class imbalanced and one
has decreased main effects. The real biosignature-analog dataset has
a small sample size, is similarly imbalanced, and is known to have
lower variable main effects. Our local-NPDR ML tool can be used
to help explain why a single sample is predicted to be in a given
class based on the variable importance weights. These weights are
computed based on their ability to model the contrastive probability
(hits and misses) for samples in the target sample’s neighborhood.
The sign and magnitude of the NPDR TLS of globally important
variables can be used for diagnosing the likelihood of the sample
prediction (biotic or abiotic) to be true or false. In conjunction
with single sample RF prediction probability, local-NPDR can be a
useful tool for future astrobiology missions. The consensus of local-
NPDR and local-RF importance methods could improve the ability
to detect false samples and discriminate them from flagged true
predictions.

Local-NPDR variable importance has the potential advantage
of being calculated independently of the classifier. The ability to
apply a method that is independent from (agnostic to) the ML
classifier to diagnose false predictions can be an advantage as it
avoids biases in explainability caused by using the local importance
method native to the classifier. If local-NPDR and local-RF were
used together, the likelihood of successfully quarantining most if
not all falsely predicted samples significantly increases. However,
potential limitations of all methods should be considered in high-
risk applications. If new samples are very different from samples
used to train the models, numeric instability in the local regression
may result from distances that are too large between neighboring
samples. While this is a potential limitation if not considered, with
awareness it can be turned into an indication that the model being
used is no longer appropriate, an important conclusion in any high-
risk domain.

Being independent of the classifier could also be a potential
limitation, since it will not be a perfect explainer for the classifier.
In other words, it may be preferrable to have a local explainer that
explains the mechanisms of a particular classifier. We limit this by
training the RF classifier with global-NPDR selected features, and
then local-NPDR will be informative as to whether the outcome
label generated by the classifier matches what is expected by the
algorithm in the context of a neighborhood of samples in the global-
NPDR feature space. Another way to link local-NDPR to a specific
classifier could be to use nested cross-validation feature selection
(Parvandeh et al., 2020). Since local-NPDR requires a distance
matrix, it still requires access to the training data, like local-RE
However, no model re-training or hyperparameter tuning is needed.
Local-NPDR showed evidence of being sensitive to imbalance and
small sample sizes while local-RF was less susceptible. Despite
these challenges, local-NPDR performs similarly well to local-RF in
diagnosing false test predictions in the biosignature dataset and in
the simulated datasets (see Table 2).

Class imbalance can affect both global and local feature
importance methods. Notably, the simulated dataset with class
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balance and an increased sample size contained zero noise features
in the global-NPDR-LURF selected features space and was the
best performing simulated dataset for local-NPDR analyses. An
important area of future research will be to improve performance
for imbalanced data. Additional future work will extend NPDR and
local-NPDR to non-tabular data such as images or time series using
representation learning, both of which would enable a lightweight
version of traditionally computationally intensive methods with
added interpretability. Another potential limitation is the need to
have a neighborhood of labeled samples, rather than a statistical
model, to compute local-NPDR score of a single sample. As
mentioned, local-NPDR could be combined with classifier-specific
local importance methods, if available, to further improve the
detection of false predictions.

In addition to

explainability, improvements in biosignature detection require

improvements in ML algorithms and
close attention to data collection. Both scientific and ML models
inherently include some degree of bias, as they rely on initial
assumptions or hypotheses before data collection. The resulting data
with their biases are then used to identify generalizable patterns.
Such assumptions, for example, make it challenging to develop fully
agnostic biosignature models from laboratory data. However, both
science and ML can guard against biases and discover more general
models by making predictions on new data that test the limitations
of the existing theory or model. For instance, precise measurements
of blackbody radiation exposed shortcomings of classical mechanics
(the ultraviolet catastrophe), ultimately leading to a more general
atomic theory (quantum mechanics) (Gamow, 1985). Similarly, in
ML, using data outside the training domain can identify limits of
a model’s validity for prediction. For example, depending on the
initial training data, an ocean world (OW) biosignature model may
not be valid for certain ranges and combinations of temperature,
volatiles, pressure, and salinity.

Both global- and local-NPDR feature importance methods add
to the explainability tools currently available for ML methods,
which is especially important for high-risk prediction domains. For
such ML applications, it is expected that researchers (humans in
the loop) will work with the ML algorithm output to ultimately
reach the most informed conclusion possible about the prediction
in question and mitigate risks associated with false predictions.
It is essential to ensure the training data is representative of
the deployment environment and its limitations understood, that
models are responsibly trained and validated, that models limit
noise features and highly correlated features, and tools are included
that can help understand individual predictions and diagnose
false predictions. Producing a prediction is only a first step
in ML; as in science, it is more important to understand the
nature of the prediction, how it was made, and whether it
should be trusted. Our ML tools take this step in providing
explainability.
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