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The study of the beam envelope radius—a parameter characterizing the 
transverse size and evolution of a particle beam along its propagation path—is 
fundamental to the particle accelerators application and the execution of space-
borne experiments employing artificial relativistic electron beams. In this paper, 
we investigate the propagation of electron beams in vacuum and derive an 
integral form of the beam envelope equation. This equation is equivalent to 
the simplified differential form of the Kapchinsky-Vladimirsky (K-V) equation 
excluding the effects of external forces and radial emittance. The integral 
equation is validated by the widely used ASTRA (A Space Charge Tracking 
Algorithm) simulation code. The effect of electron energy on beam envelope 
radius is uncertain and depends on whether internal force or external force 
dominates. When external force dominates, a decrease in electron energy results 
in a smaller beam envelope radius. Conversely, when internal force dominates, 
an increase in electron energy leads to a smaller beam envelope radius. This 
study is a bridge between integral form and differential form of the envelope 
equation, and will provide a better understanding for the K-V equation and a 
scientific basis for researching beam propagation technology.
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Key points

• An integral form of the beam envelope equation for electron beam propagation in a 
vacuum is derived.

• This equation is equivalent to the simplified differential form of the K-V equation 
excluding the effects of external forces and radial emittance.

• The effect of electron energy on beam radius depends on whether internal or external 
forces dominate.
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 1 Introduction

An electron beam is a collection of energetic electrons, 
typically generated either naturally or artificially (Banks and Raitt, 
1988; Winckler, 1980), which are manipulated by electromagnetic 
fields and directed through a vacuum or plasma (Neubert and 
Gilchrist, 2002a; Borovsky et al., 2020). Electron beams are 
found in many space environments, such as the solar wind 
(Arshad et al., 2014; Sun et al., 2020), magnetic reconnection 
outflow region (Åsnes et al., 2008), and auroras (Banks and Raitt, 
1988), particularly in areas where energetic electrons are accelerated 
by waves. Electron beams can interact with magnetic fields and 
background plasma (Druyvesteyn, 1938; Mustafaev, 2001; Arshad 
and Mirza, 2014; Reeves et al., 2020), playing a significant role in 
a variety of space phenomena.

Electron beams have proven to be a powerful tool in space 
science research. During the 1970s and 1980s, keV electron beams 
were injected from balloons and sounding rockets to probe the 
fundamental physical processes in space physics. There experiments 
were used for applications such as mapping magnetic fields lines 
in the Earth’s magnetosphere [e.g., Hendrickson et al., 1975, 1976; 
Winckler et al., 1975], exciting artificial auroras, studying beam-
plasma interactions [e.g., Gendrin, 1974; Cambou et al., 1978, 
1980], and investigating wave generation and amplification as 
well as instabilities [e.g., Monson et al., 1976; Dechambre et al., 
1980]. They also provided insights into spacecraft charging [e.g., 
Mullen et al., 1986; Sasaki et al., 1986, 1988; Banks et al., 
1990], as well as military applications. From the late 1990s to 
the present, the development of electron accelerator technology 
(Szuszczewicz, 1985; Lewellen and Buechler, 2019) enabled the 
injection of relativistic electron beams into the space environment 
from spacecraft [e.g., Neubert et al., 1996; Krause, 1998, 1999; 
Gilchrist et al., 2001; Neubert and Gilchrist., 2002b, Neubert 
and Gilchrist, 2004; Miars et al., 2020; Reeves et al., 2020; 
Xue et al., 2023; Fang et al., 2024]. Results from these studies 
indicate that relativistic beams are more stable than keV beams, 
due to a combination of factors including the higher relativistic 
electron mass, lower beam densities, and reduced spacecraft 
charging effects.

In Earth’s auroras, magnetic reconnection generates high-
energy electron beams that are accelerated and injected along 
magnetic field lines into regions such as the ionosphere, forming 
well-defined beam structures. Electron beams possess high kinetic 
energy and excellent directional properties, enabling them to 
interact with spacecraft in orbit and produce space radiation effects, 
such as surface charging, internal charging, and total ionizing 
dose effect (Zheng et al., 2019; Bodeau and Baker, 2021). These 
effects can lead to malfunction in spacecraft, posing significant 
threats to human spaceflight (Hastings, 1995; Castello et al., 
2018). To mitigate or prevent the hazards associated with 
electron beams, scientists have investigated their generation, 
propagation, and interaction in the space environment through 
theoretical analyses and numerical simulations. It is essential for 
beam envelope control to understand the evolution of electron 
beam propagation. A critical question in the study of electron 
beam propagation is identifying the factors that influence the 
evolution of the electron beam envelope and understanding their 
quantitative effects.

A significant amount of pioneering work has been conducted 
to address this question. In 1959, Kapchinsky and Vladimirsky (K-
V) made a major breakthrough in beam physics by deriving the 
envelope equation for a continuous beam with a uniform charge 
density and an elliptical cross-section (Kapchinsky and Vladimirsky, 
1995). This equation accounts for the effects of the self-electric 
and self-magnetic fields associated with the beam’s space charge 
and current, as well as external forces. Comparing with the kinetic 
analysis of single particle, the electron beam tends to diverge owing 
to space charge forces between two equal-charge particles. Their 
work became a cornerstone in the field, with profound implications 
for beam analysis and design. In 1971, Sacherer expanded on this 
foundation by introducing the concept of root-mean-square (RMS) 
emittance (Sacherer, 1971). He demonstrated that the K-V equation 
is not limited to beams with uniform charge density, but is also valid 
for any charge distribution with elliptical symmetry, provided that 
the beam boundary and emittance are defined. For convenience, 
the normalized beam emittance (Lawson, 1988), which represents 
the product of the beam radius and divergence angle, is used in 
the K-V equation. The influence of internal forces associated with 
the beam’s space charge and current remained unclear until the 
concept of perveance was introduced (Chen and Davidson, 1993), 
providing a quantitative framework for understanding their role in 
the K-V equation. When electron beams are injected into plasma 
instead of a vacuum, the K-V equation must be modified to account 
for charge neutralization factor (Neubert and Gilchrist, 2002a), as 
plasma electrons will respond to the beam and move away from 
it. It is important to note that the K-V equation is a second-
order differential equation, and obtaining an analytical expression 
for the variation of the beam envelope radius with respect to the 
propagation direction is challenging.

Although K-V equation is a powerful tool for studying 
the evolution of electron beam envelope, the integral equation 
is more convenient to describe the variation of the beam 
envelope radius with respect to the propagation direction. Some 
theoretical investigations into the integral equation for electron 
beam propagation have contributed to deriving the expression for 
perveance in the K-V equation. Bekefi et al. (1980) derived the 
integral expression for the beam radius at a distance from the 
source using relativistic particle dynamics. However, their integral 
expression did not account for the slope of the trajectory at the 
initial position (Bekefi et al., 1980; Vinokurov, 2001). Reiser added 
the initial slope to the integral expression, but he overlooked the case 
in which the slope of the trajectory becomes negative when the beam 
converges (Reiser, 2008).

Despite the progress made in these studies, further research 
is still needed on the integral equation governing electron beam 
propagation. In this paper, we examine the propagation of electron 
beams in a vacuum and derive an integral form of the beam envelope 
equation. This equation is equivalent to the simplified differential 
form of the K-V equation, excluding the effects of external forces 
and radial emittance. Additionally, we discover that the impact 
of electron energy on the beam envelope radius is uncertain and 
depends on whether internal or external forces dominate. The 
structure of this paper is organized as follows: Section 2 presents the 
derivation of the integral form of the beam envelope equation and 
the validation of integral equation by ASTRA simulation code. In 
Section 3, we provide the relationship between the integral form and 
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the K-V equation. Finally, Section 4 offers a briefly discussion of the 
conclusions. 

2 The electron beam envelope 
integral equation

This section presents the derivation of the integral form equation 
and benchmarks the theoretical electron beam envelope models 
against numerical simulations performed with ASTRA (A Space 
Charge Tracking Algorithm). In addition, the quantitative impact of 
several factors on the electron beam envelope radius is provided. 

2.1 Derivation of the electron beam 
envelope integral equation

The following simplifying assumptions have been made in 
deriving the equations: (1) The electron density is assumed to be 
uniform within the cylindrical beam and zero outside it; (2) The 
transverse velocity component of the electrons is assumed to be 
small compared to the axial velocity, meaning the angle with the axis 
(slope) is small; (3) The flow is laminar, meaning all beam particles 
follow trajectories that do not intersect.

Based on the first assumption, the electron beam is treated as 
a long cylinder with a maximum radius rb and a number density 
n0. The assumption of uniform charge density results in space-
charge forces that are linearly proportional to the distance from 
the beam’s center. This linear relationship significantly simplifies the 
equations of motion, making them analytically solvable. Without 
the assumption of uniform charge density, the charge density ρ(r) 
varies with radial distance r. This variation alters the calculation 
of the space charge force. Under the uniform charge density 
assumption, the radial space charge force Fr = qE = qEr =

qρ0r
2ϵ0

exhibits a simple linear dependence on r. In contrast, for a Gaussian 

charge density distribution defined as ρ(r) = ρ0e
(− r2

2σ2 ), where ρ0 is 
the central charge density and is σ the standard deviation, Fr = qEr =

q
rϵ0
∫r0ρ(r′)r′dr′ leads to nonlinear behavior. Such nonlinear forces 

cause particle trajectories to deviate from simple linear oscillations, 
which can increase beam diffusion or emittance growth and 
complicate analytical solutions. However, real beams often exhibit 
non-uniform density distributions, such as Gaussian or parabolic 
distributions, which lead to nonlinear space-charge forces that the 
model fails to account for (Arshad et al., 2017a; Arshad 2018; Arshad 
and Poedts, 2020). Consequently, this limitation restricts the model’s 
accuracy and applicability, particularly in scenarios involving high-
intensity beams, non-uniform density distributions, or dynamic 
conditions where nonlinear phenomena—such as emittance growth, 
filamentation, or instabilities—play a significant role (Arshad et al., 
2017b; Arshad et al., 2022; Arshad et al., 2011). Nevertheless, 
the model retains practical value for how to moderate intensity 
beams, where space-charge effects are minimal, the uniform density 
assumption remains reasonably valid, and the linear approximation 
offers an adequate description.

As indicated by the second assumption, the velocity of the 
electrons in the beam, v, is primarily directed along the axial 
direction (i.e., vr  << v, vθ<<v, vz  ≈ v, vr  is the radial component 

of velocity, vθ is the angular component of velocity, and vz  is the 
axial component of velocity.). Thus, the charge density is ρ0 = − en0
and the beam current I0 = − en0πr2

bv, where e refers to the charge of 
the electron. The radial component of electric field is obtained using 
Gauss’s law (Buchholz, 1986), ∫ ϵ0E · dS = ∫ρdV, which yields

Er =
ρ0rb

2ε0
(1)

Er =
I0

2πε0rbv
(2)

The azimuthal component of magnetic field is obtained 
using Ampère’s circuital law (Cavalleri et al., 1996), ∫B · dl = μ0I, 
which gives

Bθ =
μ0I0

2πrb
(3)

Er and Bθ refer to the electric and magnetic fields outside the beam. 
We now examine the motion of a beam particle in this field, using 
only the radial force equation (Reiser, 2008)

d
dt
(γm0

drb

dt
) = −e(Er − vzBθ) (4)

where we neglect the force term −er dθ
dt

Bz on the grounds that r dθ
dt

is negligibly small, and γ is constant since there is no external 
acceleration. γ refers to the Lorentz factor, defined as γ = 1

√1−β2
, 

where β = v
c
 and c denotes the speed of light. Substituting Er  from 

Equations 1, 2, Bθ from Equation 3, vz = v = βc, and the expression 
of I0, Equation 4 becomes Equations 5, 6

d2rb

dt2 =
e2n0rb

2ε0m0γ3 (5)

d2rb

dt2 = −
eI0

2πε0m0rbβcγ3 (6)

Using the relationship d2rb
dt2 = vz

d
dz
(vz

drb
dz
) = (βc)2 d2rb

dz2 ,
Equation 6 becomes

d2rb

dz2 = −
eI0

2πε0m0rbβ3c3γ3 (7)

The perveance K, a dimensionless quantity, is defined by Chen 
and Davidson (1993) as Equations 8, 9

K = −
eI0

2πε0m0c3β3γ3 (8)

K =
2I0

β3γ3IA

(9)

where IA =
4πε0m0c3

−e
 and βγ = √(1+ E

m0c2 )
2
− 1 and E is the 

kinetic energy. In terms of the perveance, as defined in 
Equation 9, Equation 7 can be expressed as

d2rb

dz2 =
K
rb

(10)

It is important to note that K > 0 for electrons. Multiplying 
both sides of Equation 10 by r′ = drb

dz
, we obtain

r′r″ = K
rb

r′ (11)
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FIGURE 1
The theorical electron beam envelope radius as a function of propagation distance for three initial slopes of the trajectory (r′0 = 10−4, r′0 = 0and  r′0 =
−10−4) with an energy of E = 1 MeV, current I0 = 1 mA and initial beam radius a = 0.2 m.

By integrating Equation 11, we get

r′2 − 2K ln rb = const (12)

Evaluating Equation 12 with the initial boundary conditions rb
= a and r′ = r′0 at z = 0 where a refers to initial beam radius and r′0
refers to the initial change rate of the beam radius along the z-axis, 
we obtain r′2 − 2K ln rb = r′0

2 − 2K ln a, or equivalently,

drb

dz
= ±√r′0

2 + 2K ln(
rb

a
) (13)

Next, we integrate Equation 13 by defining u = √ r′0
2

2K
+ ln( rb

a
), 

which yields Equations 14, 15

z = ±∫
rb

a

drb

√r′0
2 + 2K ln( rb

a
)

(14)

z = ± 1
√2K
∫
√ r′0

2

2K
+ln( rb

a
)

|
r′0
2K
|

1
u

drb

du
du (15)

From the expression of u, we have

drb

du
= 2auexp(u2 −

r′0
2

2K
) (16)

Substituting Equation 16 into the Equation 15, we obtain

z = ±a√ 2
K

exp(−
r′0

2

2K
)∫
√ r′0

2

2K
+ln( rb

a
)

|r′0|

2K

eu2
du (17)

The Dawson integral is given by F(w) = e−w
2
∫w0 eu2

du. If the initial 
slope of the trajectory is greater than or equal to zero (i.e., r′0 ≥ 0), 
Equation 17 can be written as Equations 18, 19

z = a√ 2
K

exp(−
r′0

2

2K
)∫
√ r′0

2

2K
+ln( rb

a
)

r′0
√2K

eu2
du (18)

z = √ 2
K
[

[
−aF(
|r′0|
√2K
)+ rbF(√

r′0
2

2K
+ ln(

rb

a
))]

]
(19)

using the expression for the Dawson integral. If the initial slope 
of the beam profile is negative (r′0 < 0), the beam radius will 
initially decrease until it reaches a minimum value, where r′ = 0. 
According to Equation 13, the minimum beam radius is given by 
rmin = a exp(− r′0

2

2K
). Beyond this point, the beam radius will increase 

again. Under the conditions that the initial slope of the trajectory is 
negative (i.e., r′0 < 0) and rb > rmin, Equation 17 can be written as 
Equations 20, 21

z = a√ 2
K

exp(−
r′0

2

2K
)∫
√ r′0

2

2K
+ln( rb

a
)

−
r′0
√2K

eu2
du (20)

z = √ 2
K
[

[
−aF(
|r′0|
√2K
)+ rbF(√

r′0
2

2K
+ ln(

rb

a
))]

]
(21)

where F(w) represents the Dawson integral. When the initial 
slope of the trajectory is negative (i.e., r′0 < 0) and rb < 
rmin, Equation 17 becomes

z = −a√ 2
K

exp(−
r′0

2

2K
)∫
√ r′0

2

2K
+ln( rb

a
)

−
r′0
√2K

eu2
du (22)

z = −√ 2
K
[

[
−aF(
|r′0|
√2K
)+ rbF(√

r′0
2

2K
+ ln(

rb

a
))]

]
(23)

By combining Equations 19, 21, 23, we obtain

z = ±√ 2
K
[

[
−aF(
|r′0|
√2K
)+ rbF(√

r′0
2

2K
+ ln(

rb

a
))]

]
(24)
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The negative sign in Equation 17 applies when r′0 < 0
and rb < a exp(− r′0

2

2K
), while the positive sign applies in all 

other cases. Figure 1 illustrates the variation of beam radius (rb) as a 
function of propagation distance (z) under three initial conditions: 
r′0 > 0 (blue curve), r′0 = 0 (black curve), and r′0 < 0 (red curve) 
with an energy of E = 1 MeV, current I0 = 1 mA and initial beam 
radius a = 0.2 m. The blue curve represents a scenario where the 
initial slope of trajectory is positive, resulting in a monotonic 
increase. A positive initial slope of trajectory (r′0 > 0) indicates 
that particles possess outward-directed transverse velocities. 
This results in beam divergence during the initial propagation 
phase, owing predominantly to Coulomb repulsion from space 
charge forces. The black curve corresponds to a zero-initial slope, 
leading to a steady increase without an inflection point. In this 
situation, the beam possesses a perfectly parallel trajectory with 
a uniform transverse velocity distribution. The red curve reflects 
a negative initial slope, showing an initial decrease followed by 
an upward trend. A negative initial slope of trajectory (r′0 < 0) 
is permissible when well-defined initial conditions are imposed, 
such as particles with initial velocities precisely aligned toward the
beam axis. 

2.2 Numerical verification of electron 
beam envelope equations with ASTRA

To compare and validate the theoretical electron beam 
envelope equations in integral form, the propagation of the 
electron beam is simulated using the ASTRA code (Floettmann, 
2017). ASTRA, a space charge tracking algorithm developed 
by the German Electron Synchrotron Research Institute 
(DESY), employs the Particle-In-Cell (PIC) method to simulate 
collective self-field effects, such as space charge, in high-
energy charged particle beams. The program incorporates 
comprehensive algorithms for generating initial particle 
distributions and performing particle tracking, making it a 
widely used tool in simulation studies of high-energy charged 
particles.

Figure 2 illustrates how ASTRA works. The program generator
can be used to generate an initial particle distribution by specifying 
parameters such as the particle count, particle energy, and 
types of beam distributions (radial uniform/Gaussian/plateau) in 
the input file. The core program Astra then performs particle 
tracking under the influence of internally computed space-charge 
fields and/or external electromagnetic fields. Its computational 
workflow iterates through four integrated components: (1) Field 
Calculation, which solves the governing field equations on a 
discrete grid; (2) Field Interpolation, which interpolates both 
external and self-generated fields from the grid nodes to individual 
particle positions; (3) Particle Push, which integrates the equations 
of motion over a time step to update particle positions and 
momenta; and (4) Charge Deposition, which maps particle charges 
back onto the grid. This cycle repeats until the simulation
concludes.

In the ASTRA program, the 1 MeV electrons are assumed to 
be evenly spread out across the cross-sectional area. In a uniform 
distribution, the maximum radius rb is √2 times the RMS beam 
radius. As shown in Figure 1, the initial beam radius is 0.2 m, which 

corresponds to an RMS beam radius of 141.4 mm. The total charge 
is 5.0 pC, and the total emission time is 5 ns, resulting in a current 
of 1 mA. Figure 3 illustrates the simulated results of the electron 
beam envelope radius as a function of propagation distance for 
three different initial trajectory slopes, obtained using the ASTRA 
program. The simulations were performed with the same beam 
energy, current, and initial beam radius as those used in Figure 1. 
The theoretical results presented in Figure 1 are also superimposed 
as solid lines in Figure 3. The trend of the simulated results (dashed 
lines) by ASTRA code in Figure 3 is consistent with theoretical 
results (solid lines). However, the exact simulated beam radius 
may differ slightly from the theoretical results, as the electron 
distribution along the axial direction can influence the evolution of 
the beam envelope radius. In deriving the equations in Equations 17, 
the electron distribution in the axial direction is not
constrained.

2.3 Results and discussion

According to Equations 17, 5, the theoretical electron 
beam envelope radius depends on energy, current and initial 
beam radius. Figure 4 presents the variation of beam radius 
with respect to propagation distance for three different energy 
levels: E = 1 MeV (black curve), E = 2 MeV (blue curve), and 
E = 4 MeV (red curve). These results were obtained under 
the following conditions: an initial current of I0 = 1mA, an 
initial beam radius of a = 0.2 m, and a zero-initial slope of 
the trajectory (r′0 = 0). As the propagation distance increases, 
the beam radius for the 1 MeV case expands rapidly, indicating 
significant beam divergence. For the 2 MeV case, the beam radius 
also increases, but at a slower rate compared to the 1 MeV case. 
In contrast, the beam radius for the 4 MeV case remains nearly 
constant, suggesting negligible beam expansion at this higher 
energy level.

Figure 5 shows how the beam radius changes with propagation 
distance for three different current values: I0 = 1 mA (black 
curve), I0 = 5 mA (blue curve), and I0 = 10 mA (red curve), 
while keeping the energy constant at E = 1 MeV, the initial beam 
radius at a = 0.2 m, and the initial trajectory slope at r′0 = 0. 
For all current values, the beam radius increases with propagation 
distance. However, the rate of increase is significantly influenced 
by the magnitude of the current. The I0 = 1 mA curve shows a 
gradual increase in beam radius, whereas higher currents lead to 
more rapid expansion. The I0 = 5 mA curve displays a steeper 
rise, and the I0 = 10 mA curve exhibits the most pronounced
expansion.

Figure 6 illustrates the effect of varying initial beam radii on 
the propagation of beam radius with respect to distance. The 
three cases considered are: a = 0.2 m (black curve), a = 0.4 m 
(blue curve), and a = 0.6 m (red curve), with the energy fixed 
at E = 1MeV, the current at I0 = 1mA, and the initial slope of 
the trajectory set to r′0 = 0. All three curves exhibit a nonlinear 
increase in beam radius as the propagation distance increases with 
the expansion being more pronounced for smaller initial beam 
radii. Specifically, the case with a = 0.2 m shows the most rapid 
expansion, as the Coulomb repulsion is stronger for smaller initial
beam radii. 
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FIGURE 2
The flow chart of ASTRA code.

3 Relationship between the integral 
form and K-V equation

The derivative of both sides of the Equation 24 gives

dz = ±√ 2
K
[F(w) + rbF′(w) dw

drb
]drb (25)

where w = √ r′0
2

2K
+ ln( rb

a
). The derivative of the Dawson integral 

is given by

F′(w) = 1− 2wF(w) (26)

The derivative of w with respect to rb is
dw
drb
= 1

2rbw
(27)

Substituting Equation 26 and Equation 27 into Equation 25 
yields Equation 13. The K-V equation is expressed as

d2rb

dz2 = −k
2
0rb +

K
rb
+

ε2
r

r3
b

(28)

where k0 = ΩL
V
= − eB

2m0c(βγ)
 represents the focusing effect from the 

applied magnetic field, and εr  is the radial emittance. Integrating 
Equation 28 gives

drb

dz
= ±√r′0

2 + 2K ln(
rb

a
)+ k2

0(a2 − r2
b) + ε2

r(
1
a2 −

1
r2

b

) (29)

under the conditions of constant k0. If the radial emittance is 
zero and no external force is applied, Equation 29 simplifies to 
Equation 13. The integral Equation 24 is equivalent to the simplified 
differential form of the K-V equation, excluding the effects of 
external forces and radial emittance. The derivative drb

dz
 should be 

zero at the minimum of beam radius, as deducted from Equation 29. 
The period of electron beam between two minima of beam radius is 
determined by several parameters, including the initial beam radius, 
the initial slope of the trajectory, the magnitude of magnetic field, the 
current and the electron energy.

It is worth noting that electron energy is included in the 
expression for both k0 and K. The combined effect of electron 
energy depends on whether k0 or K dominates. When k0 dominates, 
a decrease in electron energy results in a smaller beam envelope 
radius. Conversely, when K dominates, an increase in electron 
energy leads to a smaller beam envelope radius.

As shown in Figure 7, the four colored curves (purple, cyan, 
green, and orange) represent the results derived from the K-V 
equation with a current I0 = 1 mA, an initial beam radius a = 
0.2 m, an initial slope r′0 = 0, radial emittanceεr = 20 mm·mrad 
and a magnetic field strength of B = 2000 nT for different energy (E
= 0.5 MeV, E = 1.0 MeV, E = 1.5 MeV and E = 2.0 MeV). The four 
colored curves display oscillatory features, with both the oscillation 
period and amplitude varying with energy. This oscillatory behavior 
is also observed in the Beam PIC simulation (Jiao et al., 2022). 
Electron beams with higher energy exhibit a smaller beam envelope 
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FIGURE 3
The electron beam envelope radius as a function of propagation distance for three initial slopes of the trajectory (r′0 = 10−4, r′0 = 0and r′0 = −10−4) with an 
energy of E = 1 MeV, current I0 = 1 mA and initial beam radius a = 0.2 m simulated by ASTRA code (dotted lines) and compared with theorical results 
(solid lines).

FIGURE 4
The theorical electron beam envelope radius as a function of propagation distance for three energies (E = 1MeV, E = 2 MeV and E = 4 MeV) with current 
I0 = 1 mA, initial beam radius a = 0.2 m and initial slopes of the trajectory r′0 = 0.

radius during the initial half period when K dominates. However, 
the maximum beam envelope radius does not vary monotonically 
with energy. Specifically, the electron beam with an energy of 1 MeV 
has the smallest maximum envelope radius compared to electron 
beams with other energies. The black curve represents the result 
obtained using the simplified K-V equation with a current I0 = 1 mA, 
an initial beam radius a = 0.2 m but without r′0, εr  or B. In contrast, 
the black curve does not display any oscillatory features and instead 
increases monotonically. This black curve is identical to the black 
curve in Figure 1, which indicates that the integral Equation 24 

is equivalent to the simplified differential form of the
K-V equation. 

4 Conclusion

This paper presents a theoretical and analytical framework for 
studying electron beam transport. The integral equation for the 
electron beam envelope in a vacuum is derived. This equation 
accounts for both Coulomb repulsion and self-magnetic forces. 
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FIGURE 5
The theorical electron beam envelope radius as a function of propagation distance for three currents (I0 = 1mA, I0 = 5 mA and I0 = 10 mA) with an 
energy E = 1MeV, initial beam radius a = 0.2 m and initial slopes of the trajectory r′0 = 0.

FIGURE 6
The theorical electron beam envelope radius as a function of propagation distance for three initial beam radii (a = 0.2 m, a = 0.4 m and a = 0.6 m) with 
an energy E = 1MeV, current I0 = 1 mA and initial slopes of the trajectory r′0 = 0.

Although these two forces act in opposite directions, their combined 
effect causes the beam to diverge.

The radius of the electron beam envelope is determined by 
several factors, including the initial beam radius, the initial slope 
of the trajectory, the magnitude of magnetic field, the current and 
the electron energy. Specifically, a smaller initial radius leads to a 
larger beam envelope radius. If the initial slope of the trajectory 
is greater than or equal to zero, the electron beam will diverge. If 
the initial slope is negative, the beam will first converge and then 
diverge. The parameter k0, which quantifies the focusing strength of 

the applied magnetic field, is proportional to the magnitude of the 
magnetic field. Thus, a stronger magnetic field causes the electron 
beam to converge. The perveance K, which quantifies the defocusing 
effect of the beam’s equilibrium self-fields, is proportional to the 
current. Therefore, lower current causes the electron beam to 
converge. The net effect of electron energy on the beam envelope 
radius is determined by the relative dominance of k0 or K. If k0
dominates, lower electron energy yields a smaller radius; whereas 
when K dominates, higher electron energy reduces the beam 
envelope radius.
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FIGURE 7
The electron beam envelope radius as a function of propagation distance for energies E = 0.5 MeV (purple curve), E = 1.0 MeV (cyan curve), E = 1.5 MeV 
(green curve) and E = 2.0 MeV (orange curve), as determined by the K-V equation. The black curve represents the result for E = 1.0MeV, guided by 
simplified K-V equation without r′0, k0 or B.

This study is a bridge between integral form and differential form 
of the envelope equation, and will provide a better understanding 
for the K-V equation and a scientific basis for researching beam 
propagation technology. It is important to note that, in this study, 
we assume that the background space to be a vacuum environment, 
while the actual space environment typically includes background 
plasma. Consequently, future research will focus on the interaction 
between the electron beam and the background plasma, and how 
this interaction influences the evolution of the beam envelope
radius.
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