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Stellar spectral classification plays a crucial role in understanding the intrinsic 
properties of stars, such as their temperature, composition, and luminosity. 
Current methods for star classification primarily rely on template fitting, color-
magnitude cuts, or machine learning models that process raw 1D spectra 
or 2D spectral images. These approaches, however, are limited by two main 
factors: (i) degeneracies in spectral features that lead to confusion between 
adjacent spectral types, and (ii) an overreliance on flux-versus-wavelength 
representations, which may overlook complementary structural information. 
To address these limitations, we propose a novel multimodal framework for 
stellar spectral classification that combines 1D and 2D spectral data with 
audio-derived features. Motivated by the structural similarities between stellar 
spectra and audio signals, we introduce—for the first time—audio-inspired 
feature extraction techniques, including Mel spectrograms, MFCC, and LFCC, 
to capture frequency-domain patterns often ignored by conventional methods. 
Our framework employs an eight-layer CNN for processing spectral data, an 
EPSANet-50 for spectral images, and a three-layer CNN for audio-derived 
features. The outputs of these models are mapped to 256-dimensional vectors 
and fused via a fully connected layer, with attention mechanisms further 
enhancing the learning process. Experimental results demonstrate that while 
1D spectral data with Coord Attention achieves an accuracy of 89.75±0.28%, 
the Mel spectrogram alone outperforms spectral data, reaching 90.23±0.36%. 
Combining 1D and 2D modalities yields 91.26±0.35%, and integrating audio 
features with spectra results in 89.09±0.43%. The fully multimodal approach 
delivers the best performance, achieving an overall accuracy of 91.79±0.11%. 
These findings underscore the effectiveness of incorporating audio-derived 
features, offering a fresh and promising approach to improving stellar spectral 
classification beyond existing methods.
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 1 Introduction

Spectroscopic analysis is essential in modern astronomy, as spectra encode 
a wealth of physical information through their characteristic features, such as 
absorption and emission lines. These spectral signatures serve as powerful diagnostics 
for key astrophysical parameters, including effective temperature, surface gravity 
(logg), metallicity, and chemical abundances, often yielding the highest precision 
measurements among astronomical data sets.
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Star-type classification from low-resolution spectra has received 
comparatively less attention than variable-star classification. Early 
surveys relied on manual MK standards (Gray and Corbally, 2014), 
while recent pipelines (Moradi et al., 2024; Zeraatgari et al., 2024) 
focus on star/quasar/galaxy separation rather than the nuanced 
O–M typing required for stellar population studies. Variable-star 
work benefits from abundant light-curve data and clear scientific 
drivers (period searches, distance ladders), whereas static spectral 
typing is often treated as a solved sub-task. We argue that residual 
degeneracies among adjacent spectral sub-types still limit current 
accuracy and that these can be mitigated by richer, audio-inspired 
representations.

Most existing approaches rely on raw flux values, continuum-
normalized spectra, or dimensionality reduction techniques such as 
principal component analysis (PCA). These methods primarily treat 
spectra as one-dimensional sequences, while largely overlooking 
their signal-processing nature. In contrast, the field of audio 
processing has developed a rich set of feature extraction techniques, 
such as Mel spectrograms, linear frequency cepstral coefficients 
(LFCC), and Mel-frequency cepstral coefficients (MFCC), which 
are highly effective in capturing fine-grained spectral patterns. This 
gap motivates our work. In this study, we introduce for the first 
time the use of audio-inspired feature extraction techniques for 
stellar spectra. By transforming spectra into an “audio modality”, we 
extract complementary representations that highlight frequency-
domain characteristics often missed by conventional approaches. 
Furthermore, we integrate these audio-derived features into a 
multimodal classification framework, demonstrating that they 
significantly enhance stellar spectral classification accuracy. Our 
contributions are twofold: (1) we bridge audio signal processing 
and astrophysical spectroscopy by adapting established audio 
feature extraction methods to stellar spectra, and (2) we show 
that incorporating this novel modality into multimodal learning 
improves classification performance beyond state-of-the-art 
baselines.

With the advent of large-scale spectroscopic surveys like 
Sloan Digital Sky Survey (SDSS), The Large Sky Area Multi-
Object Fiber Spectroscopic Telescope (LAMOST), The Dark Energy 
Spectroscopic Instrument (DESI), and Gaia, the volume of available 
spectral data has grown exponentially, rendering traditional manual 
inspection by experts obsolete. Human-based classification and 
analysis are not only impractical for such vast data sets but also 
time-consuming and prone to subjective biases. To address these 
challenges, template-fitting techniques were initially adopted for 
automated spectral processing (e.g., Gray and Corbally, 2014). 
However, their accuracy is inherently limited by the completeness of 
template libraries and the degeneracies among physical parameters. 
In recent years, machine learning (ML) has emerged as a 
transformative tool for spectroscopic analysis, offering superior 
performance in parameter extraction and spectral classification. 
By leveraging the full information content of spectra—including 
subtle features often overlooked by conventional methods—ML 
algorithms can uncover complex patterns and correlations, thereby 
enabling more precise and robust measurements of stellar and 
galactic properties.

ML encompasses a diverse array of algorithms, each exhibiting 
distinct strengths and applicability in astronomical research. Li et al. 
(2025) employed a random forest (RF) algorithm to predict the 

luminosities of early-type stars from LAMOST spectra using 
effective temperature, surface gravity (log g), and metallicity 
as inputs, subsequently leveraging the predicted luminosities to 
estimate stellar masses. Similarly, Fang et al. (2025) utilized RF to 
identify M-type Young Stellar Object (YSO) candidates from low-
resolution LAMOST spectra, demonstrating its efficacy in stellar 
classification tasks. Beyond stellar astrophysics, Ghaderi et al. (2025) 
combined Support Vector Machines (SVM) with 1D Convolutional 
Neural Networks (CNNs) for morphological classification of 
galaxies, showing that this hybrid approach significantly improved 
computational efficiency without sacrificing accuracy.

In the domain of extragalactic astronomy, Zeraatgari et al. 
(2024) systematically evaluated multiple ML models—including k-
Nearest Neighbors (KNN), RF, XGBoost (XGB), Artificial Neural 
Networks (ANN), and Voting classifiers—to classify objects from 
SDSS DR17 and ALLWISE photometric data and their comparative 
analysis revealed context-dependent performance variations across 
algorithms. Further highlighting the versatility of ML, Sithajan 
and Meethong (2023) compared KNN, RF, Penalized Random 
Forest (PRF), and Multilayer Perceptron (MLP) models to classify 
M-type stars using photometric data from SDSS, 2MASS, and 
ALLWISE, with RF emerging as the optimal classifier in their study. 
Audenaert et al. (2021) combined different classifiers to construct 
an ensemble model to classify Kepler Q9 light curves, achieving 
an overall accuracy of 94.9%, demonstrating that combining 
multiple models can achieve better performance than a single 
model alone. Molnar et al. (2022) first used the RF algorithm 
to identify and distinguish variable stars from non-variable stars, 
and then further used gradient boosting trees to perform detailed 
variable star classification on variable star candidates, constructing 
an automatic variable star classification pipeline.

In order to further improve the model’s ability to analyze 
spectral data, deep learning methods and multimodal models have 
been widely used in astronomical research. Moradi et al. (2024) 
proposed Fnet, which integrates a one-dimensional CNN with 
ResNet architectures of varying sizes to classify spectral data from 
stars, quasars, and galaxies into three distinct categories. Junell et al. 
(2025) combined four data modalities (photometry, image cutouts, 
metadata, spectra) to automatically classify subtypes of supernovae. 
Farr et al. (2020) employed Quasar Net, a ML-based classifier, to 
identify high-redshift quasars within the DESI dataset. Liu et al. 
(2018) demonstrated that CNNs can effectively extract valuable 
information from stellar spectra for classification, surpassing 
traditional methods. Fox Fortino et al. (2025) applied the attention 
mechanism model to the automatic classification of supernova 
subtypes and found that the classification accuracy was greatly 
improved compared to the DASH model (Muthukrishna et al., 
2019). Recently, multi-modal approaches have gained prominence 
for enhancing model performance. By combining different types 
of data, these techniques can produce results that outperform 
those based on a single modality. For instance, Wu et al. 
(2023) put forward a model called IEF-SCNN, based on spectral 
2D plotted images and 1D data, and improved the spectral
classification performance. Kang et al. (2023) input the light curve 
into the Recurrent Neural Network (RNN) and the image modality 
of the light curve into the CNN. The two networks were combined 
to form an ensemble model. They found that the addition of the 
image modality data of the light curve improved the classification 
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performance of periodic variable stars. Ait Ouahmed, R. et al. 
(2024) applied multi-modal CNNs for redshift measurements 
from photometric data, achieving remarkable accuracy. The CLIP 
algorithm, designed specifically for aligning multi-modal data, 
has also been utilized in astronomical applications. Rizhko and 
Bloom (2025) introduced the AstroM model, which employs CLIP-
based self-supervised learning to align photometric metadata, light 
curves, and spectra, thereby improving classification results for 
variable stars.

Previous studies on stellar and variable star classification have 
extensively explored improvements from multiple perspectives, 
including the design of novel neural network architectures, the 
incorporation of additional data modalities such as photometry 
and spectra, the adoption of self-supervised learning strategies, and 
methods to mitigate data imbalance. While these approaches have 
significantly advanced classification performance, they primarily 
rely on either architectural innovations or the introduction 
of external data sources. In contrast, our work focuses on 
the intrinsic representation of the spectroscopic data itself. By 
drawing an analogy between stellar spectra and audio signals, 
we apply established audio signal processing techniques (e.g., 
Mel spectrogram, MFCC, LFCC) to derive complementary 
representations from the same spectral data. This allows us 
to construct a multimodal framework that leverages multiple 
perspectives of spectra—1D flux, 2D plotted images, and audio-
derived features—without requiring additional observational data. 
To the best of our knowledge, this is the first study to introduce 
audio-inspired representations into stellar spectral classification, 
thereby providing a novel dimension of information extraction 
beyond conventional approaches.

Stellar spectra encode rich physical information that is essential 
for estimating astrophysical parameters and classifying stars. The 
more effectively we can extract and utilize these spectral features in 
various aspects, the more accurate and insightful our understanding 
of stellar properties becomes. In the era of big data astronomy, 
leveraging advanced data-driven approaches to maximize the utility 
of spectral information is key to achieving higher precision in 
astrophysical inference and uncovering novel discoveries. One such 
promising direction is inspired by an intriguing analogy: stellar 
spectra and audio signals both represent amplitude variations across 
a domain—wavelength for flux and time for audio—revealing 
patterns that are often subtle and complex.

This similarity suggests that techniques developed for audio 
signal processing may be effectively adapted for spectral analysis. 
In the field of audio analysis, feature extraction is a crucial step 
for capturing meaningful characteristics such as pitch, timbre, 
and energy. Methods like Mel spectrograms and MFCCs have 
been widely adopted for tasks such as speech recognition and 
sentiment analysis. For instance, Kundu et al. (2024) leveraged 
deep learning models applied to audio features such as MFCC 
and Mel spectrograms for sentiment analysis. Berriche et al. (2024) 
explored various ML models, including SVM, KNN, Decision Tree, 
and ResNet-18, for speech recognition. Alve et al. (2024) employed 
CNNs to analyze these features for diagnosing respiratory diseases, 
while Asadulaev et al. (2024) used Mel spectrograms for speech 
conversion tasks. Additionally, Lei et al. (2022) combined LFCC 
and Constant Q Cepstral Coefficients (CQCC) audio features with 

GMM-ResNet and GMMSENet architectures for spoofing speech 
detection.

This paper presents a multimodal model designed to extract 
numerical, visual and audio features from spectral data for stellar 
classification. We conduct experiments to evaluate the classification 
performance when different modalities of data are incorporated 
into the model. The results demonstrate that the inclusion of audio 
features significantly enhances the accuracy of spectral classification. 
The structure of this paper is as follows: Section 2 outlines the dataset 
and feature processing methods used. Section 3 describes the model 
architecture and attention mechanism employed. Section 4 presents 
and analyzes the experimental results. Finally, Section 5 provides a 
summary of our work, draws conclusions, and offers directions for 
future research. 

2 Dataset

LAMOST (Cui et al., 2012; Luo et al., 2015) has generated tens 
of millions of spectra. To evaluate the effectiveness of our proposed 
method, we select low-resolution spectral data from LAMOST 
DR11. Specifically, we focus on eight types of star spectra, including 
O, B, A, F, G, K, and M types, as well as carbon stars, while screening 
the signal-to-noise ratio (SNR). For spectra with an i-band SNR 
greater than 10, if the number of samples for any given type is 
fewer than 6 000, we replicate the data to reach 6 000 samples, 
ensuring a balanced dataset during training. The detailed number 
of different type stars is shown in Table 1. To enhance training 
efficiency and accelerate model convergence, all data are normalized 
before being input into the model. The Min-Max normalization 
is used by Equation 1. The entire data set is divided into training set, 
validation set, and test set in a ratio of 8: 1: 1.

fnorm =
f − fmin

fmax − fmin
(1)

To process spectral data, it is essential to extract multiple data 
modalities. The first numerical modality is the spectral data itself. 
Since CNNs require fixed-length input, the spectral array must 
be truncated. Given that most spectral lines are concentrated in 
the blue region, we propose truncating the spectral array to the 
first 3 700 data points. The second visual modality uses plotted 
spectra as images, which is then fed into the model for classification. 
In addition to these two modalities, we incorporate techniques 
from the field of audio processing to preprocess the spectral data, 
extracting three key audio features: Mel spectrogram, MFCCs, 
and LFCCs. These audio features provide additional information, 
enriching the input data for improved classification performance.

Audio-derived features (Mel Spectrogram, MFCC, LFCC) are 
quantitative descriptors extracted from sound signals, mainly used 
in speech/audio processing and ML. These features each offer unique 
characteristics and are applied across various domains, for instance, 
Mel Spectrogram can be used for genre classification, MFCC for 
speech recognition, LFCC for spoofing speech detection.

Mel Spectrogram: The Mel spectrogram represents a time-
frequency distribution where the frequency axis is transformed 
using the Mel scale, which approximates human auditory 
perception. This transformation is particularly useful in applications 
where the human-like perception of frequency is beneficial, such as 
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TABLE 1  The number of different type stars with i-band SNR > 10.

Class O B A F G K M Carbon

No. 6 000 6 000 6 000 6 000 6 000 6 000 6 000 6 000

in the analysis of stellar spectra for feature extraction or classification 
tasks in astronomy. The Mel spectrogram is also widely employed in 
areas such as speech and music analysis and deep learning tasks like 
automatic speech recognition (ASR) and genre classification.

MFCC: MFCC are derived by applying a discrete cosine 
transform (DCT) to the Mel spectrogram, capturing the spectral 
envelope of the signal. This feature representation is commonly 
used in speech recognition and speaker identification because 
it effectively models phonetic characteristics. In an astronomical 
context, MFCC can be adapted to capture key features in 
spectral data, such as the harmonic structure of emissions from 
celestial bodies.

LFCC: LFCC are similar to MFCC in that they provide a cepstral 
representation, but instead of using the Mel scale, LFCC utilize a 
linear frequency scale. This approach emphasizes higher-frequency 
components, which may be more prominent in certain types of 
astronomical spectra, such as in the analysis of light curves from 
variable stars or high-resolution spectral lines from distant galaxies. 
LFCC are particularly valuable in applications requiring sensitivity 
to fine spectral details, such as anti-spoofing mechanisms in speaker 
verification systems.

In this study, spectral feature extraction is performed 
using torchaudio’s built-in transforms. Specifically, the Mel 
spectrogram is computed using torchaudio.transforms.
MelSpectrogram, with the following parameter settings: 
nfft = 512, win_length = 80, hop_length = 80, and nmels = 64. 
For MFCC extraction, torchaudio.transforms.MFCC is 
applied with nmfcc = 30, nfft = 512, win_length = 50, hop_length =
40, and nmels = 64. LFCC features are extracted using
torchaudio.transforms.LFCC, with nlfcc = 40, nfft = 512, 
and hop_length = 80, while other parameters are kept at their default 
values. Here, nfft refers to the FFT window size, win_length denotes 
the window length, and hop_length corresponds to the frame shift 
length. nmels indicates the number of Mel filters in the filter bank, 
while nmfcc and nlfcc represents the number of MFCC and LFCC 
coefficients, respectively.

The first step in processing the spectral data involves treating the 
input spectrum as an audio signal. A short-time Fourier transform 
(STFT) is then applied to convert the time-domain signal into a 
frequency-domain representation, enabling further extraction of 
time-frequency features for subsequent analysis. The calculation 
formula of STFT is as follows Equation 2:

X(m,k) =
N−1

∑
n=0

x(n+mH) ⋅ω(n) ⋅ e−j2πkn/N (2)

where x(n) is the input audio signal, w(n) is the window function 
(e.g., Hamming window), N is the window length, H is the hop 
length (frame shift), m is the frame index, k is the frequency 
index. The power spectrum P(m,k) is the modulus square of the 
STFT result. It is passed through the Mel filter bank to convert the 

linear frequency into Mel frequency. The relationship between Mel 
frequency and linear frequency is Equation 3:

mel( f) = 2595 log10(1+
f

700
) (3)

A Mel filter bank consists of a series of triangular filters, where 
the center frequencies are evenly distributed according to the Mel 
scale. The total number of filters is governed by the nmels parameter. 
To obtain the Mel spectrum, the power spectrum is first multiplied 
by the corresponding Mel filter bank Hm(k), and the results are then 
summed across the filters (Equation 4).

S(m, l) = ∑
k

P(m,k)Hl(k) (4)

where Hl(k) is the value of the lth Mel filter at frequency k. S(m, l)
is the energy of the lth Mel band in the mth frame of the Mel 
spectrogram.

MFCC is defined as follows Equation 5:

C(m,n) =
L−1

∑
l=0

log S(m, l) cos(
πn(l+ 0.5)

L
) (5)

n are the indexes from 0 to L− 1, L is the number of Mel 
filters. An example visualization of audio features, including 
the Mel spectrogram, MFCC, and LFCC, is shown in Figure 1. 
MFCCs capture the coarse shape of the continuum (analogous 
to the spectral envelope in speech), Mel spectrograms emphasise 
localised absorption troughs (akin to formants), while LFCCs 
preserve high-frequency modulation produced by blended lines. 
These characteristics are difficult to encode in standard pixel or 
flux vectors.

3 Methods

3.1 Workflow

For the same spectral dataset, we extract features from 
multiple modalities. The first numerical modality corresponds 
to spectral 1D data, the second visual modality to spectral 2D 
plotted images, the third audio modality to the Mel spectrogram 
derived by treating the spectral data as an audio signal, the 
fourth audio modality to the MFCC obtained through audio 
processing, and the fifth audio modality to the LFCC derived 
via audio processing. Figure 2 presents the workflow of our 
proposed model, which outlines a multimodal framework designed 
for stellar classification. This framework integrates various data 
representations, each contributing uniquely to the classification 
process. The components of the model are as follows:

Top branch: A CNN processes specrtal flux data, extracting 
frequency patterns.
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FIGURE 1
An example showing the Mel spectrogram, MFCC, and LFCC—three common audio features for an A-type star.

FIGURE 2
Overall model architecture.

Middle branch: The EPSANet (Efficient Pyramid Split 
Attention Network; Zhang et al., 2022) backbone analyzes 2D 
spectral images, leveraging PSA modules to resolve multiscale 
spectral features (e.g., absorption lines, and continuum shapes).

Bottom branch: Three parallel CNNs handle audio-derived 
features (Mel Spectrogram, MFCC, LFCC), each transformed via 
identical 3-layer CNNs to ensure consistency.

To process the 1D spectral data, we utilize an eight-layer CNN. 
For the 2D spectral image data, we deploy the Epsanet-50 model, a 
deep CNN architecture, for feature extraction. For the audio-based 
data (Mel spectrogram, MFCC, and LFCC), we apply a simple three-
layer CNN.

Each modality is mapped to a 256-dimensional vector via 
a linear transformation, concatenated, and passed through a 
fully connected layer for classification. This unified approach 
enhances performance in classifying complex astronomical 
datasets, outperforming ResNet-based models in both accuracy 
and efficiency. We evaluate the classification performance both 
independently for each modality and after combining them. When 
modalities are combined, their features are first projected to 256-
dimensional vectors, then merged and processed through a fully 
connected layer to produce the final 8-class output. 

3.2 Model

EPSANet is a deep learning architecture designed to enhance 
feature representation through the integration of Pyramid Split 
Attention (PSA) modules. In contrast to ResNet, which primarily 
leverages residual connections, EPSANet introduces an efficient 
attention mechanism that adaptively captures cross-channel and 
spatial dependencies at multiple scales, enabling richer contextual 
information extraction with reduced computational overhead.

The SE (Squeeze-and-Excitation) weight module serves as a 
fundamental building block for the attention mechanisms in 
EPSANet, although it is ultimately superseded by the more 
sophisticated PSA design. The SE block is recalibrating channel-
wise feature responses by modeling the interdependencies between 
channels. By adaptively adjusting the channel-wise weights, the 
SE module enhances feature representation, but its limitations in 
handling multiscale spatial patterns are addressed by the more 
advanced PSA mechanism in EPSANet.

The PSA mechanism represents a key innovation in EPSANet. 
As illustrated in Figure 3, the PSA module operates by splitting the 
input features into multiple branches, each utilizing different kernel 
sizes (e.g., 3×  3, 5×  5), allowing for the capture of multi-scale 
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FIGURE 3
PSA Module. PSA Module divides the input image into four parts of the channel, applies different sizes of convolution kernels (3∗3, 5∗5, 7∗7, 9∗9) to each 
of the four parts of the channel, and then merges the different channels, and then generates the attention weights of the different channels through 
SEWeight Module, and multiplies the data of the different channels by the attention weights of the different channels, to obtain the output result, which 
is obtained through PSA Module. Then we can obtain different scales of features in different channels of the image and give them different attention 
weights, avoiding the single-size convolution kernel that focuses only on local features or global features.

spatial patterns. These outputs are then fused through an adaptive 
attention weighting scheme, which dynamically prioritizes the most 
salient spatial scales and feature channels. This approach effectively 
overcomes the limitations of static convolutional kernels commonly 
used in architectures like ResNet, offering enhanced flexibility in 
feature extraction and representation.

The EPSA block, as illustrated in Figure 4, integrates PSA 
modules within a residual block framework. Each block processes 
features through parallel convolutional paths, applies attention-
based fusion, and incorporates skip connections to maintain 
effective gradient flow. This hierarchical refinement allows the 
network to progressively extract high-level features, such as complex 
celestial structures in astronomical images, while preserving 
computational efficiency. By leveraging multi-scale attention and 
residual connections, the EPSA block enhances the network’s ability 
to capture intricate spatial relationships within astronomical data, 
facilitating more precise feature extraction and analysis.

3.3 Attention mechanisms

While the base CNN architecture provides a strong foundation 
for spectral classification, incorporating attention mechanisms may 
allow the model to focus on more informative spectral features. 
Therefore, we explore the impact of different attention modules on 
classification accuracy.

Gated Channel Transformation (GCT): GCT is a lightweight 
and effective channel attention mechanism designed to model inter-
channel dependencies with minimal computational overhead. It 
begins by computing the L2 norm of each feature channel to capture 
its global activation strength. These responses are then normalized 

across channels and a learnable gating mechanism is applied, 
involving scale and bias parameters followed by tanh activation, 
to produce adaptive channel-wise weights. Finally, these weights 
modulate the original feature maps, enabling the model to 
selectively emphasize informative channels while suppressing less 
relevant ones.

SE Module: The SE module recalibrates channel-wise 
feature responses by explicitly modeling interdependencies 
between channels (Hu et al., 2018). It utilizes global average pooling 
to extract channel descriptors, which are then processed through 
two fully connected layers with a bottleneck design. After passing 
through a sigmoid activation, the output is used to reweight the input 
feature maps, emphasizing the most discriminative spectral features.

Efficient Channel Attention (ECA): ECA refines the SE module 
by eliminating dimensionality reduction while maintaining efficient 
cross-channel interactions (Wang et al., 2020). Rather than using 
fully connected layers, ECA employs a 1D convolution with 
an adaptively determined kernel size based on the number 
of channels. This results in improved computational efficiency 
and facilitates effective channel attention learning with minimal 
parameter overhead.

Bilateral Attention Module (BAM): BAM incorporates 
both channel and spatial attention for enhanced feature 
refinement (Zhang et al., 2021). The channel attention submodule 
applies global average pooling followed by a multi-layer perceptron, 
while the spatial attention submodule consists of convolutional 
layers with dilated convolutions. The outputs of these submodules 
are combined multiplicatively with the input feature maps, focusing 
on salient spectral-spatial patterns.

Coordinate Attention (CoordAtt): CoordAtt improves spatial 
attention by decomposing global pooling into separate height- 
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FIGURE 4
EPSA block.

and width-wise pooling operations (Hou et al., 2021). The 
pooled features are concatenated and passed through a shared 
transformation layer before being split into two attention branches. 
These branches produce attention weights that are applied to the 
original feature map, capturing long-range dependencies effectively 
along both spatial dimensions.

Criss-Cross Attention (CCA): CCA introduces an efficient self-
attention mechanism that focuses on contextual information along 
both horizontal and vertical directions (Huang et al., 2023). By 
aggregating features from cross-shaped receptive fields at each 
spatial location, CCA captures long-range dependencies while 
reducing computational complexity compared to conventional self-
attention mechanisms. The attention maps are iteratively refined, 
enhancing spatial feature modeling.

These attention mechanisms are integrated into CNN 
architectures to evaluate their influence on spectral classification 
accuracy. Their ability to refine feature representations and improve 
model robustness is assessed, highlighting their effectiveness in 
enhancing the network’s ability to learn discriminative patterns 
from spectral data, particularly in applications like astronomical 
image analysis. 

3.4 Performance metrics

A confusion matrix (see Table 2) is a widely utilized tool in the 
evaluation of classification models (or “classifiers”), particularly in 
the context of testing datasets with known true values. It provides 
a comprehensive view of the model’s performance by presenting 

TABLE 2  Confusion matrix.

True Prediction

Positive Negative

Positive TP (Ture Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)

a detailed breakdown of its predictions. Below, the equations for 
accuracy, (Equation 6) precision, (Equation 7) recall and (Equation 
8) F1-score (Equation 9) is provided, respectively.

Accuracy = TP+TN
TP+TN+ FP+ FN

(6)

Precision = TP
TP+ FP

(7)

Recall = TP
TP+ FN

(8)

F1− score = 2× Precision×Recall
Precision+Recall

(9)

Accuracy provides an overall measure of the proportion of correctly 
classified samples among all predictions.

Precision focuses on positive predictions, measuring the 
proportion of correctly classified positive samples among all samples 
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predicted as positive. High precision indicates that the model is less 
likely to misclassify negative cases as positive.

Recall evaluates coverage of the actual positive class, quantifying 
the proportion of correctly identified positive samples among all 
true positives. High recall implies that the model effectively captures 
most positive cases, minimizing missed detections.

F1-score is the harmonic mean of precision and recall, providing 
a balanced assessment when there is a trade-off between these two 
metrics. It is particularly valuable in scenarios with imbalanced 
classes or unequal error costs.

By jointly considering these metrics, we obtain a holistic view of 
model performance: accuracy reflects overall correctness, precision 
and recall highlight class-specific behaviors, and the F1-score 
integrates both to provide a balanced evaluation. 

4 Results

To evaluate the classification performance of different 
modalities, we conduct a series of comparative experiments. By 
testing the classification accuracy for each individual modality on 
the same dataset, we are able to directly compare the effectiveness 
of spectral 1D data, 2D images, and audio modalities against 
the performance achieved by combining these modalities. This 
provides further insight into how the inclusion of audio modality 
data can improve spectral classification results. For different 
experiments, we use confusion matrix and accuracy, precision, 
recall, F1-score to evaluate the model performance. All tests are 
performed using the same dataset, specifically the eight-class star 
classification experiment based on the LAMOST spectral data, as 
described in Section 2. Our experiments are implemented within 
the PyTorch framework. During training, we employ the Adam 
optimizer and use the cross-entropy loss function. We ensure model 
convergence by training for 500 epochs in each experiment, with 
a learning rate set to 0.0005. All experiments are conducted on an 
NVIDIA A100 GPU.

For 1D spectral data, we investigate the impact of integrating 
various attention mechanisms, alongside the baseline case without 
any attention mechanism, into a CNN for classifying spectral data. 
The performance results are summarized in Table 3. In the absence 
of an attention mechanism, the CNN achieves a classification 
accuracy of 87.17% on the spectral dataset. Introducing the BAM 
module boosts the accuracy to 89.13%, while incorporating the 
GCT module yields a further improvement, reaching 89.19%. 
The SE attention mechanism produces an accuracy of 88.54%, 
with the ECA and Criss-Cross Attention modules achieving 
accuracies of 88.13% and 88.41%, respectively. Notably, the Coord 
Attention mechanism achieves the highest classification accuracy of 
89.37%. These findings underscore the consistent enhancement in 
classification performance when attention mechanisms are added to 
the CNN compared to the baseline model without attention. Since 
the Coord Attention mechanism delivers the best performance, 
it is selected for use in all subsequent experiments involving 
spectral data.

Next, we perform multimodal experiments to compare the 
impact of different modal data on classification accuracy. We 
conduct ten experiments on data from different modalities, setting 
different random number seeds to ensure that the dataset is 

TABLE 3  Classification performance for different attention modules.

Attention module Accuracy (%)

BAM 89.13

GCT 89.19

SE 88.54

ECA 88.13

Coordinate Attention 89.37

Criss Cross Attention 88.41

None 87.17

The best accuracy is in bold.

TABLE 4  Classification performance with different inputs.

Input Accuracy (%)

Spectral 1D data 89.75±0.28

Spectral 2D image 90.89±0.28

Audio: Mel spectrogram 90.23±0.36

Audio: MFCC 83.87±0.35

Audio: LFCC 85.07±0.38

Spectral 1D and 2D data 91.26±0.35

Spectral 1D and audio features 89.09±0.43

Spectral 1D, 2D and audio data 91.79±0.11

The best accuracy is in bold.

divided into different training, validation, and test sets for each 
experiment. The mean and standard deviation of the accuracy 
of the ten experiments are calculated. To assess whether the 
classification performance differences between models trained with 
1D spectral data alone and those trained with additional modalities 
(image and audio) are statistically significant, we conduct a power 
analysis based on independent two-sample t-tests. The effect size 
is quantified using Cohen’s d, defined as the mean accuracy 
difference between the two groups normalized by their pooled 
standard deviation. The required sample size per group to achieve 
a statistical power of 0.8 at a significance level of α = 0.05 is 
then estimated using the TTestIndPower implementation of 
power analysis. For the comparison between the spectral-only 
model and the multimodal (spectrum + image + audio) model, 
the observed effect size is Cohen’s d = 3.46, which represents a 
very large effect. The required number of experiments per group 
to detect this effect with 80% power is estimated to be n = 3. 
Since we perform ten experiments for each setting, which is 
well above the required number of experiments, the observed 
differences can be considered statistically significant with high
confidence.
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FIGURE 5
Classification confusion matrix with spectral 1D data, 2D images and audio features. “C” means carbon star.

TABLE 5  The classification performance only with 1D spectra.

Class Precision 
(%)

Recall (%) F1-score 
(%)

O 100.0 100.0 100.0

B 91.3 92.3 91.8

A 83.9 83.0 83.5

F 80.6 81.9 81.3

G 77.3 79.3 78.3

K 88.9 83.6 86.2

M 95.4 98.9 97.1

C 97.6 96.3 97.0

Total Accuracy 
(%)

89.37

For the comparison between the spectral-only model and the 
multimodal (spectrum + image + audio) model, the observed 
effect size is Cohen’s d = 3.46, which represents a very large 

TABLE 6  The classification performance with spectral 1D and 2D data as 
well as audio features.

Class Precision 
(%)

Recall (%) F1-score 
(%)

O 100.0 100.0 100.0

B 90.4 92.4 91.4

A 85.4 85.4 85.4

F 88.1 85.3 86.7

G 85.1 87.0 86.0

K 90.8 91.3 91.1

M 98.5 98.7 98.6

C 99.0 97.1 98.0

Total Accuracy 
(%)

92.14

effect. The required number of experiments per group to detect 
this effect with 80% power is estimated to be n = 3. Since we 
performed ten experiments for each setting, which is well above 
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the required number of experiments, the observed differences 
can be considered statistically significant with high confidence. 
All results are shown in Table 4. First, we assess the classification 
performance using only the spectral image and audio modalities. 
As previously noted, the highest classification accuracy for 1D 
spectral data, achieved with the Coordinate Attention mechanism, 
is 89.75±0.28%. When only the spectral 2D image modality is 
provided to the model, the accuracy is 90.89±0.28%. For the 
audio modality, we explore three different audio feature variations: 
Mel Spectrogram, MFCC, and LFCC. The classification accuracy 
for the Mel Spectrogram alone reaches 90.23±0.36%, while the 
accuracy for MFCC and LFCC are 83.87±0.35% and 85.07±0.38%, 
respectively. Notably, the accuracy for the Mel Spectrogram 
surpasses that of the 1D spectral data, further demonstrating 
the efficacy of audio features in enhancing the model’s capacity 
to interpret spectral characteristics. The Mel Spectrogram, in 
particular, highlights features that are less discernible in the 
spectral data, thereby aiding the model in distinguishing between 
stellar spectral classes and improving overall classification
performance.

Subsequently, we combine multiple modalities to boost the 
performance of the model. When both spectral 1D data and 2D 
images are input together, the classification accuracy increases to 
91.26±0.35%. Integrating the three audio features (Mel Spectrogram, 
MFCC, and LFCC) with the 1D spectral data yields an accuracy 
of 89.09±0.43%. Finally, when all three modalities, spectral data, 
spectral images, and audio features, are concatenated and passed 
through a linear layer to form 256-dimensional feature vectors, 
followed by an additional fully connected layer for classification, 
the overall accuracy reaches 91.79±0.11%. In this situation, the 
best accuracy is achieved and the classification confusion matrix 
with spectral 1D data, 2D images, and audio features is displayed 
in Figure 5. As indicated in Figure 5, the precision for each type 
of stars is comparable and adjacent types are easily misclassified. 
As shown in Table 4, the classification accuracy for the input of 
spectral data is consistently higher when using the Mel spectrogram 
modality compared to the input of single spectral data, illustrating 
the advantages of incorporating audio features. Audio processing 
methods effectively enhance spectral analysis by emphasizing 
certain spectral features that might otherwise be overlooked. 
According to Tables 5 and 6, we can see that compared to using only 
spectral 1D data, the addition of images and audio data has improved 
the precision, recall and F1-score indicators for star classification in 
categories such as A, F, G, K, M and Carbon to varying degrees, and 
has also increased overall classification accuracy by approximately 3 
percentage points. These results highlight the promising potential 
of multimodal spectral analysis as a replacement for traditional 
single-modality analysis, adding a new dimension to spectral
data analysis. 

5 Conclusion

This study introduces an innovative multimodal framework 
that combines spectral 1D data, 2D plotted images, and audio-
transformed features, significantly enhancing spectral classification 
performance. Our experimental results demonstrate that: (1) 
audio-based representations of LAMOST low-resolution spectra 

outperform conventional 1D spectral analysis in classification 
accuracy, and (2) the integrated multimodal approach leads to 
further performance improvements, positioning audio feature 
extraction as a promising complementary approach in spectral 
data analysis.

Going beyond conventional deep learning architectures, our 
work spearheads a data-centric revolution by: 

• Introducing auditory representations as a novel feature space 
for spectral analysis;
• Revealing that certain spectral characteristics are more 

distinctly manifested in audio domains;
• Establishing a generalizable framework for multimodal 

astronomical data fusion.

The successful integration of audio processing techniques with 
spectral analysis opens new avenues for: 

• Enhanced feature extraction from existing spectral surveys;
• Complementary data representations that augment 

traditional methods;
• Cross-domain synergies between astrophysics and signal 

processing.

Our results suggest that the audio-based representation is not 
merely a mathematical transformation but may also preserve the 
underlying physical characteristics of stellar spectra. In particular, 
the distinctive absorption lines that are essential for differentiating 
stellar types appear to be reflected in their corresponding audio 
features, allowing neural networks to potentially identify these 
physical signatures from the audio domain. This further implies 
that some of the key physical features used in classifying variable 
stars from their light curves might also be captured in the 
audio representation, where such transformations could enhance 
the visibility of subtle variability patterns. In addition, the fact 
that absorption and emission features may be embedded in the 
audio domain indicates that, in the future, this approach could 
potentially be extended to other celestial object classification, 
physical parameter measurement, although further investigations 
are required to validate this possibility. All implementation details 
and source code are available at our GitHub repository: https://
github.com/leon129101-leo/spectrum-with-audio-feature.

In summary, by transcending traditional spectral analysis 
through innovative multimodal integration, this study provides 
immediate improvements in classification tasks and offers a 
framework for data representation innovation in astronomy. It 
positions audio-feature analysis as a valuable tool in the era of 
big astronomical data. The success of this framework suggests that 
future breakthroughs in astrophysical data analysis may increasingly 
emerge from the creative cross-pollination of astronomy and other 
data-rich fields, rather than solely from advancements in neural 
network architectures.
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