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Strong gravitational lenses are invaluable for tackling fundamental astrophysics 
questions, such as the nature of dark matter and cosmic expansion. However, 
current sky surveys’ “crop-and-classify” lens search method faces a critical 
challenge: it creates massive computational and storage bottlenecks when 
dealing with billions of potential host galaxies, which is unsustainable for future 
large-scale surveys. To address this, we propose LenNet, an object detection 
model that directly identifies lenses in large, original survey images, eliminating 
the inefficient cropping step. LenNet is first trained on simulated data to learn 
gravitational lens features. Then, transfer learning is used to fine-tune it on 
a limited set of real, labeled samples from the Kilo-Degree Survey (KiDS). 
Experiments show LenNet performs exceptionally well on real survey data, 
validating its ability as an efficient and scalable solution for lens discovery in 
massive astronomical surveys. LenNet’s success in direct lens detection in large 
images resolves the computational and storage issues of traditional methods. 
The strategy of using simulated data for initial training and transfer learning with 
real KiDS data is effective, especially given limited real labeled data. Looking 
forward, LenNet can enable more efficient lens discovery in future large-scale 
surveys, accelerating research on dark matter and cosmic expansion.

KEYWORDS

machine learning, gravitational lensing, strong lensing, object detection, transfer 
learning, KiDS 

 1 Introduction

According to Einstein’s Theory of General Relativity, light from a distant source 
galaxy travels to the observer along geodesics in spacetime. If a foreground galaxy is 
closely aligned with such a source, its gravitational potential distorts the intervening
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spacetime, deflecting the light to form multiple images or extended 
arcs (Schneider et al., 1992). This phenomenon, analogous to optical 
lensing, is known as galaxy-galaxy strong gravitational lensing 
(GGSL) and constitutes a powerful astrophysical tool (Shajib et al., 
2024; Treu, 2010). GGSL provides robust estimates of the lens 
galaxy’s mass distribution (Koopmans et al., 2006; Auger et al., 
2010; Sonnenfeld et al., 2015; Shajib et al., 2021; Sheu et al., 
2025), including its dark matter subhalos (Vegetti et al., 2012; 
Nightingale et al., 2024; Ballard et al., 2024; Cao et al., 2025; 
He et al., 2025); when combined with stellar population synthesis 
models, these measurements yield constraints on the galaxy’s initial 
mass function (e.g., Sonnenfeld et al., 2015; Li et al., 2025). 
Furthermore, GGSL acts as a natural “cosmic telescope”, magnifying 
background sources to enable the study of their structure (Dye et al., 
2015; Shu et al., 2016b; Cheng et al., 2020; Rizzo et al., 2020; 
Li et al., 2024a), which would otherwise be beyond the capabilities 
of current instruments. Finally, because light propagates through 
the cosmological background, GGSL serves as an independent 
cosmographic probe when the background source exhibits temporal 
variability (Treu et al., 2022; Birrer et al., 2024) or when multiple 
sources lie at different redshifts (Gavazzi et al., 2008; Collett and 
Auger, 2014; Euclid Collaboration et al., 2025a).

GGSL is a rare astrophysical event that necessitates precise 
alignment, typically within a few arcseconds, between foreground 
and background galaxies. Consequently, identifying individual 
lenses within contemporary sky surveys often requires extensive 
visual inspection of numerous galaxy images, rendering the 
development of automated detection methods imperative, 
particularly as forthcoming surveys will catalogue more than 
billions of galaxies (e.g., LSST Science Collaboration et al., 2009). 
Traditional automatic lens-finding approaches include spectrum-
based techniques (Bolton et al., 2006; Shu et al., 2016a; Cao et al., 
2020), which identify anomalous emission lines in foreground 
galaxies indicative of background sources, and image-based 
methods (Cabanac et al., 2006; More et al., 2012; Nightingale et al., 
2025), which directly inspect galaxy images for characteristic 
lensing features such as bluish arcs. While these conventional 
methods have successfully confirmed several hundred GGSLs, 
recent advances in deep learning, particularly convolutional neural 
networks (CNNs), have significantly enhanced lens discovery 
capabilities, yielding thousands of new candidates (e.g., Petrillo et al., 
2017; Jacobs et al., 2019; Li et al., 2021; Nagam et al., 2025). 
Nevertheless, existing lens samples are still insufficient for many 
strong lens sciences in terms of size and completeness (Shajib et al., 
2024). Ongoing and Upcoming telescope facilities, including 
Euclid (Euclid Collaboration et al., 2025b), the China Space 
Station Telescope (CSST, Zhan, 2021), the Nancy Grace Roman 
Space Telescope (Spergel et al., 2015), and the Vera C. Rubin 
Observatory’s Legacy Survey of Space and Time (LSST, Ivezić et al., 
2019), are expected to detect hundreds of thousands of GGSLs 
(Collett, 2015; Cao et al., 2024; Wedig et al., 2025). This anticipated 
surge in available data promises to revolutionise the field, but 
concurrently underscores the critical need to develop more efficient 
and robust automated lens-finding algorithms to fully exploit this 
unprecedented opportunity.

The conventional pipeline for identifying gravitational lenses 
using neural networks typically comprises three main stages. 
First, potential lens candidates, such as massive elliptical galaxies, 

are pre-selected from a parent source catalogue generated 
by software such as Source Extractor (Bertin and Arnouts, 
1996). Second, small cutout images centred on these candidates 
are produced. Third, a neural network, commonly a CNN, 
classifies each cutout to determine if it contains a strong lens. 
This methodology has been extensively employed in various 
large-scale surveys (e.g., Petrillo et al., 2019; Li et al., 2021; 
Euclid Collaboration et al., 2025b), achieving notable success. 
However, this approach has several limitations. Firstly, in crowded 
fields, the source-detection algorithm may fail, leading to cutouts 
that blend multiple neighbouring objects. Such blending can 
hinder the network’s ability to accurately recognise genuine 
lensing features. Secondly, choosing an appropriate cutout size 
involves a critical trade-off that directly influences detection 
accuracy. If the cutout is too small, lensed arcs of systems with 
large Einstein radii may lie outside the field of view, resulting in 
missed detections. Conversely, overly large cutouts may include 
nearby contaminating objects, especially in crowded regions, 
potentially causing the network to misidentify these contaminants 
as lensing features, thus generating false positives. Thirdly, the 
cutout-based approach inherently neglects information about the 
broader environmental context of the lens system. This context 
can provide subtle yet valuable clues for lens identification; for 
example, GGSLs are more likely to occur within dense galaxy 
cluster environments (Oguri et al., 2005). Finally, the pre-selection 
stage can systematically exclude rare yet scientifically interesting 
systems, such as those with very low mass (Shu et al., 2017) or disk 
lensing galaxies (Treu et al., 2011).

To address the limitations inherent in conventional neural-
network-based gravitational lens finders, we introduce LenNet, a 
neural network specifically designed to identify GGSLs directly from 
full-survey images. This approach eliminates the necessity of pre-
selecting target sources and extracting individual image cutouts1.
LenNet incorporates advanced feature-extraction techniques 
explicitly tailored for gravitational lens identification. Initially 
trained on simulated lensing datasets, LenNet subsequently 
employs transfer learning to improve its generalisation capabilities 
for application to real observational data. On mock lensing datasets,
LenNet achieves an precision of 96.95 per cent with a recall rate 
of 97.27 per cent, while on real KIDS lensing datasets, it attains 
an precision of 97.91 per cent with a recall rate of 89.47 per cent. 
Additionally, we compare the performance of LenNet with several 
classical object detection neural networks (e.g., YOLO (Khanam and 
Hussain, 2024; Redmon and Farhadi, 2018)) and find that LenNet
demonstrates superior performance.

This paper is structured as follows. Section 2 describes the 
methodology used to generate the simulated dataset. Section 3 
details the architecture, key components, and training procedure 
of LenNet. Section 4 presents the results, including performance 
evaluations of LenNet on both simulated and real observational 
data. Finally, Section 5 summarises our conclusions. 

1 Li et al. (2024b) also employ a transformer-based neural network to 

directly search for GGSLs in full-survey images. However, their method 

still assumes a fixed “window size”, potentially missing lenses whose 

Einstein radius exceeds this predefined size
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2 Dataset generation

2.1 KIDS DR4

The Kilo-Degree Survey (KiDS) is a Stage-III optical imaging 
survey conducted using the OmegaCAM wide-field camera on 
the VLT Survey Telescope (VST) at the ESO Paranal Observatory 
(Kuijken et al., 2015). Initiated in 2011, KiDS was designed to map 
a large area of the extragalactic sky with exceptional image quality. 
Although its primary scientific goal is weak gravitational lensing 
for cosmological studies, the survey’s deep, multi-band imaging 
data provide a rich resource for a broad range of astrophysical 
investigations, including strong lensing, galaxy evolution, and the 
characterisation of galaxy clusters. The KiDS footprint covers 1,350 
deg2, divided into two large patches on the North and South 
Galactic Caps. The fourth data release (DR4) encompasses 1,006 
deg2 of observations in four broad-band optical filters—u, g, r, and i
(Kuijken et al., 2019). To enable precise galaxy shape measurements, 
observations in the r-band were prioritised for optimal seeing 
conditions, requiring a point-spread function (PSF) with a full-
width at half-maximum (FWHM) of less than 0.8′′. The median 
seeing achieved in the r-band is ≈0.7′′. Furthermore, the instrument 
optics ensure a uniform PSF across the 1 deg2 field of view, 
establishing KiDS as one of the sharpest large-area, ground-based 
surveys. The survey is notably deep, reaching 5σ limiting magnitudes 
in a 2′′ aperture of u ≈ 24.2, g ≈ 25.1, r ≈ 25.0, and i ≈ 23.7. This 
depth, when combined with near-infrared data from the VISTA 
Kilo-Degree Infrared Galaxy (VIKING) survey (Edge et al., 2013), 
allows the galaxy population to be probed to a median redshift of 
z ≈ 0.8 and beyond. 

2.2 Lens simulation

Identifying GGSLs using neural networks requires substantial 
amounts of training data. However, confirmed lenses remain scarce 
within the KiDS survey (Petrillo et al., 2019; Li et al., 2020; 
Grespan et al., 2024; N et al., 2024). Therefore, we have developed a 
specialized GGSL simulation pipeline to generate realistic training 
samples. This method, described extensively in Li et al. (2021), 
involves injecting simulated lensing images into real KiDS galaxy 
observations, as detailed below.

It should be noted that lens-free images are not essential for the 
model training and validation in this study. On one hand, if lens-
free images were to be used for model optimization, they would first 
require manual visual inspection to screen out valid samples that are 
free of interference and errors. This process consumes significant 
labor and time costs, thereby reducing research efficiency. On the 
other hand, the core objective of this study is to improve the model’s 
accuracy in recognizing “lenses”. Importantly, lens-free images do 
not actually participate in the calculation of loss; their auxiliary role 
in helping the model learn the “key features of lenses” is extremely 
minimal. Even without incorporating lens-free images, the model 
can still maintain excellent detection capabilities. Luminous Red 
Galaxies (LRGs) are selected from the KiDS DR4 catalogue to act as 
potential lens galaxies. Following the methodology of Li et al. (2021), 
Section 3.1), the selection is based on both colour and magnitude 
criteria, with a magnitude limit of r < 20.0 and colors satisfying a 

slightly adapted LRG color–magnitude condition. This imposes to 
selection of massive galaxies, which are the most efficient deflectors2. 
The mass distribution of each LRG is modelled using a singular 
isothermal ellipsoid (SIE) profile, supplemented by an external 
shear component to account for environmental effects. The Einstein 
radius θE, ellipticity, and shear strength are randomly drawn from 
distributions specified in Li et al. (2021). Background sources are 
constructed using morphological and colour information from the 
CosmoDC2 simulation catalogue with selected redshifts between 
0.8 and 6 (Korytov et al., 2019). Each randomly selected source 
is then strongly lensed by a prospective foreground LRG within 
a large 501× 501 pixels (0.2′′/pixels, corresponding to 100.2′′ ×
100.2′′) survey image to generate an idealised lensed image. 
The position of this prospective deflector is randomly assigned 
within the survey image. Specifically, we select sources that satisfy 
the criterion zsource > zlens + 0.3. To replicate the spatial resolution 
of real observations, this idealised lensed image is subsequently 
convolved with the local point spread function (PSF) extracted 
from the corresponding region of the KiDS imaging data. The PSF-
convolved lensed image is then injected into the KiDS survey image, 
centred on the prospective foreground LRG, thereby creating a 
realistic training sample. For the object detection task, the precise 
location of the injected lens must be recorded. We determine the 
coordinates of the lensed source by defining a bounding box that 
tightly encloses the full extent of the simulated lensed arcs or 
ring. These bounding box coordinates, along with the class label 
indicating a lens, constitute the ground truth for training the object 
detection model.

This simulation pipeline yielded 9,147 mock lenses with known 
labels for network training.

Notably, one simulated field contains only a single lens. The full 
sample of lenses was simulated with Einstein radii in the range of 1–5 
arcsec, lens redshifts (zlens) from 0.08 to 0.80, and source redshifts 
(zsource) from 0.80 to 4.84. Figure 1 presents six representative 
examples, illustrating the complexity and realism achieved by 
our simulations. These simulations successfully reproduce the 
diverse morphologies of strong lenses, whilst preserving the noise 
characteristics, PSF effects, and galaxy populations typical of KiDS 
observations.

3 Methods

The performance of LenNet is determined by three core 
components: its model architecture, loss function, and training 
procedure. The architecture and loss function define the model’s 
theoretical performance ceiling, while the training strategy 
determines how effectively this potential is achieved. The following 
subsections detail each of these three components. 

2 Due to this choice, the LenNet neural network trained in this study is 

optimised to find GGSLs with LRG deflectors. Nevertheless, LenNet’s 

capabilities could be extended to identify GGSLs with disc or low-mass 

galaxy deflectors by introducing greater diversity and realism into the 

training set generation
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FIGURE 1
Representative examples of simulated strong lenses in KiDS DR4 imaging. Each system is marked by a red box, and the inset shows a zoomed-in view 
of the lens.

3.1 Network architecture

Figure 2 provides a simplified schematic of this architecture, 
omitting intermediate layers for clarity. The model’s architecture 
is composed of two primary stages: a feature extraction backbone 
and a feature fusion neck. These modules are followed by a 
detection head, which processes the fused feature maps at three 
distinct scales. This multi-scale approach enables the model to 
effectively detect gravitational lenses of various apparent sizes. The 
operational workflow diverges for training and inference. During 
the training phase, the model’s predictions are compared against 
ground-truth labels to compute a loss value, which guides parameter 
updates via backpropagation. Conversely, during inference, the 
raw predictions are aggregated and refined using Non-Maximum 
Suppression (NMS) (Neubeck and Van Gool, 2006) to produce the 
final set of detections.

The feature extraction module serves as the backbone of 
LenNet, designed to transform raw input images into a hierarchy 
of representative and discriminative features. This is achieved by 
progressively downsampling the spatial dimensions while extracting 
information critical for lens identification. The module’s architecture 
is a carefully orchestrated sequence of attention mechanisms, a 
bespoke Multi-Feature Extraction block (MFEBlock (Xie et al., 
2023)), and the efficient C3 module from CSPNet (Wang et al., 2023; 
Khanam and Hussain, 2024). It starts with a lightweight ECA block 

(Wang et al., 2020) for initial channel-wise weighting. Following 
this, an SE block (Hu et al., 2018) further refines these channel 
weights, focusing computational resources on the most informative 
channels. Building on this, a CBAM block (Woo et al., 2018) 
introduces a spatial attention component, creating a comprehensive 
feature map refined in both channel and spatial domains. After this 
attention-based refinement, the core feature extraction is performed. 
The MFEBlock employs dilated convolutions to systematically 
enlarge the receptive field, enabling the capture of broad contextual 
information essential for identifying lens systems. The subsequent 
C3 module then effectively aggregates the multi-scale features 
generated by the MFEBlock, utilizing residual connections and 
feature concatenation to produce a semantically rich representation. 
Finally, the sequence concludes with a Coordinate Attention 
(CA) block (Hou et al., 2021) to capture direction-aware and 
position-sensitive information, which is crucial for the fine-grained 
localization of the target lens. In the final feature extraction stage 
only, an SPPF block (He et al., 2015) is appended to fuse features at 
multiple scales efficiently. The output of this entire module is then 
passed to the next stage of the backbone or serves as one of the three 
final feature maps for the detection head. The unique presence of the 
SPPF block in the last stage is highlighted in Figure 2.

In the feature fusion neck section, to effectively integrate 
features across different scales, we employ a feature fusion neck 
based on the Path Aggregation Network (PANet) architecture, 
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FIGURE 2
Simplified LeNet Network Structure. This figure is intended solely to provide readers with a general understanding of the overall architecture of LeNet, 
and does not encompass all components in detail. For example, in the upsampling and downsampling process of the feature fusion neck (i.e., FPN 
Network), the intermediate feature extraction layers interleaved between these operations have been omitted for clarity. In the diagram, dashed lines 
represent the connections between different components, with rectangular blocks in the Backbone Network and circular nodes in the Feature Fusion 
Neck both denoting intermediate feature maps.

a well-established enhancement to the classical Feature Pyramid 
Network (FPN) (Lin et al., 2017). This neck structure creates 
bidirectional information flow, combining a top-down path to 
propagate rich semantic features with a bottom-up path to 
preserve precise localization information. Let P3, P4, and P5 
denote the multi-scale feature maps produced by the backbone. 
Prior to fusion, each map is passed through an SE block to 
recalibrate channel-wise feature responses. The process then unfolds
in two stages. 

• Top-Down Pathway: This path propagates high-level semantic 
information from deeper layers (P5) to shallower ones. 
Specifically, the P5 feature map is upsampled and fused 
(e.g., via concatenation) with P4. This combined map is then 
processed and upsampled again to be fused with P3, creating a 
set of semantically enhanced feature maps.
• Bottom-Up Pathway: Following the top-down pass, a 

complementary bottom-up pathway is constructed. This path 
transmits low-level, high-resolution positional information 
from the shallower layers (e.g., the newly enhanced P3) 
upwards to the deeper layers. This is achieved through a series 
of downsampling and fusion operations, ensuring that the final 
output pyramids contain both strong semantic and precise 
spatial information.

The resulting feature maps from this bidirectional fusion 
process—P3, P4, and P5—are information-rich and serve as the final 
inputs to the detection head for generating predictions. 

3.2 Loss function

The overall loss function (4), is a composite objective designed 
to train the model on three distinct tasks: objectness confidence 
prediction, class prediction, and bounding box localization. It is 
a weighted sum of a confidence loss (1), a classification loss (2), 
and a localization loss (3). Both the confidence and classification 
losses are implemented using the standard Binary Cross-Entropy 
(BCE) loss. The localization loss is calculated using the Generalized 
Intersection over Union (GIoU) (Rezatofighi et al., 2019), which 
offers more stability than the standard IoU for non-overlapping 
boxes. The individual loss components are defined as follows:

Lconf = −
1
N

N

∑
i=1
[yconf

i ⋅ ln(p
conf
i ) + (1− yconf

i ) ⋅ ln(1− pconf
i )] (1)

Lcls = −
1
N

N

∑
i=1
[ycls

i ⋅ ln(p
cls
i ) + (1− ycls

i ) ⋅ ln(1− pcls
i )] (2)

Lloc = LGIoU = 1−(IoU−
|C| − |A∪B|
|C|
) (3)

where N is the number of predictions. yconf
i  and pconf

i  are the ground-
truth and predicted confidence scores for the i-th prediction, 
respectively. ycls

i  and pcls
i  are the ground-truth and predicted class 

probabilities. Intersection over Union (IoU) is the Intersection over 
Union between the ground-truth box A and the predicted box B. C is 
the area of the smallest convex bounding box enclosing both A and B. 
The final objective function combines these components, weighted 
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according to their importance for the single-class lens detection 
task. Since accurate localization is the primary goal, we prioritize 
the confidence and localization losses. Following a similar strategy 
to LSGBnet (Su et al., 2024), the classification loss is assigned a 
minimal weight, mainly serving to stabilize training in the multi-task 
framework. The final loss is:

Ltotal = ωconfLconf +ωclsLcls +ωlocLloc (4)

where the weights are set to ωconf = 10, ωcls = 0.005, and ωloc = 1. 

3.3 Training

In object-detection frameworks like ours, the training data 
already includes negative examples via the background regions of 
images that contain lenses. With enough training images, these 
backgrounds provide ample negatives, allowing the model to learn 
discriminative features without additional pure negative images. 
This follows standard practice in modern object detection networks 
(e.g., YOLO, Faster R-CNN), which typically do not train on entire 
negative images.

In our simulation-based pretraining, we supply many simulated 
lens images, whose background regions already yield numerous 
negative samples. Adding pure negative images would likely not 
improve performance and would introduce practical challenges: 
verifying that large numbers of candidate negatives truly contain 
no lenses is labor-intensive and error-prone, especially at the 
scale of the simulated dataset. However, during transfer learning 
on real data (see Section 4.2), where the training set is much 
smaller (∼200–360 images), we included a small set of carefully 
verified negative samples. This improves the model’s ability to 
distinguish lenses from specific background features in real 
observations, and manual verification is feasible at this scale. 
We generated a comprehensive dataset of simulated gravitational 
lens images for this study. The complete dataset was partitioned 
into training, validation, and test sets following a standard 8:1:1 
ratio. All splits were sampled from the same underlying data 
distribution to ensure an unbiased evaluation of the model’s final
performance.

The model was trained using the Adam optimizer (Kingma 
and Ba, 2014) with a batch size of 32. The initial learning rate 
was set to 2× 10−5 and was managed by a ReduceLROnPlateau 
scheduler, which halved the learning rate whenever the validation 
loss stagnated for five consecutive epochs. We conducted our 
training process using a single NVIDIA A100 GPU, leveraging 
the PyTorch deep learning framework (version 2.4.1) with Python 
3.12.7 and CUDA version 12.0. The training spanned 150 epochs 
and required a total of 9 GPU hours. Throughout the training, 
the GPU achieved an average utilization rate of 95%, while 
the memory and CPU utilization rates averaged 36% and 67%, 
respectively. Additionally, during the testing phase, the test 
dataset comprised 915 images containing lenses and 1,200 images 
without lenses, and LeNet took only 28 s to make predictions 
on all of them. It is particularly worth noting that these 
1,200 lens-free images are real-world samples selected completely
at random. 

4 Results and discussion

To comprehensively assess the performance of LenNet, we 
employ a combination of quantitative metrics and qualitative 
analysis. For the quantitative evaluation, we adopt three standard 
metrics from the field of object detection: Precision, Recall, and 
the F1-score. The Recall measures the model’s ability to identify all 
actual gravitational lenses within the dataset, thus quantifying its 
completeness. Precision measures the reliability of the predictions, 
indicating what fraction of the identified candidates are actual 
lenses. A fundamental trade-off exists between these two metrics; 
for instance, a model can achieve high recall by lowering its 
detection threshold, but this often leads to an increase in false 
positives and a decrease in precision. The F1-score, which is the 
harmonic mean of precision and recall, provides a single, balanced 
metric that summarizes the model’s overall accuracy. These metrics 
are defined as:

Recall = TP
TP+ FN ,

Precision = TP
TP+ FP

,

F1− score = 2×Precision×Recall
Precision+Recall

.

Where TP is the True Positive, means that a predicted bounding 
box has an IoU with a ground-truth box that exceeds a predefined 
threshold (e.g., IoU > 0.5). FP (False Positive) corresponds to 
a predicted box with no matching ground-truth object, while 
a FN (False Negative is a ground-truth object that the model 
failed to detect.

Beyond these numerical scores, it is crucial to understand how 
the model arrives at its predictions. To this end, we perform a 
qualitative analysis by visualizing the model’s internal feature maps. 
This interpretability technique allows us to peer inside the model’s 
“black box” and gain direct, intuitive insight into its decision-
making process. Specifically, this analysis enables us to verify that 
LenNet learns to activate on physically meaningful structures—such 
as Einstein rings, arcs, or multiple images—rather than relying on 
spurious artifacts or background noise. This confirmation is vital 
for building trust in the model’s scientific utility and ensuring that 
its high performance is rooted in a genuine understanding of the 
underlying astrophysics. 

4.1 The performance on the simulated 
dataset

This section details the quantitative performance of LenNet 
on our simulated dataset. We first characterize the model’s 
standalone effectiveness using standard evaluation metrics and then 
contextualize these results through a rigorous comparative analysis 
against established, state-of-the-art object detection models.

The initial phase of our evaluation focused on quantifying 
the intrinsic performance of LenNet. On the simulated test set, 
LenNet attains an F1 score of 97.11%. Evaluating performance 
across probability thresholds, we set the threshold to 0.3, which 
yields a recall of 97.27% and a precision of 96.95%. The high 
recall indicates that the model successfully identifies nearly all 
true gravitational lenses, while the high precision demonstrates 
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FIGURE 3
Confidence distribution of LeNet’s predicted candidates among the positive samples in the simulated dataset.

that its predictions are highly reliable with a low false positive 
rate. The F1-score, as the harmonic mean of these two, confirms 
the model’s excellent overall balance and accuracy. To supplement 
these metrics, we conducted an in-depth analysis of LenNet’s 
performance by examining the distribution of prediction confidence 
scores (Figure 3), the Precision-Recall Curves and the Average 
Precision (Panel A in Figure 4). The confidence distribution reveals 
that the majority of LenNet’s predictions have scores exceeding 
0.8. That is, most predicted celestial objects have a prediction 
confidence level above 80%. Moreover, the AP curve for LenNet is 
stable and is positioned closest to the top-left corner, achieving an 
average precision of 96.95%. This demonstrates the model’s excellent 
precision and recall.

To benchmark LenNet’s performance against existing 
technologies, we conducted a comparative analysis against several 
models from the YOLO family, which are widely regarded as state-
of-the-art in general-purpose object detection. We selected three 
representative baselines: the classic YOLOv3 and two modern 
variants, YOLOv5m (medium) and YOLOv5l (large). All models, 
including LeNet and every network under test, were trained and 
evaluated under identical experimental conditions on our dataset 
to ensure a fair and unbiased comparison. The summarized results 
are presented in Table 1. The results unequivocally demonstrate 
that LenNet achieves superior performance across all evaluated 
metrics. Notably, LenNet’s F1-score of 97.11% surpasses that of 
the strongest baseline, YOLOv5l (94.52%), by a significant margin 
of 2.59 percentage points. This performance gap underscores 
the primary advantage of a specialized architecture. While the 
YOLO models are highly optimized for general-purpose object 
detection, LenNet’s design, particularly its MFEBlock modules, is 
explicitly tailored to discern the subtle and complex morphological 
features characteristic of gravitational lenses. This domain-specific 
adaptation allows it to achieve a level of precision and recall that even 
state-of-the-art generalist models cannot match, thereby validating 
our architectural design choices and establishing LenNet as a highly 
effective tool for this specialized scientific task.

4.2 Transfer learning to the real dataset

Although deep learning models demonstrate excellent 
performance on simulated data, their scientific utility is ultimately 
determined by their ability to generalize to real-world observations. 
A critical challenge in this transition is the “sim-to-real” gap, where 
subtle differences between simulated and real data can degrade 
performance.

For instance, in tasks like ionized nebula classification, 
strong gravitational lens substructure detection, and galaxy 
merger identification, differences between real and simulations 
in spectral features, image noise, and data distributions have 
been shown to reduce model accuracy (Belfiore et al., 2025; 
Alexander et al., 2023; Ćiprijanović et al., 2021), underscoring the 
need for techniques like transfer learning.

In this work, the real observations used for transfer learning 
consist of high-quality lens candidates identified in KiDS DR4 
(Petrillo et al., 2019; Li et al., 2020; Grespan et al., 2024; 
Chowdhary et al., 2024). Since the criteria for a “high-quality” 
candidate vary across these publications, we adopt the classification 
specified in each respective source. While most of these candidates 
lack spectroscopic confirmation, their distinct morphological 
features in the images suggest a high likelihood of being genuine 
lenses. For the purpose of testing our networks, we treated these 
candidates as confirmed lenses. We collected a total of 401 lens 
candidates, with randomized positions in the 501× 501 pixel 
large images as illustrated in Figure 5. These images were then 
randomly split into training and testing sets for the transfer 
learning experiments. To improve the data diversity of the transfer 
learning dataset, we additionally incorporated non-lens images as 
supplementary data, with their quantity randomly selected to be the 
same as the real lenses. For instance, a transfer dataset built on 200 
real-world samples will include not only these 200 real samples but 
also 200 real non-lens images.

To specifically quantify the impact of the “sim-to-real” gap and 
the necessity of transfer learning, we investigated the performance of 
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FIGURE 4
This figure shows the Precision-Recall curves and Average Precision (AP) — which is the area under the precision-recall curve, summarizing a model’s 
performance by averaging precision across all recall levels — of four different models (A): LenNet, (B): YOLO v5l, (C): YOLO v5m, (D): YOLO v3 on the 
“lens” category. It is worth noting that the results of Model D (YOLO v3) differ significantly from the other three models (A–C), so the scale of the 
coordinates has been adjusted.

TABLE 1  Comparison of detection performance among different models 
on the simulated dataset, evaluated using F1-score, recall, and precision. 
LenNet achieves superior results across all metrics, significantly 
outperforming other baseline models.

Model F1 Recall Precision

LenNet 97.11% 97.27% 96.95%

YOLO v5l 94.52% 97.16% 92.03%

YOLO v5m 93.88% 95.52% 92.29%

YOLO v3 68.69% 59.23% 81.74%

LenNet and YOLO models on real images without transfer learning. 
The test shows that neither the LenNet nor the YOLO model achieves 
satisfactory performance on real-world images. When tested on 
402 real-world images (including 201 with lenses and 201 without 
lenses), LenNet can only detect 93 targets with 13 false detections 
when the confidence threshold is set to 0.1. In contrast, under 
the same confidence threshold of 0.1, even the YOLO v5 l model, 

which performed best in tests on the simulated dataset, detected 
only 77 targets while having 73 false detections. These results 
clearly show the drawbacks of directly applying models trained on 
simulated data to real-world scenarios, highlighting why transfer 
learning is indispensable. Furthermore, the scarcity of labelled real-
world astronomical data often precludes the reliable training of 
deep learning models from scratch. We employ transfer learning to 
address this challenge; this technique leverages knowledge from a 
model trained on a large, data-rich source domain (our simulations) 
and adapts it to a target domain with limited data (real observations) 
(Weiss et al., 2016). As established in Section 4.1, the superior feature 
extraction capabilities of LenNet ensure its pre-trained weights offer 
a robust foundation for fine-tuning on real images. This approach 
avoids training a model from scratch on a small dataset—a process 
prone to overfitting—by instead fine-tuning the existing powerful 
feature representations to the specific nuances of real survey data. 
The transfer learning experiment proceeded as follows: we utilized 
the LeNet model, pre-trained on a comprehensive simulated dataset, 
as the initial weights for fine-tuning on real-world data. Benefiting 
from the pre-trained weights’ ability to extract general features, this 
transfer-learning approach exhibits greater stability. To accelerate 
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FIGURE 5
Examples of gravitational lens candidates from KiDS DR4 used for transfer learning. Each 501×501 pixel image contains a galaxy-galaxy strong lensing 
(GGSL) event, with insets highlighting the lensed features.

model convergence, we moderately increased the learning rate and 
fine-tuned the model on two small, independent datasets of real-
world gravitational lens images. One dataset contains 400 images, 
consisting of 200 real lens-containing samples and 200 real lens-
free samples; the other dataset contains 720 images, consisting of 
360 real lens-containing samples and 360 real lens-free samples. 
Since lens-containing samples are the dominant samples for model 
training, the 400-image dataset is referred to as the “200-set” and 
the 720-image dataset as the “360-set” in the following context. 
To provide a direct performance benchmark, we also applied 
the identical fine-tuning procedure to YOLOv5m—the strongest 
baseline from our previous analysis—using the 200-image dataset. 
The comparative performance metrics are presented in Table 2. The 
fine-tuning experiments yield two key insights. Firstly, when both 
models are fine-tuned on the identical, limited dataset of 200 real 
images, LenNet significantly outperforms YOLOv5m. Specifically, 
LenNet achieves an F1-score of 89.47%, exceeding YOLOv5’s score 
of 81.77% by about eight percentage points. This outcome strongly 
suggests that the specialised features learned by LenNet during 
pre-training are more robust and directly transferable to real-
world lens detection. LenNet’s architecture, tailored for astrophysical 
morphologies, provides a more effective starting point, allowing 
it to adapt more efficiently with limited target data than its 
general-purpose counterpart. Secondly, the performance of LenNet 
demonstrates positive scaling with the quantity of training data. 

TABLE 2  Performance comparison of the LenNet and YOLOv5 models. 
Both models were pre-trained on the simulated dataset and 
subsequently fine-tuned on real lensing images via transfer learning. The 
second column specifies the number of real lensing images used for the 
fine-tuning phase.

Model Number of 
images

Recall Precision F1 score

LenNet 200 84.58% 90.91% 87.63%

LenNet 360 82.93% 97.14% 89.47%

YOLO v5 200 82.59% 80.98% 81.77%

When the fine-tuning dataset was expanded from 200-set to 360-
set images, the model’s F1-score improved from 87.63% to 89.47%. 
This improvement confirms that while LenNet is effective with 
minimal data, its performance can be systematically enhanced as 
more labelled examples become available.

In conclusion, these findings validate the effectiveness of our 
two-stage training strategy (simulation pre-training followed by 
real-data fine-tuning). The results not only highlight LenNet’s strong 
potential for immediate application in current astronomical surveys 
but also illuminate a path forward for its continuous improvement. 
As new gravitational lenses are discovered and validated, they can 
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FIGURE 6
An example of a simulated gravitational lensing image containing an unobscured lens, used to illustrate the interpretability of the LenNet model. The 
red bounding box indicates the GGSL identified by the model.

be incorporated into the fine-tuning set, creating a virtuous cycle 
where the model’s detection capabilities are progressively refined 
and enhanced over time. 

4.3 Observe LenNet from the aspect of 
feature maps

Visualizing the model’s internal feature maps provides 
qualitative insight into its decision-making process. This 
interpretability analysis is critical for verifying that the model 
learns to identify physically meaningful structures and for fostering 
confidence in its application as a scientific instrument. For this 
analysis, we selected a representative test image (Figure 6) that 
features an unobscured gravitational lens. Crucially, this image 
also contains other astronomical objects with morphologies or sizes 
that could potentially confound the lens finders. We trace the data’s 
progression through the two primary architectural stages of LenNet: 
the backbone is used for initial feature extraction, and the FPN, 
which is part of the Feature Fusion Neck, facilitates feature fusion 
and refinement.

The backbone serves as the foundational perception module 
of the network. Its role is to decompose the raw input image 
into a rich, hierarchical set of feature representations at 

multiple scales. Figure 7 displays the feature maps extracted from 
different layers of the backbone. As observed, the shallower 
layers capture low-level primitives such as edges, textures, and 
simple shapes. These activations are distributed across nearly all 
celestial objects in the frame, indicating that at this stage, the 
network is performing a broad, class-agnostic analysis of the 
visual information. As we progress to deeper layers, the features 
become more abstract and semantically complex, combining 
the initial primitives into representations of whole objects or 
significant parts thereof. At this stage, while activations are 
still present on multiple objects, the network has successfully 
generated a multi-scale inventory of all potentially salient structures 
in the image, providing the raw material for the subsequent
detection stages.

The features extracted by the backbone are then processed 
by the FPN. The FPN’s critical function is to fuse information 
across different scales, enhancing features relevant to the target 
class (gravitational lenses) while suppressing background noise 
and features from irrelevant objects. Figure 8 visualizes the output 
feature maps from the FPN. The transformative effect of the FPN 
is immediately apparent. A stark contrast emerges between the 
diffuse activations in the backbone and the highly localized, high-
intensity activations in the FPN maps. Across all three scales 
shown, the features corresponding to the gravitational lens are 
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FIGURE 7
Feature maps from the LenNet backbone for the input survey image presented in Figure 6. In the image, the blue areas indicate regions where the 
network does not focus its attention. The “stem” layer denotes the feature map following initial feature extraction, with “dark2” to “dark5” representing 
feature maps processed by subsequent feature extraction blocks. The tensor shapes of these layers are also illustrated in the model 
architecture diagram.

FIGURE 8
The Feature Pyramid Network (FPN) feature maps of the LenNet model for the input survey image presented in Figure 6. These three images represent 
the final output of the Feature Fusion Neck, which corresponds to the ultimate feature maps of LenNet. Notably, the yellow regions in the center are 
highly consistent across the images, suggesting a strong likelihood of the presence of a gravitational lens at these locations. In contrast, the blue areas 
indicate regions where the model does not focus its attention, implying that it considers these areas unlikely to contain gravitational lenses.

sharply and decisively enhanced. Simultaneously, the activations 
on neighboring galaxies and other distractor objects have been 
significantly attenuated. This visualization powerfully demonstrates 
that the FPN has learned to function as a highly effective 
spatial and semantic filter. It successfully integrates the multi-scale 

information from the backbone to converge on a high-confidence 
representation of the gravitational lens. This process creates a 
precise and unambiguous saliency map that provides clear guidance 
to the final detection head, enabling it to localize the lens with 
high accuracy. The clarity and focus of these final feature maps 
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directly explain the high precision and recall scores reported in our 
quantitative analysis. 

5 Conclusion

This paper presents LenNet, a high-performance model for 
the automated detection of gravitational lenses. Our results 
show that LenNet not only excels on simulated datasets but 
also achieves outstanding performance on real-world data. It 
significantly outperforms several mainstream detection models, 
with a recall of 97.27%, a precision of 96.95%, and a high F1-score 
of 97.11% on simulated test data. Furthermore, feature visualization 
analysis demonstrates LenNet’s ability to extract key gravitational 
lens characteristics even in complex astronomical backgrounds, 
highlighting its robustness and interpretability.

Following its success with simulated data, LenNet maintains 
strong performance under a transfer learning strategy. The model 
adapts well to new datasets and requires only a small amount of 
training data. This approach not only reduces training costs but 
also preserves high performance, underscoring LenNet’s efficiency 
and adaptability. Experimental results show that even with just 
the 200-set, LenNet achieves a recall of 84.58%, a precision of 
90.91%, and an F1-score of 87.63%. With the 360-set, the model 
sees a clear performance boost: recall reaches 82.93%, precision rises 
to 97.14%, and the F1-score improves to 89.47%. These findings 
validate the model’s generalization capabilities and demonstrate its 
practical utility in low-resource scenarios. Compared to training 
from scratch, transfer learning greatly reduces computational costs, 
enhancing the model’s scalability.

LenNet clearly exhibits strong potential. With continued 
training on newly identified lenses, its performance can be further 
improved. This dynamic adaptability makes LenNet a valuable and 
evolving tool for gravitational lens detection and astronomical 
research. Looking ahead, as the volume of sky survey data 
continues to grow and new samples are accumulated, LenNet 
can be incrementally optimized through continuous learning. This 
positions it as a powerful solution for gravitational lens detection 
in large-scale astronomical imaging. With future deployments, 
LenNet is expected to support a wide range of practical applications 
and serve as an important tool in advancing astrophysics and 
cosmological studies.
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