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Stellar spectral classification plays a crucial role in understanding the intrinsic
properties of stars, such as their temperature, composition, and luminosity.
Current methods for star classification primarily rely on template fitting, color-
magnitude cuts, or machine learning models that process raw 1D spectra
or 2D spectral images. These approaches, however, are limited by two main
factors: (i) degeneracies in spectral features that lead to confusion between
adjacent spectral types, and (i) an overreliance on flux-versus-wavelength
representations, which may overlook complementary structural information.
To address these limitations, we propose a novel multimodal framework for
stellar spectral classification that combines 1D and 2D spectral data with
audio-derived features. Motivated by the structural similarities between stellar
spectra and audio signals, we introduce—for the first time—audio-inspired
feature extraction techniques, including Mel spectrograms, MFCC, and LFCC,
to capture frequency-domain patterns often ignored by conventional methods.
Our framework employs an eight-layer CNN for processing spectral data, an
EPSANet-50 for spectral images, and a three-layer CNN for audio-derived
features. The outputs of these models are mapped to 256-dimensional vectors
and fused via a fully connected layer, with attention mechanisms further
enhancing the learning process. Experimental results demonstrate that while
1D spectral data with Coord Attention achieves an accuracy of 89.75+0.28%,
the Mel spectrogram alone outperforms spectral data, reaching 90.23+0.36%.
Combining 1D and 2D modalities yields 91.26+0.35%, and integrating audio
features with spectra results in 89.09+0.43%. The fully multimodal approach
delivers the best performance, achieving an overall accuracy of 91.79+0.11%.
These findings underscore the effectiveness of incorporating audio-derived
features, offering a fresh and promising approach to improving stellar spectral
classification beyond existing methods.

astrostatistics, deep learning, machine learning, star classification, spectra

1 Introduction

Spectroscopic analysis is essential in modern astronomy, as spectra encode
a wealth of physical information through their characteristic features, such as
absorption and emission lines. These spectral signatures serve as powerful diagnostics
for key astrophysical parameters, including effective temperature, surface gravity
(logg), metallicity, and chemical abundances, often yielding the highest precision
measurements among astronomical data sets.
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Star-type classification from low-resolution spectra has received
comparatively less attention than variable-star classification. Early
surveys relied on manual MK standards (Gray and Corbally, 2014),
while recent pipelines (Moradi et al., 2024; Zeraatgari et al., 2024)
focus on star/quasar/galaxy separation rather than the nuanced
O-M typing required for stellar population studies. Variable-star
work benefits from abundant light-curve data and clear scientific
drivers (period searches, distance ladders), whereas static spectral
typing is often treated as a solved sub-task. We argue that residual
degeneracies among adjacent spectral sub-types still limit current
accuracy and that these can be mitigated by richer, audio-inspired
representations.

Most existing approaches rely on raw flux values, continuum-
normalized spectra, or dimensionality reduction techniques such as
principal component analysis (PCA). These methods primarily treat
spectra as one-dimensional sequences, while largely overlooking
their signal-processing nature. In contrast, the field of audio
processing has developed a rich set of feature extraction techniques,
such as Mel spectrograms, linear frequency cepstral coefficients
(LECC), and Mel-frequency cepstral coeflicients (MFCC), which
are highly effective in capturing fine-grained spectral patterns. This
gap motivates our work. In this study, we introduce for the first
time the use of audio-inspired feature extraction techniques for
stellar spectra. By transforming spectra into an “audio modality”, we
extract complementary representations that highlight frequency-
domain characteristics often missed by conventional approaches.
Furthermore, we integrate these audio-derived features into a
multimodal classification framework, demonstrating that they
significantly enhance stellar spectral classification accuracy. Our
contributions are twofold: (1) we bridge audio signal processing
and astrophysical spectroscopy by adapting established audio
feature extraction methods to stellar spectra, and (2) we show
that incorporating this novel modality into multimodal learning
improves classification performance beyond state-of-the-art
baselines.

With the advent of large-scale spectroscopic surveys like
Sloan Digital Sky Survey (SDSS), The Large Sky Area Multi-
Object Fiber Spectroscopic Telescope (LAMOST), The Dark Energy
Spectroscopic Instrument (DESI), and Gaia, the volume of available
spectral data has grown exponentially, rendering traditional manual
inspection by experts obsolete. Human-based classification and
analysis are not only impractical for such vast data sets but also
time-consuming and prone to subjective biases. To address these
challenges, template-fitting techniques were initially adopted for
automated spectral processing (e.g., Gray and Corbally, 2014).
However, their accuracy is inherently limited by the completeness of
template libraries and the degeneracies among physical parameters.
In recent years, machine learning (ML) has emerged as a
transformative tool for spectroscopic analysis, offering superior
performance in parameter extraction and spectral classification.
By leveraging the full information content of spectra—including
subtle features often overlooked by conventional methods—ML
algorithms can uncover complex patterns and correlations, thereby
enabling more precise and robust measurements of stellar and
galactic properties.

ML encompasses a diverse array of algorithms, each exhibiting
distinct strengths and applicability in astronomical research. Li et al.
(2025) employed a random forest (RF) algorithm to predict the
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luminosities of early-type stars from LAMOST spectra using
effective temperature, surface gravity (log g), and metallicity
as inputs, subsequently leveraging the predicted luminosities to
estimate stellar masses. Similarly, Fang et al. (2025) utilized RF to
identify M-type Young Stellar Object (YSO) candidates from low-
resolution LAMOST spectra, demonstrating its efficacy in stellar
classification tasks. Beyond stellar astrophysics, Ghaderi et al. (2025)
combined Support Vector Machines (SVM) with 1D Convolutional
Neural Networks (CNNs) for morphological classification of
galaxies, showing that this hybrid approach significantly improved
computational efficiency without sacrificing accuracy.

In the domain of extragalactic astronomy, Zeraatgari et al.
(2024) systematically evaluated multiple ML models—including k-
Nearest Neighbors (KNN), RE, XGBoost (XGB), Artificial Neural
Networks (ANN), and Voting classifiers—to classify objects from
SDSS DR17 and ALLWISE photometric data and their comparative
analysis revealed context-dependent performance variations across
algorithms. Further highlighting the versatility of ML, Sithajan
and Meethong (2023) compared KNN, RE Penalized Random
Forest (PRF), and Multilayer Perceptron (MLP) models to classify
M-type stars using photometric data from SDSS, 2MASS, and
ALLWISE, with RF emerging as the optimal classifier in their study.
Audenaert et al. (2021) combined different classifiers to construct
an ensemble model to classify Kepler Q9 light curves, achieving
an overall accuracy of 94.9%, demonstrating that combining
multiple models can achieve better performance than a single
model alone. Molnar et al. (2022) first used the RF algorithm
to identify and distinguish variable stars from non-variable stars,
and then further used gradient boosting trees to perform detailed
variable star classification on variable star candidates, constructing
an automatic variable star classification pipeline.

In order to further improve the models ability to analyze
spectral data, deep learning methods and multimodal models have
been widely used in astronomical research. Moradi et al. (2024)
proposed Fnet, which integrates a one-dimensional CNN with
ResNet architectures of varying sizes to classify spectral data from
stars, quasars, and galaxies into three distinct categories. Junell et al.
(2025) combined four data modalities (photometry, image cutouts,
metadata, spectra) to automatically classify subtypes of supernovae.
Farr et al. (2020) employed Quasar Net, a ML-based classifier, to
identify high-redshift quasars within the DESI dataset. Liu et al.
(2018) demonstrated that CNNs can effectively extract valuable
information from stellar spectra for classification, surpassing
traditional methods. Fox Fortino et al. (2025) applied the attention
mechanism model to the automatic classification of supernova
subtypes and found that the classification accuracy was greatly
improved compared to the DASH model (Muthukrishna et al.,
2019). Recently, multi-modal approaches have gained prominence
for enhancing model performance. By combining different types
of data, these techniques can produce results that outperform
those based on a single modality. For instance, Wu et al
(2023) put forward a model called IEF-SCNN, based on spectral
2D plotted images and 1D data, and improved the spectral
classification performance. Kang et al. (2023) input the light curve
into the Recurrent Neural Network (RNN) and the image modality
of the light curve into the CNN. The two networks were combined
to form an ensemble model. They found that the addition of the
image modality data of the light curve improved the classification
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performance of periodic variable stars. Ait Ouahmed, R. et al.
(2024) applied multi-modal CNNs for redshift measurements
from photometric data, achieving remarkable accuracy. The CLIP
algorithm, designed specifically for aligning multi-modal data,
has also been utilized in astronomical applications. Rizhko and
Bloom (2025) introduced the AstroM model, which employs CLIP-
based self-supervised learning to align photometric metadata, light
curves, and spectra, thereby improving classification results for
variable stars.

Previous studies on stellar and variable star classification have
extensively explored improvements from multiple perspectives,
including the design of novel neural network architectures, the
incorporation of additional data modalities such as photometry
and spectra, the adoption of self-supervised learning strategies, and
methods to mitigate data imbalance. While these approaches have
significantly advanced classification performance, they primarily
rely on either architectural innovations or the introduction
of external data sources. In contrast, our work focuses on
the intrinsic representation of the spectroscopic data itself. By
drawing an analogy between stellar spectra and audio signals,
we apply established audio signal processing techniques (e.g.,
Mel spectrogram, MFCC, LFCC) to derive complementary
representations from the same spectral data. This allows us
to construct a multimodal framework that leverages multiple
perspectives of spectra—1D flux, 2D plotted images, and audio-
derived features—without requiring additional observational data.
To the best of our knowledge, this is the first study to introduce
audio-inspired representations into stellar spectral classification,
thereby providing a novel dimension of information extraction
beyond conventional approaches.

Stellar spectra encode rich physical information that is essential
for estimating astrophysical parameters and classifying stars. The
more effectively we can extract and utilize these spectral features in
various aspects, the more accurate and insightful our understanding
of stellar properties becomes. In the era of big data astronomy,
leveraging advanced data-driven approaches to maximize the utility
of spectral information is key to achieving higher precision in
astrophysical inference and uncovering novel discoveries. One such
promising direction is inspired by an intriguing analogy: stellar
spectra and audio signals both represent amplitude variations across
a domain—wavelength for flux and time for audio—revealing
patterns that are often subtle and complex.

This similarity suggests that techniques developed for audio
signal processing may be effectively adapted for spectral analysis.
In the field of audio analysis, feature extraction is a crucial step
for capturing meaningful characteristics such as pitch, timbre,
and energy. Methods like Mel spectrograms and MFCCs have
been widely adopted for tasks such as speech recognition and
sentiment analysis. For instance, Kundu et al. (2024) leveraged
deep learning models applied to audio features such as MFCC
and Mel spectrograms for sentiment analysis. Berriche et al. (2024)
explored various ML models, including SVM, KNN, Decision Tree,
and ResNet-18, for speech recognition. Alve et al. (2024) employed
CNNs to analyze these features for diagnosing respiratory diseases,
while Asadulaev et al. (2024) used Mel spectrograms for speech
conversion tasks. Additionally, Lei et al. (2022) combined LFCC
and Constant Q Cepstral Coefficients (CQCC) audio features with
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GMM-ResNet and GMMSENet architectures for spoofing speech
detection.

This paper presents a multimodal model designed to extract
numerical, visual and audio features from spectral data for stellar
classification. We conduct experiments to evaluate the classification
performance when different modalities of data are incorporated
into the model. The results demonstrate that the inclusion of audio
features significantly enhances the accuracy of spectral classification.
The structure of this paper is as follows: Section 2 outlines the dataset
and feature processing methods used. Section 3 describes the model
architecture and attention mechanism employed. Section 4 presents
and analyzes the experimental results. Finally, Section 5 provides a
summary of our work, draws conclusions, and offers directions for
future research.

2 Dataset

LAMOST (Cui et al,, 2012; Luo et al,, 2015) has generated tens
of millions of spectra. To evaluate the effectiveness of our proposed
method, we select low-resolution spectral data from LAMOST
DR11. Specifically, we focus on eight types of star spectra, including
O, B, A,E G, K, and M types, as well as carbon stars, while screening
the signal-to-noise ratio (SNR). For spectra with an i-band SNR
greater than 10, if the number of samples for any given type is
fewer than 6 000, we replicate the data to reach 6 000 samples,
ensuring a balanced dataset during training. The detailed number
of different type stars is shown in Table 1. To enhance training
efficiency and accelerate model convergence, all data are normalized
before being input into the model. The Min-Max normalization
is used by Equation 1. The entire data set is divided into training set,
validation set, and test set in a ratio of 8: 1: 1.

f_fmin

fmax ~ Jmin

fnorm = (1)
To process spectral data, it is essential to extract multiple data
modalities. The first numerical modality is the spectral data itself.
Since CNNs require fixed-length input, the spectral array must
be truncated. Given that most spectral lines are concentrated in
the blue region, we propose truncating the spectral array to the
first 3700 data points. The second visual modality uses plotted
spectra as images, which is then fed into the model for classification.
In addition to these two modalities, we incorporate techniques
from the field of audio processing to preprocess the spectral data,
extracting three key audio features: Mel spectrogram, MFCCs,
and LFCCs. These audio features provide additional information,
enriching the input data for improved classification performance.

Audio-derived features (Mel Spectrogram, MFCC, LFCC) are
quantitative descriptors extracted from sound signals, mainly used
in speech/audio processing and ML. These features each offer unique
characteristics and are applied across various domains, for instance,
Mel Spectrogram can be used for genre classification, MFCC for
speech recognition, LFCC for spoofing speech detection.

Mel Spectrogram: The Mel spectrogram represents a time-
frequency distribution where the frequency axis is transformed
using the Mel scale, which approximates human auditory
perception. This transformation is particularly useful in applications
where the human-like perception of frequency is beneficial, such as
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TABLE 1 The number of different type stars with i-band SNR > 10.

10.3389/fspas.2025.1659534

Carbon

No. 6 000 6000 6000

6000

6000 6000

in the analysis of stellar spectra for feature extraction or classification
tasks in astronomy. The Mel spectrogram is also widely employed in
areas such as speech and music analysis and deep learning tasks like
automatic speech recognition (ASR) and genre classification.

MFCC: MFCC are derived by applying a discrete cosine
transform (DCT) to the Mel spectrogram, capturing the spectral
envelope of the signal. This feature representation is commonly
used in speech recognition and speaker identification because
it effectively models phonetic characteristics. In an astronomical
context, MFCC can be adapted to capture key features in
spectral data, such as the harmonic structure of emissions from
celestial bodies.

LFCC: LFCC are similar to MFCC in that they provide a cepstral
representation, but instead of using the Mel scale, LFCC utilize a
linear frequency scale. This approach emphasizes higher-frequency
components, which may be more prominent in certain types of
astronomical spectra, such as in the analysis of light curves from
variable stars or high-resolution spectral lines from distant galaxies.
LFCC are particularly valuable in applications requiring sensitivity
to fine spectral details, such as anti-spoofing mechanisms in speaker
verification systems.

In this study, spectral feature extraction is performed
using torchaudios built-in transforms. Specifically, the Mel
spectrogram is computed using torchaudio.transforms.
MelSpectrogram, with the following parameter settings:
ng =512, win_length =80, hop_length =280, and n, =64.
For MFCC extraction, torchaudio.transforms.MFCC is
applied with n,¢.. = 30, ng =512, win_length = 50, hop_length =
40, and n,4,=64. LFCC features are extracted using
torchaudio.transforms.LFCC, with ny =40, ng =512,
and hop_length = 80, while other parameters are kept at their default
values. Here, ng refers to the FFT window size, win_length denotes
the window length, and hop_length corresponds to the frame shift
length. n, ., indicates the number of Mel filters in the filter bank,
mce and mye. represents the number of MFCC and LFCC
coeflicients, respectively.

while n

The first step in processing the spectral data involves treating the
input spectrum as an audio signal. A short-time Fourier transform
(STFT) is then applied to convert the time-domain signal into a
frequency-domain representation, enabling further extraction of
time-frequency features for subsequent analysis. The calculation
formula of STFT is as follows Equation 2:

N-1
X(m,k) = ) x(n+mH)-w(n)- eV )

n=0
where x(n) is the input audio signal, w(n) is the window function
(e.g., Hamming window), N is the window length, H is the hop
length (frame shift), m is the frame index, k is the frequency
index. The power spectrum P(m, k) is the modulus square of the
STFT result. It is passed through the Mel filter bank to convert the
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linear frequency into Mel frequency. The relationship between Mel
frequency and linear frequency is Equation 3:

%)
1(f) = 25951 1+ — 3
mel(f) ogw( +700 (3)
A Mel filter bank consists of a series of triangular filters, where
the center frequencies are evenly distributed according to the Mel

scale. The total number of filters is governed by the n . parameter.

‘mels
To obtain the Mel spectrum, the power spectrum is first multiplied
by the corresponding Mel filter bank H,,(k), and the results are then

summed across the filters (Equation 4).
S(m,1) = )" P(m,k)H,(k) )
k

where Hj(k) is the value of the Ith Mel filter at frequency k. S(m,])
is the energy of the /th Mel band in the mth frame of the Mel
spectrogram.
MFCC is defined as follows Equation 5:
I-1

C(m,n) = Z log S(m, 1) cos< @) (5)

1=0

n are the indexes from 0 to L—1, L is the number of Mel
filters. An example visualization of audio features, including
the Mel spectrogram, MFCC, and LECC, is shown in Figure 1.
MFCCs capture the coarse shape of the continuum (analogous
to the spectral envelope in speech), Mel spectrograms emphasise
localised absorption troughs (akin to formants), while LFCCs
preserve high-frequency modulation produced by blended lines.
These characteristics are difficult to encode in standard pixel or
flux vectors.

3 Methods
3.1 Workflow

For the same spectral dataset, we extract features from
multiple modalities. The first numerical modality corresponds
to spectral 1D data, the second visual modality to spectral 2D
plotted images, the third audio modality to the Mel spectrogram
derived by treating the spectral data as an audio signal, the
fourth audio modality to the MFCC obtained through audio
processing, and the fifth audio modality to the LFCC derived
via audio processing. Figure 2 presents the workflow of our
proposed model, which outlines a multimodal framework designed
for stellar classification. This framework integrates various data
representations, each contributing uniquely to the classification
process. The components of the model are as follows:

Top branch: A CNN processes specrtal flux data, extracting
frequency patterns.
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FIGURE 1

MFCC (Mel-Frequency Cepstral Coefficients)

An example showing the Mel spectrogram, MFCC, and LFCC—three common audio features for an A-type star.
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FIGURE 2
Overall model architecture.

Middle branch: The EPSANet (Efficient Pyramid Split
Attention Network; Zhang et al., 2022) backbone analyzes 2D
spectral images, leveraging PSA modules to resolve multiscale
spectral features (e.g., absorption lines, and continuum shapes).

Bottom branch: Three parallel CNNs handle audio-derived
features (Mel Spectrogram, MFCC, LECC), each transformed via
identical 3-layer CNNs to ensure consistency.

To process the 1D spectral data, we utilize an eight-layer CNN.
For the 2D spectral image data, we deploy the Epsanet-50 model, a
deep CNN architecture, for feature extraction. For the audio-based
data (Mel spectrogram, MFCC, and LFCC), we apply a simple three-
layer CNN.

Each modality is mapped to a 256-dimensional vector via
a linear transformation, concatenated, and passed through a
fully connected layer for classification. This unified approach
enhances performance in classifying complex astronomical
datasets, outperforming ResNet-based models in both accuracy
and efficiency. We evaluate the classification performance both
independently for each modality and after combining them. When
modalities are combined, their features are first projected to 256-
dimensional vectors, then merged and processed through a fully
connected layer to produce the final 8-class output.

Frontiers in Astronomy and Space Sciences

3.2 Model

EPSANet is a deep learning architecture designed to enhance
feature representation through the integration of Pyramid Split
Attention (PSA) modules. In contrast to ResNet, which primarily
leverages residual connections, EPSANet introduces an efficient
attention mechanism that adaptively captures cross-channel and
spatial dependencies at multiple scales, enabling richer contextual
information extraction with reduced computational overhead.

The SE (Squeeze-and-Excitation) weight module serves as a
fundamental building block for the attention mechanisms in
EPSANet, although it is ultimately superseded by the more
sophisticated PSA design. The SE block is recalibrating channel-
wise feature responses by modeling the interdependencies between
channels. By adaptively adjusting the channel-wise weights, the
SE module enhances feature representation, but its limitations in
handling multiscale spatial patterns are addressed by the more
advanced PSA mechanism in EPSANet.

The PSA mechanism represents a key innovation in EPSANet.
As illustrated in Figure 3, the PSA module operates by splitting the
input features into multiple branches, each utilizing different kernel
sizes (e.g., 3x 3, 5x 5), allowing for the capture of multi-scale
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PSA Module. PSA Module divides the input image into four parts of the channel, applies different sizes of convolution kernels (3*3, 5*5, 7*7, 9*9) to each
of the four parts of the channel, and then merges the different channels, and then generates the attention weights of the different channels through
SEWeight Module, and multiplies the data of the different channels by the attention weights of the different channels, to obtain the output result, which
is obtained through PSA Module. Then we can obtain different scales of features in different channels of the image and give them different attention
weights, avoiding the single-size convolution kernel that focuses only on local features or global features.

—

Concat

Output

SE Weight Module

— Weights of channels

spatial patterns. These outputs are then fused through an adaptive
attention weighting scheme, which dynamically prioritizes the most
salient spatial scales and feature channels. This approach effectively
overcomes the limitations of static convolutional kernels commonly
used in architectures like ResNet, offering enhanced flexibility in
feature extraction and representation.

The EPSA block, as illustrated in Figure 4, integrates PSA
modules within a residual block framework. Each block processes
features through parallel convolutional paths, applies attention-
based fusion, and incorporates skip connections to maintain
effective gradient flow. This hierarchical refinement allows the
network to progressively extract high-level features, such as complex
celestial structures in astronomical images, while preserving
computational efficiency. By leveraging multi-scale attention and
residual connections, the EPSA block enhances the network’ ability
to capture intricate spatial relationships within astronomical data,
facilitating more precise feature extraction and analysis.

3.3 Attention mechanisms

While the base CNN architecture provides a strong foundation
for spectral classification, incorporating attention mechanisms may
allow the model to focus on more informative spectral features.
Therefore, we explore the impact of different attention modules on
classification accuracy.

Gated Channel Transformation (GCT): GCT is a lightweight
and effective channel attention mechanism designed to model inter-
channel dependencies with minimal computational overhead. It
begins by computing the L2 norm of each feature channel to capture
its global activation strength. These responses are then normalized
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across channels and a learnable gating mechanism is applied,
involving scale and bias parameters followed by tanh activation,
to produce adaptive channel-wise weights. Finally, these weights
modulate the original feature maps, enabling the model to
selectively emphasize informative channels while suppressing less
relevant ones.

SE  Module: The SE module
feature responses by explicitly modeling interdependencies
between channels (Hu et al., 2018). It utilizes global average pooling
to extract channel descriptors, which are then processed through
two fully connected layers with a bottleneck design. After passing
through a sigmoid activation, the output is used to reweight the input

recalibrates channel-wise

feature maps, emphasizing the most discriminative spectral features.

Efficient Channel Attention (ECA): ECA refines the SE module
by eliminating dimensionality reduction while maintaining efficient
cross-channel interactions (Wang et al., 2020). Rather than using
fully connected layers, ECA employs a 1D convolution with
an adaptively determined kernel size based on the number
of channels. This results in improved computational efficiency
and facilitates effective channel attention learning with minimal
parameter overhead.

Bilateral Attention Module (BAM): BAM
both channel and spatial attention for enhanced feature

incorporates

refinement (Zhang et al., 2021). The channel attention submodule
applies global average pooling followed by a multi-layer perceptron,
while the spatial attention submodule consists of convolutional
layers with dilated convolutions. The outputs of these submodules
are combined multiplicatively with the input feature maps, focusing
on salient spectral-spatial patterns.

Coordinate Attention (CoordAtt): CoordAtt improves spatial
attention by decomposing global pooling into separate height-
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FIGURE 4
EPSA block.

and width-wise pooling operations (Hou et al, 2021). The
pooled features are concatenated and passed through a shared
transformation layer before being split into two attention branches.
These branches produce attention weights that are applied to the
original feature map, capturing long-range dependencies effectively
along both spatial dimensions.

Criss-Cross Attention (CCA): CCA introduces an efficient self-
attention mechanism that focuses on contextual information along
both horizontal and vertical directions (Huang et al., 2023). By
aggregating features from cross-shaped receptive fields at each
spatial location, CCA captures long-range dependencies while
reducing computational complexity compared to conventional self-
attention mechanisms. The attention maps are iteratively refined,
enhancing spatial feature modeling.

These attention mechanisms are integrated into CNN
architectures to evaluate their influence on spectral classification
accuracy. Their ability to refine feature representations and improve
model robustness is assessed, highlighting their effectiveness in
enhancing the networK’s ability to learn discriminative patterns
from spectral data, particularly in applications like astronomical
image analysis.

3.4 Performance metrics

A confusion matrix (see Table 2) is a widely utilized tool in the
evaluation of classification models (or “classifiers”), particularly in
the context of testing datasets with known true values. It provides
a comprehensive view of the model’s performance by presenting
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TABLE 2 Confusion matrix.

Prediction
Positive Negative
Positive TP (Ture Positive) FN (False Negative) ‘
‘ Negative FP (False Positive) TN (True Negative) ‘

a detailed breakdown of its predictions. Below, the equations for
accuracy, (Equation 6) precision, (Equation 7) recall and (Equation
8) F1-score (Equation 9) is provided, respectively.

Accuracy = & ©)
TP+ TN + FP + FN
Precision = Tp )
TP + FP
Recall = _TP ®)
TP+ FN
F1 —score =2 X Precision x Recall ©

Precision + Recall

Accuracy provides an overall measure of the proportion of correctly
classified samples among all predictions.

Precision focuses on positive predictions, measuring the
proportion of correctly classified positive samples among all samples
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predicted as positive. High precision indicates that the model is less
likely to misclassify negative cases as positive.

Recall evaluates coverage of the actual positive class, quantifying
the proportion of correctly identified positive samples among all
true positives. High recall implies that the model effectively captures
most positive cases, minimizing missed detections.

F1-score is the harmonic mean of precision and recall, providing
a balanced assessment when there is a trade-off between these two
metrics. It is particularly valuable in scenarios with imbalanced
classes or unequal error costs.

By jointly considering these metrics, we obtain a holistic view of
model performance: accuracy reflects overall correctness, precision
and recall highlight class-specific behaviors, and the Fl-score
integrates both to provide a balanced evaluation.

4 Results

To evaluate the classification performance of different
modalities, we conduct a series of comparative experiments. By
testing the classification accuracy for each individual modality on
the same dataset, we are able to directly compare the effectiveness
of spectral 1D data, 2D images, and audio modalities against
the performance achieved by combining these modalities. This
provides further insight into how the inclusion of audio modality
data can improve spectral classification results. For different
experiments, we use confusion matrix and accuracy, precision,
recall, Fl-score to evaluate the model performance. All tests are
performed using the same dataset, specifically the eight-class star
classification experiment based on the LAMOST spectral data, as
described in Section 2. Our experiments are implemented within
the PyTorch framework. During training, we employ the Adam
optimizer and use the cross-entropy loss function. We ensure model
convergence by training for 500 epochs in each experiment, with
a learning rate set to 0.0005. All experiments are conducted on an
NVIDIA A100 GPU.

For 1D spectral data, we investigate the impact of integrating
various attention mechanisms, alongside the baseline case without
any attention mechanism, into a CNN for classifying spectral data.
The performance results are summarized in Table 3. In the absence
of an attention mechanism, the CNN achieves a classification
accuracy of 87.17% on the spectral dataset. Introducing the BAM
module boosts the accuracy to 89.13%, while incorporating the
GCT module yields a further improvement, reaching 89.19%.
The SE attention mechanism produces an accuracy of 88.54%,
with the ECA and Criss-Cross Attention modules achieving
accuracies of 88.13% and 88.41%, respectively. Notably, the Coord
Attention mechanism achieves the highest classification accuracy of
89.37%. These findings underscore the consistent enhancement in
classification performance when attention mechanisms are added to
the CNN compared to the baseline model without attention. Since
the Coord Attention mechanism delivers the best performance,
it is selected for use in all subsequent experiments involving
spectral data.

Next, we perform multimodal experiments to compare the
impact of different modal data on classification accuracy. We
conduct ten experiments on data from different modalities, setting
different random number seeds to ensure that the dataset is

Frontiers in Astronomy and Space Sciences

08

10.3389/fspas.2025.1659534

TABLE 3 Classification performance for different attention modules.

Attention module ’ Accuracy (%)

BAM 89.13

GCT 89.19

SE 88.54

ECA 88.13
Coordinate Attention 89.37
Criss Cross Attention 88.41
None 87.17

The best accuracy is in bold.

TABLE 4 Classification performance with different inputs.

Input Accuracy (%)

Spectral 1D data 89.75+0.28
Spectral 2D image 90.89+0.28
Audio: Mel spectrogram 90.2310.36
Audio: MFCC 83.87+0.35
Audio: LFCC 85.07+0.38
Spectral 1D and 2D data 91.26+0.35
Spectral 1D and audio features 89.09+0.43
Spectral 1D, 2D and audio data 91.79+0.11

The best accuracy is in bold.

divided into different training, validation, and test sets for each
experiment. The mean and standard deviation of the accuracy
of the ten experiments are calculated. To assess whether the
classification performance differences between models trained with
1D spectral data alone and those trained with additional modalities
(image and audio) are statistically significant, we conduct a power
analysis based on independent two-sample t-tests. The effect size
is quantified using Cohen’s d, defined as the mean accuracy
difference between the two groups normalized by their pooled
standard deviation. The required sample size per group to achieve
a statistical power of 0.8 at a significance level of a=0.05 is
then estimated using the TTestIndPower implementation of
power analysis. For the comparison between the spectral-only
model and the multimodal (spectrum + image + audio) model,
the observed effect size is Cohen’s d =3.46, which represents a
very large effect. The required number of experiments per group
to detect this effect with 80% power is estimated to be n=3.
Since we perform ten experiments for each setting, which is
well above the required number of experiments, the observed
differences can be considered statistically significant with high
confidence.

frontiersin.org


https://doi.org/10.3389/fspas.2025.1659534
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Zhang et al. 10.3389/fspas.2025.1659534

Confusion Matrix
500
400
©
Qo
@©
-
O 300
]
=
e
(U]
.
=W
- 200
- 100
1 1 - 0
(0] B A F G K M €
True Label
FIGURE 5
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TABLE 5 The classification performance only with 1D spectra. TABLE 6 The classification performance with spectral 1D and 2D data as
well as audio features.
Class Precision Recall (%) F1-score W
(%) (%) Precision Recall (%) F1-score
S E— (%)
O 100.0 100.0 100.0
B 91.3 92.3 91.8
B 90.4 92.4 91.4
A 83.9 83.0 83.5
A 85.4 85.4 85.4
F 80.6 81.9 81.3
F 88.1 85.3 86.7
G 77.3 79.3 78.3
G 85.1 87.0 86.0
K 88.9 83.6 86.2
K 90.8 91.3 91.1
M 95.4 98.9 97.1
M 98.5 98.7 98.6
C 97.6 96.3 97.0
C 99.0 97.1 98.0
Total Accuracy 89.37
(%) Total Accuracy 92.14
(%)

For the comparison between the spectral-only model and the  effect. The required number of experiments per group to detect
multimodal (spectrum + image + audio) model, the observed  this effect with 80% power is estimated to be n=3. Since we
effect size is Cohen’s d=3.46, which represents a very large  performed ten experiments for each setting, which is well above
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the required number of experiments, the observed differences
can be considered statistically significant with high confidence.
All results are shown in Table 4. First, we assess the classification
performance using only the spectral image and audio modalities.
As previously noted, the highest classification accuracy for 1D
spectral data, achieved with the Coordinate Attention mechanism,
is 89.75+0.28%. When only the spectral 2D image modality is
provided to the model, the accuracy is 90.89+0.28%. For the
audio modality, we explore three different audio feature variations:
Mel Spectrogram, MFCC, and LFCC. The classification accuracy
for the Mel Spectrogram alone reaches 90.23+0.36%, while the
accuracy for MFCC and LFCC are 83.87+0.35% and 85.07+0.38%,
respectively. Notably, the accuracy for the Mel Spectrogram
surpasses that of the 1D spectral data, further demonstrating
the efficacy of audio features in enhancing the model’s capacity
to interpret spectral characteristics. The Mel Spectrogram, in
particular, highlights features that are less discernible in the
spectral data, thereby aiding the model in distinguishing between
stellar spectral classes and improving overall classification
performance.

Subsequently, we combine multiple modalities to boost the
performance of the model. When both spectral 1D data and 2D
images are input together, the classification accuracy increases to
91.26+0.35%. Integrating the three audio features (Mel Spectrogram,
MFCC, and LFCC) with the 1D spectral data yields an accuracy
of 89.09+0.43%. Finally, when all three modalities, spectral data,
spectral images, and audio features, are concatenated and passed
through a linear layer to form 256-dimensional feature vectors,
followed by an additional fully connected layer for classification,
the overall accuracy reaches 91.79+0.11%. In this situation, the
best accuracy is achieved and the classification confusion matrix
with spectral 1D data, 2D images, and audio features is displayed
in Figure 5. As indicated in Figure 5, the precision for each type
of stars is comparable and adjacent types are easily misclassified.
As shown in Table 4, the classification accuracy for the input of
spectral data is consistently higher when using the Mel spectrogram
modality compared to the input of single spectral data, illustrating
the advantages of incorporating audio features. Audio processing
methods effectively enhance spectral analysis by emphasizing
certain spectral features that might otherwise be overlooked.
According to Tables 5 and 6, we can see that compared to using only
spectral 1D data, the addition of images and audio data has improved
the precision, recall and F1-score indicators for star classification in
categories such as A, F, G, K, M and Carbon to varying degrees, and
has also increased overall classification accuracy by approximately 3
percentage points. These results highlight the promising potential
of multimodal spectral analysis as a replacement for traditional
single-modality analysis, adding a new dimension to spectral
data analysis.

5 Conclusion

This study introduces an innovative multimodal framework
that combines spectral 1D data, 2D plotted images, and audio-
transformed features, significantly enhancing spectral classification
performance. Our experimental results demonstrate that: (1)
audio-based representations of LAMOST low-resolution spectra
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outperform conventional 1D spectral analysis in classification
accuracy, and (2) the integrated multimodal approach leads to
further performance improvements, positioning audio feature
extraction as a promising complementary approach in spectral
data analysis.

Going beyond conventional deep learning architectures, our
work spearheads a data-centric revolution by:

e Introducing auditory representations as a novel feature space
for spectral analysis;

e Revealing that certain spectral characteristics are more
distinctly manifested in audio domains;

o Establishing a generalizable framework for multimodal
astronomical data fusion.

The successful integration of audio processing techniques with
spectral analysis opens new avenues for:

e Enhanced feature extraction from existing spectral surveys;

e Complementary data representations that augment
traditional methods;
e Cross-domain synergies between astrophysics and signal

processing.

Our results suggest that the audio-based representation is not
merely a mathematical transformation but may also preserve the
underlying physical characteristics of stellar spectra. In particular,
the distinctive absorption lines that are essential for differentiating
stellar types appear to be reflected in their corresponding audio
features, allowing neural networks to potentially identify these
physical signatures from the audio domain. This further implies
that some of the key physical features used in classifying variable
stars from their light curves might also be captured in the
audio representation, where such transformations could enhance
the visibility of subtle variability patterns. In addition, the fact
that absorption and emission features may be embedded in the
audio domain indicates that, in the future, this approach could
potentially be extended to other celestial object classification,
physical parameter measurement, although further investigations
are required to validate this possibility. All implementation details
and source code are available at our GitHub repository: https://
github.com/leon129101-leo/spectrum-with-audio-feature.

In summary, by transcending traditional spectral analysis
through innovative multimodal integration, this study provides
immediate improvements in classification tasks and offers a
framework for data representation innovation in astronomy. It
positions audio-feature analysis as a valuable tool in the era of
big astronomical data. The success of this framework suggests that
future breakthroughs in astrophysical data analysis may increasingly
emerge from the creative cross-pollination of astronomy and other
data-rich fields, rather than solely from advancements in neural
network architectures.
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