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 1 Introduction

The origin of life on Earth is an unsolved mystery that has engaged many of the best 
minds in the Earth and biological sciences. Since the Miller-Urey experiment (Miller, 1953) 
showed the formation of organic molecules required for life, scientists have tried to simulate 
the molecular precursors of life and to explain how they assembled into replicating forms. 
There are several competing hypotheses about how this may have occurred (Ferris, 1999). 
All these hypotheses suggest conditions or material suitable as template to allow formation of 
rudimentary DNA or RNA, as well as vesicles, membranes and protocells. Here I focus on the 
clay-template hypothesis proposed by Cairns-Smith in 1966 (Cairns-Smith, 1966), which 
suggests that the polymerized crystal structures of (alumino)silicates that form clay minerals 
provide ideal surfaces on which large organic molecules could have been assembled. I argue 
that disproportionation of amorphous silicon monoxide under hydrogen-rich conditions 
may have allowed abiogenesis. 

 2 Mineral composition during origin of life

Different silicate minerals (e.g., achondrite, olivine, feldspar, pyroxenes) (McCord and 
Gaffey, 1974) or crystalline clay minerals such as smectites (Baird et al., 1977) exist on Earth 
as well as on Mars, Moon, meteorites, asteroids and comets. The initial mineral evolution 
on Earth was driven by volcanism, degassing, fractional crystallization, and associated 
large-scale fluid-rock interactions (Hazen et al., 2008). Deploying the idea of the clay-
template hypothesis (Kloprogge and Hartman, 2022), one could assume that prebiotic 
molecules assembled (i) in interstellar space, (ii) after arriving on Earth, or (iii) during 
water-mediated weathering of magmatic minerals on the early Earth which results in the 
formation of secondary minerals. Despite the attractiveness of the clay-template hypothesis, 
no research has been able to explain the process needed to assemble the precursors of life 
on crystalline clays.

Today, amorphous clay minerals in soils on Earth show a larger chemical activity, and 
play a more important role in sorbing organic and inorganic compounds than crystalline 
clays (Cairns-Smith, 1982), by ligand exchange, cation bridging, van der Waals force, and 
hydrogen bonding (Shang, 2023). Some of the amorphous compounds present on today’s 
Earth have been identified in Martian soils as well. Such amorphous compounds offer a 
loosely coordinated 3-D structure which provides a more flexible template, compared to 
the 2-D structure of crystalline clays, allowing for more complex polymerization of organic 
molecules that can act as pre-cursors of life.

It is well known that silica gels, a form of amorphous silica connected to water, exhibit 
ideal properties for binding DNA, which is the reason why this material is commonly used
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for DNA extraction (Vogelstein and Gillespie, 1979; Chase and 
Hills, 1991). Such amorphous silicas are prone to adsorb amino 
acids and potentially force the formation of nucleic acids, the 
backbone of RNA and DNA structures. Amorphous silica polymers 
enhance amino acid polymerization and other prebiotic organic 
reactions like vesicle, membrane, and protocell formation (Cho et al., 
2024; Samrout et al., 2024; Jenewein et al., 2025) that would have 
been necessary to the genesis of replicating biomolecules. Hence, 
amorphous silica may serve as a catalyst for the origin of life.

Chemical and physical conditions on early Earth were likely 
far different from the present and may have favored stability of 
amorphous silica phases. For example, hydrogen may have been 
present in the early Earth crust as meteorites were found to 
contain large share of hydrogen (Barrett et al., 2025) and due 
to hydrogen formation by low temperature water-rock reactions 
(Mayhew et al., 2013), limiting oxidation. Early Earth may have had 
a much higher hydrogen content compared to present conditions 
as light elements like hydrogen are lost from the Earth due to 
meteor impact (Biersteker and Schlichting, 2019) and if not bound 
to other elements, could escape to outer space because Earth 
gravitation is not able to prevent losses (Hunten and Donahue, 
1976). It can be assumed that hydrogen loss would have favored 
a shift toward more oxidizing conditions even before the strong 
shift associated with photosynthesis. Another example for the 
different conditions of early Earth compared to present Earth 
is the presence of silicon monoxide (SiO) in interstellar space 
(Gibb et al., 2007), which is the most common oxide of silicon in 
the universe (Cherchneff, 2013). Hence, such material may have also 
been present in early Earth during the time of origin of life and the 
presence of hydrogen may have prevented immediate oxidation to
amorphous SiO2. 

3 Importance of disproportion of 
amorphous silicon monoxide

Disproportion of amorphous silicon monoxide to elemental 
silicon and silicon dioxide (Hirata et al., 2016) would have 
been favored by strong reducing conditions on early Earth, 
potentially offering conditions to support abiogenesis. The lower 
the temperature, the slower the disproportionation process 
(Mamiya et al., 2001). The disproportion of amorphous silicon 
monoxide into Si and SiO2 will result in distances between 
elemental Si and a neighboring SiO2 unit at molecular level of about 
∼0.4 nm (Hirata et al., 2016) which is comparable in scale to the 
distance of nucleotides of DNA (∼0.34 nm) (Alberts et al., 2014)
(Figure 1).

At a scale of about 0.4 nm the formation of a protective SiO2
layer of a few atoms thickness, preventing further oxidation, is 
negligible. Because of the missing protections from a SiO2-layer the 
single Si atoms distributed at the surfaces of the amorphous solids 
may be oxidized to SiO2 even under low temperature conditions 
(Greenwood and Earnshaw, 2012). However, under hydrogen rich 
conditions this direct oxidation of SiO to SiO2 may be restricted. 
A potential process may have started by the absorption of amino 
acids already in meteorites (Cronin and Pizzarello, 1983). The 
amino acids adsorbed to the amorphous material (in the immediate 
vicinity of a Si atom) may cause oxidation of the Si to SiO2, as the 

FIGURE 1
Small-scale pattern (∼0.4 nm) of elemental Si and SiO2 from SiO 
disproportionation, adapted from Hirata et al. (2016), which is on the 
same scale as the distance between nucleotides of DNA (∼0.34 nm). 
One should note that the number for SiO disproportionation, ∼0.4 nm, 
is based on the resolution limit of the analytical method used and may 
in fact be lower. Different blue shades of squares in the background 
indicate different Si species from amorphous elemental Si (light blue) 
to amorphous SiO2 (dark blue). The red and blue lines represent DNA 
backbones.

formation of SiO2 is thermodynamically favored. During oxidation 
of Si the amino acid groups will be transformed into amines 
or N-containing heterocycles, the latter offering a base structure 
for the formation of nucleic acid. Note: variations in the spatial 
arrangement of the Si atoms (or Si-Si dimers) and the SiO2 units 
across the surface of the amorphous material may allow formation 
of an innumerable number of different amines or heterocyclic acid 
structures (Hohl et al., 2003; Hirata et al., 2016).

Life seems to have originated only once in Earth history. There 
are no intermediates or leftovers from the ancient origin of life 
(like rudimentary DNA or RNA trapped in minerals) found in 
current Earth environments. Consequently, the process must have 
occurred under conditions different from present Earth conditions. 
I suggest that amorphous silicon monoxide was both available (SiO 
rich meteorite input) and chemically favored because of the presence 
of free hydrogen. If any amorphous phase formed from SiO was 
involved in the origin of life, no leftovers would occur. This is because 
oxidation of Si to SiO2 and restructuring of the Si template due 
to structural rearrangement by crystallization of the amorphous 
material to crystalline minerals would have destroyed all organic 
residues. Additionally, if amorphous silicon monoxide was involved 
in the origin of life, such abiogenesis could have happened during a 
short period in Earth history, as the amorphous silicon monoxide 
will have been disproportionated and oxidized to silicon dioxide 
eventually. With amorphous silicon dioxide (eventually forming 
after SiO disproportionation) supporting vesicle, membrane and 
protocell formation (Cho et al., 2024; Jenewein et al., 2025), 
necessary environmental conditions to support the survival of 
replicating biomolecules might have ensured Abiogenesis.
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