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Introduction: Approximately 0.2–5% of school-age children complain of listening

di�culties in the absence of hearing loss. These children are often referred to

an audiologist for an auditory processing disorder (APD) assessment. Adequate

experience and training is necessary to arrive at an accurate diagnosis due to the

heterogeneity of the disorder.

Objectives: The main goal of the study was to determine if machine learning

(ML) can be used to analyze data from the APD clinical test battery to accurately

categorize children with suspected APD into clinical sub-groups, similar to expert

labels.

Methods: The study retrospectively collected data from 134 children referred

for ADP assessment from 2015 to 2021. Labels were provided by expert

audiologists for trainingMLmodels and derived features from clinical assessments.

Two ensemble learning techniques, Random Forest (RF) and Xgboost, were

employed, and Shapley Additive Explanations (SHAP) were used to understand the

contribution of each derived feature on the model’s prediction.

Results: The RFmodel was found to have higher accuracy (90%) than the Xgboost

model for this dataset. The study found that features derived from behavioral tests

performed better compared to physiological test features, as shown by the SHAP.

Conclusion: The study aimed to use machine learning (ML) algorithms to reduce

subjectivity in audiological assessments used to diagnose APD in children and

identify sub-groups in the clinical population for selective interventions.

Significance: The study suggests that this work may facilitate the future

development of APD clinical diagnosis software.

KEYWORDS

auditory processing disorder, clinical data mining, audiology, hearing disorders, machine
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1. Introduction

Auditory processing refers to how the brain interprets the

sounds that one has heard. Normal auditory processing is

important for understanding complex sounds, such as music or

speech in difficult listening situations like classrooms, recreation,

social gatherings, or restaurants. If the auditory system has weak

processing skills, it can lead to listening problems [Cline, 2001;

American Speech-Language-Hearing Association (ASHA), 2005].

Approximately 0.2–5% of normal-hearing children have difficulty

understanding complex sounds, especially in difficult listening

situations (Chermak et al., 1997; Nagao et al., 2016). These children

are suspected of having Auditory Processing Disorder (APD).

APD is usually identified by parents or teachers and requires

an assessment by an audiologist for a formal diagnosis. APD

assessments are typically carried out in specialized clinical centers.

The audiologists who conduct these tests require extensive training

and experience for proper assessment and diagnosis. However,

there is a lack of consensus regarding which specific tests should

be included in the APD assessment battery (Emanuel et al., 2011;

Iliadou et al., 2017). Professional bodies including the American

Speech-Language Hearing Association (ASHA) recommend using

both behavioral and physiological measures (in a test battery

approach) to assess auditory processing in children suspected of

APD [American Speech-Language-Hearing Association (ASHA),

2005]. The behavioral component measures the child’s ability to

process acoustic stimuli (speech and non-speech) and respond

verbally. The physiological component measures the overall

integrity of the auditory system (Starr and Achor, 1975; Allen and

Allan, 2014). A diagnosis of APD is made if the child’s test scores

are greater than two standard deviations fromnormative thresholds

on two or more tests, or three standard deviations on one test

[American Speech-Language-Hearing Association (ASHA), 2005].

There are typically very few referrals made to clinics for APD

per year (Moore et al., 2018), making it difficult for training

audiologists to gain sufficient practice assessing APD. The diagnosis

of APD is also challenging due to its heterogeneity and associated

comorbidities (Bamiou et al., 2001; Chermak, 2002; Sharma et al.,

2009; Iliadou et al., 2017, 2018, 2019). As a result, there are

very few studies on the management of APD children (Emanuel

et al., 2011). Allen and Allan (2014) previously classified children

with APD into clinical sub-groups based on how they performed

on behavioral and physiological tests. Children who performed

poorly on behavioral tests were considered behaviorally abnormal1;

children who had atypical physiological findings were considered

physiologically abnormal; children who performed poorly on

both were considered abnormal across; and the children whose

performance on both behavioral and physiological measures were

within normal limits were categorized into a separate group. By

identifying sub-groups of APD, an audiologist can better apply

specific interventions the child may require. For example, children

who have difficulty processing auditory information behaviorally

1 Theword abnormal indicates the performance of the child in the auditory

processing test battery fell at least two standard deviations below that of

typically developing children. This is valid for any place the word “abnormal”

is used in the paper.

may benefit from auditory training (Weihing et al., 2015), whereas

children who show atypical physiologic processing may benefit

from using frequency modulated (FM) systems (Hornickel et al.,

2012; Rance et al., 2014). An FM system is a wireless device

which reduces the background noise and improves sound clarity

(Johnston et al., 2009). Children who have difficulty processing

auditory information both behaviorally and physiologically may

benefit from both auditory training and the use of an FM system

[American Speech-Language-Hearing Association (ASHA), 1970;

Sharma et al., 2012; Keith and Purdy, 2014; Smart et al., 2018].

Children whose performance is within normal limits on both

behavioral and physiological measures may indicate to address

non-auditory concerns, and a referral to another professional is

required. Categorizing children into different subclinical groups is

however complex, time consuming, and highly subjective.

Machine learning (ML) is becoming increasingly popular in

the field of medicine to help clinicians make timely and accurate

clinical diagnoses. ML techniques can be applied in designing

software for clinical use by learning from the data (Davenport and

Kalakota, 2019). Additionally, ML helps to reduce subjectivity in

clinical judgment. Previously, ML models were considered “black

box” models; however, with improvements in interpretability,

models are now able to be better understood and applied in clinical

settings (Ahmad et al., 2018). There is only one study in the

literature that has used unsupervised ML techniques (hierarchical

clustering) to identify sub-groups in APD data (Sharma et al.,

2019). The study used data collected from 90 children aged 7–12.8

years old. Four sub-groups were found based on 10 variables, as

follows:

• Group 1: Children with global deficits

• Group 2: Children with poor auditory processing, but good

word reading and phonological awareness skills

• Group 3: Children with poor auditory processing, poor

attention, and poor memory, but good language skills

• Group 4: Children with poor auditory processing and poor

attention, but good memory skills

The assessments included in the analysis were behavioral tests

and Cortical Evoked Auditory Responses (CEARs). However, APD

is heterogenous, and it is therefore important to evaluate a variety

of skills in the clinical assessment. There is a current lack of research

using ML techniques to categorize APD data into sub-groups using

both behavioral and physiological assessments.

The goal of our study was to determine if ML models

can be used to learn and predict the diagnosis of APD

with similar accuracy to clinical audiologists. Furthermore, we

used interpretability techniques to identify how important each

individual assessment within the APD battery is in arriving

at an accurate label. The application of ML may show the

diagnostic accuracy of APD, assist in centers where experts offer

limited availability, and enable another tool together with clinical

expertise to target individualized intervention of APD. To our best

knowledge, this is the first study to:

1. Use supervised ML methods for APD data analysis from a

comprehensive test battery that includes both behavioral and

objective hearing assessments.
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2. Use interpretability techniques to identify which APD

assessments contribute most to an accurate APD diagnosis

based on expert labels.

2. Materials and methods

2.1. Dataset

Children with listening complaints (hearing in noise) and or

poor academic performance were referred to the H.A. Leeper

Speech & Hearing clinic at the University of Western Ontario,

Canada for an assessment of APD. Data from 134 children between

the ages of 5–17 years old (90 male; 44 female) were retrospectively

collected from 2015 to 2021. The primary language of all the

children was English. The Health Sciences Research Ethics Board

of Western University, Canada, has approved the study (IRB

00000940).

2.2. Auditory processing audiological
clinical test battery

The APD assessment is carried out in a test battery format

following guidelines recommended by ASHA [American Speech-

Language-Hearing Association (ASHA), 2005]. The test battery

appraises the overall wellbeing of the auditory system, starting with

how sound is processed and perceived by the auditory system. The

Auditory Processing (AP) test battery consists of both behavioral

and physiological measures. In behavioral tests, the processing and

perception of auditory information are assessed. In physiological

measures, the overall neuro-physiological wellbeing of the auditory

system is assessed. Figure 1 shows a summary of the AP test

battery.

First, patient demographics such as age, gender, birth history,

middle ear history, family hearing issues, and additional health

problems are completed, typically by a parent. Next is a

detailed peripheral hearing assessment. In the peripheral hearing

assessment, pure tone audiometry (the minimum intensity that a

listener can detect for different test frequencies), tympanometry

(an assessment of middle ear function), and otoacoustic emissions

(a physiological measure that assesses the functioning of the

outer hair cells) are completed to ensure that the child does not

have any hearing loss. If a child fails any of the tests in the

peripheral hearing assessment, auditory processing tests will not

be administered [American Speech-Language-Hearing Association

(ASHA), 2005]. Children with normal hearing as indicated by

the peripheral hearing assessment will then undergo the auditory

processing test battery. In this study, pure tone audiometry was

conducted using the GSI-61 (Grason Stadler Inc, USA) Clinical

Audiometer. The middle ear function was assessed using the GSI

Audiostar (Grason Stadler Inc, USA) TympStar diagnostic middle

ear analyzer. The otoacoustic emissions were measured through the

Titan Suite.

The behavioral tests that are used are standardized and widely

used in North America (Emanuel et al., 2011). Behavioral tests can

be categorized into speech and non-speech tests. The Staggered

Spondaic Word (SSW) test (Katz, 1998) is a dichotic listening

FIGURE 1

Auditory processing (AP) clinical test battery. ABR, auditory

brainstem responses; CEARs, cortical evoked auditory responses.

test in which two spondees2 are presented in a staggered fashion

and the listener must repeat all four words. The Word in Noise

(WIN) test (Wilson, 2003) assesses the individual’s ability to listen

to speech in noise. InWIN tests, words are presented inmulti-talker

babble at seven signal-to-noise ratios (SNR) (+24–0 dB). In the

Word in Ipsilateral competing noise (WIC) test (Ivey, 1969), words

are presented at +5 dB SNR. The Pitch Pattern Sequence (PPS;

Pinheiro, 1977) test assesses the auditory system’s ability to perceive

and or process auditory stimuli in their order of occurrence. In

this study, adaptive auditory discrimination tests (psychoacoustic

tests), such as the ability to detect brief gaps in noise, amplitude

modulation (20 and 200 Hz), and ability to discriminate frequency

(1,000 Hz), were also performed for a portion of children. In the

current study, speech behavioral assessments were conducted using

the GSI-61 Clinical Audiometer and the psychoacoustic tests were

carried out using the Tucker Davis System.

Once the behavioral tests are completed, physiologic

assessments are carried out. The auditory brainstem responses

2 Spondees are terms that accommodate two equally stressed syllables.
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FIGURE 2

Summary of results for Experiments 1 and 2. The x-axis shows the four conditions, and the y-axis shows the accuracy over the test set.

(ABRs) and cortical evoked auditory responses (CEARs) are

recorded from children. These evoked responses are recorded from

both ears by placing a surface electrode on the scalp and presenting

brief acoustic stimuli. The ABR was recorded by presenting a

100 µs rarefaction click stimulus at 80 dB nHL at a rate of 13.3

clicks/s. The CEARs were recording using a 60 ms tone stimuli

at 1,000 Hz with an intensity of 70 dB nHL. The stimuli were

presented monoaurally through ER-3A, Etymotic Research Inc

insert earphones. The ABR occurs between 0 and 8 ms after

stimulus onset, whereas the CEARs occur between 80 and 300 ms

after stimulus onset. The recording windows were 10 and 750 ms

for ABRs and CEARs, respectively. The responses were averaged

and amplified with an amplification of 100 k for ABRs and 30

k for CEARs. Bandpass filters of 100–1,500 Hz were applied to

ABRs and filters of 1–30 Hz were applied to CEARs. The artifact

rejection was set to 23.8 µV for ABRs and 79.2 µV for CEARs. In

the present study, the recording of CEARs took place at a separate

appointment, and only limited data was available. To record these

physiological signals, we used a Bio-logic Navigator Pro AEP

system (Natus Medica, Inc).

The last test performed in the test battery is the acoustic

reflex (middle ear muscle reflex) test. The acoustic reflexes are

recorded by presenting loud tones to the ear. When loud tones are

presented, the admittance of the tympanic membrane and middle

ear system decreases due to stapedius muscle contraction. Presence

of an acoustic reflex is an indication that the middle ear and the

peripheral auditory system is intact. The GSI TympStar diagnostic

middle ear analyzer was used to obtain the acoustic reflexes in the

current study.

2.3. APD subgroups

A study conducted by Bellis and Ferre (1999) proposed the

idea of determining different sub-groups of APD children. Previous

studies conducted in the Child Hearing Research Laboratory at

Western University (Allen and Allan, 2014) have also shown the

importance of both physiological and behavioral assessments in the

AP test battery thereby observing sub-groups in the APD data. A

study by Sharma et al. (2019) used hierarchical cluster analysis to

identify sub-groups in APD children. In the Sharma et al. (2019)

study, data was collected from over 90 school-aged children (7–13

years old) who were suspected of having an APD. The collected

data contained the outcomes of test results, which assessed the

children’s reading, language, cognition, and auditory processing.

Initially, the dataset had 23 variables based on various auditory

assessments, however, for the cluster analysis, only 10 variables

were included, namely: phonological, irregular, TONI, Forward,

Dichotic Digit Test, Language, Non-word, Attention, Backward

DS, and Frequency Pattern Test. The cluster techniques used

were hierarchical clustering, followed by k-means. Four clusters

of children were identified: 35 children showed global deficits; 22

children showed poor auditory processing with good word reading

and phonological awareness skills; 15 children had poor auditory

processing with poor attention and memory, but good language

skills; and 18 children had poor auditory processing and attention

with good memory skills. However, the authors did not include any

physiological data such as ABRs or otoacoustic emissions in the

cluster analysis.

Cluster analysis techniques are unsupervised learning

techniques, whereas in supervised learning, expert labels are used

to train ML models. In supervised learning, after the model is

trained with part of the labeled data (the “training” set), predictions

are made on the other part of the data (the “test” set). The predicted

results are compared to the labeled data to evaluate the accuracy

of the model. The use of supervised or unsupervised techniques

depends on whether human experts are available to provide the

labels of the test set. Here, three expert audiologists with>10 years

of experience assessing APD children labeled the dataset into four

APD sub-groups (Allen and Allan, 2014) based on if children were
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behaviorally and physiologically normal or abnormal. The four

labels were presented as follows:

• “BnPn” = Behaviorally Normal and Physiologically Normal

• “BnPa” = Behaviorally Normal and Physiologically Abnormal

• “BaPn” = Behaviorally Abnormal and Physiologically Normal

• “BaPa” = Behaviorally Abnormal and Physiologically

Abnormal

2.4. Feature engineering

In traditional ML algorithms, the data should be transformed

to features that better represent the underlying problem to reach

a satisfactory outcome. This process is called feature engineering.

Deep Learning (DL), which is a sub-field in ML, does not

require such manipulations; the model itself performs feature

engineering. However, in medical applications, the use of DL

techniques is limited due to the scarcity of data. Hence, traditional

ML algorithms with effective feature engineering techniques may

produce predictive models well-suited to the current problem. The

feature engineering performed in our study was done with the

advice of the domain experts. Since the AP assessments that are

included in our study have standardized test scores, inserting the

data as raw data into the ML pipeline seemed to interfere with the

outcome of the tests. An additional problemwas that some children

did not finish all the assessments in the test battery for various

reasons. Therefore, a better representation of data was needed to

encode these clinical tests. Based on the expert agreement, the raw

data encoding was carried out categorizing to “pass,” “fail,” “did not

finish the assessment,” and “missing data.” One-hot encoding was

conducted when feeding as features. The tests that were encoded

in this manner were otoacoustic emissions, hearing thresholds,

acoustic reflexes, and all the behavioral test results (both speech and

non-speech tests).

The ABR and CEAR data are presented as clinical waveforms.

To represent these data, we used the Continuous Wavelet

Transform (CWT) as a feature extractor, as described in our

previous work (Wimalarathna et al., 2021). The CWT is a time-

frequency plot obtained by convolving a signal with a window

function called a “mother wavelet.” The mathematical equation for

the wavelet transform is as follows (Torrence and Compo, 1998),

W(a, b) =
1
√
a

∫ ∞

−∞
s(t)ψ∗(

t − b

a
)dt (1)

In the equation, s(t) represents the signal and the ψ(t)

represents the mother wavelet which is scaled by “a′′ and translated

by “b′′. The CWT plot is obtained by convolving these scaled

and translated versions of the mother wavelet. There are multiple

mother wavelet types introduced in the literature, however since

the ABRs and CEARs consist of peaks and valleys, intuitively the

Gaussian mother wavelet was chosen throughout the study. If the

ABR or the CEAR is windowed in the locations where peaks and

valleys occur, it closely matches with the Gaussian wavelet. This was

one major reason for selecting the Gaussian wavelet as it would best

mimic how a clinician would select the peaks and valleys from a

waveform.

In our previous study (Wimalarathna et al., 2021), the features

extracted from the CWT were sent through a statistical feature

selector and the models were trained to recognize abnormal versus

normal ABR responses. In the previous study, 700 features were

required to reach a 92% accuracy. For the present study, we

wanted to further optimize the feature space and determine if a

smaller number of features could represent the group differences

between typically developing children and children suspected of

having APD. The complex Gaussian mother-wavelet was used to

compute the CWT plot for both ABRs and CEARs. The resulting

CWT representation was a complex matrix. Therefore, to derive

the features, we considered its magnitude and phase. From the

magnitude plot of the CWT coefficient matrix, the coefficients were

averaged across time and the coefficient of dispersionwas calculated

based on the following equation,

Coefficient of Dispersion =
Q3 − Q1

Q3 + Q1
(2)

In the equation,Q1 andQ3 are the first and the third quartile of

the average values, respectively. The angle of the CWT coefficients

was first unwrapped across the time axis and the standard deviation

was calculated as a feature. The ABRs and CEARs both contained

four features in total, representing the magnitude and the phase.

In a clinical setting, audiologists are interested in peaks, inter-peak

intervals and their timing. However, there is additive subjectivity

when an inexperienced audiologist analyzes the waveforms. Hence,

by automatically calculating these features, subjectiveness in the

analysis can be mitigated. The designed features represent similar

characteristics of the waveform that clinicians derive manually. The

ability of these features to explain the group differences were tested

using ML models. Feature interaction was studied by adding and

removing the features while observing the effects on accuracy.

2.5. Data augmentation techniques

APD is a rare disorder and clinics typically receive few APD

referrals per year. It has also been reported that obtaining a referral

for APD diagnosis is difficult (Moore et al., 2018; Agrawal et al.,

2021). For these reasons, there was a limited amount of data

available for this study and it took approximately six years to collect

the data within the dataset. Data augmentation techniques may

be used to overcome the difficulties associated with training ML

models with small datasets. Several techniques have been identified

in the literature, with resampling techniques being the most

commonly used. Synthetic Minority Over-sampling TEchnique

(SMOTE) is one such resampling technique where synthetic

samples are generated for minority data instances (Chawla et al.,

2002). The technique draws a new sample at a position (feature

space) between samples. First, the algorithm selects a random

instance from the minority class. Next, k nearest neighbors for that

example are located. A synthetic example is then generated at a

randomly chosen position in the feature space between the two

instances and their randomly chosen neighbor (Brownlee, 2020a).

Recent advances in ML have led to the development of more

sophisticated techniques for data augmentation, such as Generative

Adversarial Networks (GANs). However, there are challenges in

using this model for augmenting tabular data such as mixed
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data types, continuous features having multimodal non-gaussian

distributions, and highly imbalanced categorical columns. The

Conditional Tabular GAN (CTGAN) model designed by Xu et al.

(2019) has been able overcome these challenges and has been

proven to perform better than the existing architectures. The

model uses mode-specific normalizations to overcome the issue

of non-Gaussian and multimodal distributions. Additionally, the

training-by-sampling technique is included to solve the problem

of imbalanced columns. In the present study, we utilized CTGAN

and the SMOTE resampling technique separately to compare which

data augmentation technique was best suited to our application.

2.6. Machine learning algorithms

Ensemble learning techniques are generally considered suitable

to train with small amounts of data. These models aggregate

the outcome of a large number of models to produce a single

classifier (Breiman, 1996). Bagging (Breiman, 1996) and Boosting

(Schapire, 1990; Freund and Schapire, 1996) are two popular

techniques used in building accurate ensemble models. In Bagging,

the ensemble classifier combines the output of various learned

classifiers into a single classifier. Boosting technique iteratively

invoke a weakly learned classifier producing multiple classifiers.

These are finally combined to a single strong composite classifier

similar to Bagging. There is theoretical and empirical evidence

proving that ensemble learning techniques can reduce both the bias

and variance components of errors made by ML models (Rokach,

2019).

Several ML algorithms are available in the literature that use

Bagging and Boosting techniques (Odegua, 2019). In our study,

we selected Random Forest (RF) as an ensemble algorithm from

the Bagging techniques and Xgboost (Xgb) from the Boosting

techniques. The RF algorithm combines bagging with bootstrap

sampling. Xgb uses a highly scalable tree ensemble boosting

algorithm. Even though there are many algorithms available in the

literature that can train a model with small datasets, it is best to

consider minimizing bias and variance to not only fit the test data

but also generalize well on test/validation data (Maheswari, 2019).

Certain algorithms are prone to overfitting if not carefully chosen.

The traditional learning algorithms such as ensemble algorithms,

perform better compared to deep learning architectures which

utilize neural networks (Alom et al., 2019). This was observed when

we trained a Neural Network model.

Additional problems encountered with some ML algorithms

include class imbalance (Brownlee, 2020a), non-representative data

(Menon, 2020), and the curse of dimensionality (Karanam, 2021).

However, ensemble methods such as RF and Xgb are less likely

to be associated with such challenges when using small datasets.

We applied hyperparameter tuning (tuned hyperparameters are

included in Table A1), cross-validation, stratified sampling, and

resampling techniques (SMOTE Chawla et al., 2002) to overcome

the challenges of a small dataset.

2.7. Interpretability techniques

Machine Learningmodels have long been considered black-box

models until recently, when the research community discovered

TABLE 1 Details of the experiments conducted.

Experiment number Features Sample size

1 SSW, PPS, WIC/WIN,

ABR magnitude and

phase, acoustic reflexes

134

2 SSW, PPS, WIC/WIN,

ABR magnitude and

phase, CEARs magnitude

and phase, acoustic

reflexes, frequency

discrimination, gap

detection, and amplitude

modulation

46

SSW, staggered spondaic word; PPS, pitch pattern sequence; WIC, word in competing;

WIN, word in noise; ABR, auditory brainstem responses; CEARs, cortical evoked auditory

responses.

techniques to disentangle the internal mechanisms of the models.

This has helped build trust in the use of ML models for sensitive

applications, such as in the field of biomedicine (Rudin, 2019;

Auslander et al., 2021; Papastefanopoulos et al., 2021). There

are two scopes of interpretability in ML models, per sample

interpretation (local) and overall interpretation (global). There are

several software libraries available to interpret an ML model both

locally and globally. Shaply Additive Values by Lundberg and Lee

(2016) is an interpretability technique that uses coalition game

theoretical approaches to explain a model’s predictions. It has been

implemented as a Python library named “SHAP,” which stands

for SHaply Additive exPlanations (Mazzanti, 2020). In SHAP, the

feature values of a data instance act as players in a coalition.

The computed SHAP values represent how to fairly distribute the

prediction among the features. The explained SHAP model can be

represented by the following equation (Bagheri, 2022),

g(x,) = φ0 +
K∑
j=1

φjx
,
j (3)

The g(x,) in the equation is the explanation model. Coalition vector

is represented as x, ∈ {0, 1}K , where K is the maximum coalition

size. The Shapley value is φj ∈ R, which is the feature attribution

for a feature j. The Shapley value reveals how to fairly distribute a

prediction among the features assuming that each feature value of

the instance is a “player” in a game where prediction is the payout.

In this study, the SHAP Python library (Lundberg and Lee, 2017)

was used to interpret the models.

2.8. Experiments

In Experiment 1, only ABRs were considered as the number

of CEARs was only available for 46 children. There were four

ABR signals (two from both ears) considered from each of the 134

children, resulting in 536 data instances. For Experiments 2, each

child had eight CEAR signals resulting in a total number of 368

instances for the dataset, including the ABRs. The train/test split

was chosen to be 70:30 across all the experiments since a balance for

both training and testing data was required due to the small dataset

sizes. In all experiments, to find the confidence bounds of the

model, iteratively 100 shuffled random splits of train/test (train/test
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TABLE 2 Equations used to calculate the evaluation metrics. The k in the

equations indicates a class (either BaPa, BaPn, BnPa, or BnPn).

Evaluation metric Equation

Accuracy
∑

K TP+TN∑
K TP+FP+FN+TN

Sensitivity/Recall TPK
TPK+FNK

Specificity TNK
TNK+FPK

Precision TPK
TPK+FPK

F1-score 2 ∗ PrecisionK∗RecallK
PrecisionK+RecallK

Informedness SensitivityK + SpecificityK − 1

Markedness TPk
(TPk+FPk)

+ TNk
(TNk+FNk)

− 1

Accuracy is calculated by summating values from each class. Sensitivity, specificity, precision,

F1-score, informedness, and markedness are shown for an individual class.

TP, true positive; TN, true negative; FP, false positive; FN, false negative; BnPa, behaviorally

normal and physiologically abnormal; BnPn, behaviorally normal and physiologically normal;

BaPa, behaviorally abnormal and physiologically abnormal; BaPn, behaviorally abnormal and

physiologically normal.

split was not fixed) were considered from each ML algorithm.

It results in 100 models trained on different train/test splits of

the data. All the training iterations included both hyperparameter

tuning using Random Search (Bergstra and Bengio, 2012) and

stratified cross-validation (Brownlee, 2020b). This revealed how

confident each model was in predicting the labels of the dataset.

2.9. Evaluation metrics and statistical tests

The performance of the ML models was evaluated using the

metrics listed in Table 2. A true positive (TP) or a true negative

(TN) indicates cases where the model and the label provided

by the clinician agree. When the model and the labels disagree,

false negatives (FN) and false positives (FP) are encountered.

Calculating TN, TP, FN, and FP from the confusion matrix in the

case of a multi-class classification problem is different compared

to a binary classification problem. Further details on these

calculations can be found in Grandini et al. (2020) and Shmueli

(2019). The informedness and markedness were calculated from

the sensitivity, specificity, and precision. Informedness combines

both sensitivity and specificity to measure the consistency of

predictions from the ML model, whereas markedness measures the

trustworthiness of predictions made by the ML model (Powers,

2020).

Statistical significance tests were utilized to arrive at

conclusions based on the evaluated metrics. The Friedman

test was conducted to evaluate the significance of the results. The

Friedman test is a non-parametric test used to compare group

differences (Scheff, 2016).

2.10. Programming packages

All algorithms used were written in the Python programming

language. Several software libraries were employed. The

Pandas library (McKinney et al., 2011) was first used to

pre-process the data. CWT analysis was carried out using

the PyWavelets library (Lee et al., 2019). The Scikit-learn

package (Pedregosa et al., 2011) contained all the ML

FIGURE 3

Confusion matrix for the RF model for Experiment 2. The diagonal

shows the correctly classified data instances while the o�-diagonal

shows the incorrectly classified instances. BaPa, behaviorally

abnormal and physiologically abnormal; BaPn- behaviorally

abnormal and physiologically normal; BnPa, behaviorally normal

and physiologically abnormal; BnPn, behaviorally normal and

physiologically normal.

algorithms that were used in the study. Finally, the SHAP

library (Lundberg and Lee, 2017) was used to interpret the

models.

3. Results

The results obtained for the experiments as mentioned in

Table 1 are shown in Figure 2. These results were obtained from

training 100 different train/test splits from the data. Each data point

shows the accuracy for the test set after the model was trained

with hyperparameter tunning and cross-validation. In Experiment

1, the RF model has a negatively skewed distribution (mean =

68.3%, median = 68.5%) with a standard deviation of 4%, while the

Xgb model shows a positively skewed distribution (mean = 66.6%,

median = 65.7%) with a standard deviation of 5%. The median

accuracy of the RF model is greater than the Xgb model (2.8%). In

Experiment 2, the RF shows a positively skewed distribution (mean

= 81.6%, median = 81.1%), while Xgb shows a negatively skewed

distribution (mean =79.1%, median = 79.3%). The RF model shows

slightly better median accuracy than Xgb (1.8% difference).

A Friedman test revealed a significant difference in the results

of experiments [X2
r (3,N = 100) = 239.823, p < 0.05]. The

Bonferroni multiple comparison test was next used to compare

pairwise performances for each experiment. The test revealed that

each pair of experiments has significant differences in performance.

Experiment 2 showed significantly better results (p < 0.01) for

both RF and Xgb models compared to Experiment 1. Experiment

2 contained features derived from all the tests from both the

behavioral and physiological test battery, whereas Experiment 1
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FIGURE 4

Confusion matrix for the Xgb model for Experiment 2. The diagonal

shows the correctly classified data instances while the o�-diagonal

shows the incorrectly classified instances. BaPa, behaviorally

abnormal and physiologically abnormal; BaPn, behaviorally

abnormal and physiologically normal; BnPa, behaviorally normal

and physiologically abnormal; BnPn, behaviorally normal and

physiologically normal.

contained only features from ABRs due to the lack of data for

CEARs.

The model with the greatest accuracy out of the 100

models generated from each different train/test splits of data for

Experiment 2 is RF with a 90.1% overall accuracy and Xgb with an

86.5% overall accuracy. Figures 3, 4 show the confusion matrices

for the two models. The diagonals in the two matrices show

the correctly classified instances and the other indices show the

incorrectly classified instances. Based on the confusion matrices,

the performance metrics listed in Table 2 were calculated for

each class. Table 3 shows the calculated performance metrics. It

can be observed that the performance metrics of the RF model

outperformed the Xgbmodel in most performance metrics for each

class. Hence the RF model was selected as the best model.

The SHAP interpretations for the selected best-performing

model, RF, are shown in Figure 5. The x-axis in the plot shows

the mean SHAP values for each feature on the y-axis. The features

on the y-axis are ordered from highest to lowest impact, from

top to bottom. Each bar shows the contribution from each of

the four APD sub-groups. A higher mean SHAP scores that the

feature is largely contributing to the outcome of the model. The

features contributing to the outcome the most were the SSW

scores, and the features contributing the least were the right

and left contralateral acoustic reflexes. From the physiological

hearing test battery, the features derived from cortical responses

were ranked higher compared to ABR features. From the acoustic

reflexes, the ipsilateral recordings of both right and left ears

were ranked higher compared to the contralateral recordings.
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FIGURE 5

SHAP interpretations for the Random Forest model for Experiment 2. This was the best-performing model with an accuracy value of 90.1%. The

X-axis of the diagram shows the mean SHAP values, and the y-axis shows the features contained in the model ordered from highest (top) to lowest

(bottom) mean SHAP value. Each bar represents a combination of average values of the contribution from each subgroup. SSW, staggered spondaic

word; WIC, word in competing; WIN, word in noise; CEARs, cortical evoked auditory responses; ABR, auditory brainstem responses; Mag, magnitude;

PPS, pitch pattern sequence; BnPa, behaviorally normal and physiologically abnormal; BnPn, behaviorally normal and physiologically normal; BaPa,

behaviorally abnormal and physiologically abnormal; BaPn, behaviorally abnormal and physiologically normal; LI, left Ipsi; RI, right Ipsi; LC, left

contra; RC, right contra; GAP, GAP detection; AMP, AMPlitude modulation; Freq, frequency detection.

psychoacoustics showed higher mean SHAP values compared to

frequency discrimination.

4. Discussion

The present work explored the use of supervisedML techniques

to analyze data collected from children suspected of APD from

a period of approximately six years. We determined RF and Xgb

models to be the best suited for this study as they are both ensemble

learning models that can perform well with small datasets. Data

augmentation techniques can be used to improve the performance

of ML models trained with small datasets. Here, we used the

CTGAN augmentation technique (Xu et al., 2019). We found no

significant difference in using CTGAN in conjunction with either

the RF or Xgbmodels. CTGANdid significantly improve the results

when used with a Neural Network. The accuracy of the neural

network model without CTGAN for Experiments 1 and 2 were

51(±0.02) and 0.50(±0.04)%, respectively. The accuracies were

improved to 69(±0.02)% for Experiment 1 and 70(±0.02)% for

Experiment 2 with CTGAN. However, the accuracy obtained for

Neural Network models was lower overall compared to RF and Xgb

models.

The assessment of hearing thresholds is conducted early in the

AP testing battery, and if a child passes each threshold, they are

tested on the remainder of the battery. In this study, all children

showed hearing thresholds (at conventional frequencies 250–

8,000 Hz) within normal limits, and there were no considerable

differences in hearing thresholds across the population. The ML

results indicated that hearing thresholds showed the least impact

on the outcome of the models. The features that were shown

to impact the outcome of the models the most based on SHAP

interpretations were derived from the behavioral tests. The SSW

ranked first in both experiments, indicating that it impacted the

outcome of the models the most. This is consistent with the

literature, in which the SSW test is identified as a standard test

for the auditory processing assessment (Emanuel et al., 2011). This

consistency further indicates that ML models can comply with

expert knowledge.

The inclusion of cortical responses in the physiological

hearing assessments provided additional information about the

neurophysiology of the auditory system. However, certain test
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batteries do not include an assessment of cortical responses.

Through our experiments, we noted that features derived from

cortical responses largely contributed to the output of the models,

as indicated by the SHAP interpretations. The features derived from

CWT represent a summary of peak amplitudes and latencies. Even

though the dataset with cortical features was smaller, the accuracy

of both the RF and Xgb models was higher compared to the dataset

without cortical features (Experiment 1). The extracted features

suggested that cortical evoked responses provided significant

information about auditory processing in these children. The

emerging literature also suggests that cortical evoked responses

are atypical in children referred for an auditory processing

evaluation (Barker et al., 2017; Hussain et al., 2022). It is therefore

recommended to evaluate cortical responses in the APD assessment

and include these features in future studies that aim to use ML for

automating APD diagnosis. Currently, it is not clear about the effect

of maturation, morphology, and inter-subject variability in cortical

evoked responses on these features. Hence, a thorough study of

the features with a larger dataset is required in the future. It will

help clinical understanding and the Machine Learning model reach

higher accuracies.

The ipsilateral acoustic reflexes from the physiological hearing

test battery also contributed largely to the model outcome

compared to the contralateral reflexes based on the SHAP

interpretations. In exploring the data, only a few children had

elevated thresholds reflected through ipsilateral reflexes, and most

children showed reflex thresholds within the normal limits overall.

Psychoacoustic tests use non-speech stimuli and can be used

to validate the results of behavioral tests. The data from these

tests were included in Experiment 2. However, the contribution

from psychoacoustic tests was lesser compared to the behavioral

assessments that used speech stimuli and the physiological tests.

In the final model, amplitude modulation detection at 20 Hz and

GAP detection were the tests that provided the most impact to

the model outcome compared to the frequency detection and

amplitude modulation detection at 200 Hz. After discussing with

clinicians, it was found that sometimes children have difficulties

with performing the frequency detection test compared to GAP

in noise. In addition, detecting amplitude modulation at 20 Hz is

easier compared to 200 Hz. Hence, this was further evidence that

the model can be used to output accurate predictions in accordance

with current clinical knowledge.

There are only a few studies in the literature that use ML

techniques to analyze APD data in children (Strauss et al., 2004;

Sharma et al., 2019; Cassandro et al., 2021). Sharma et al. (2019)

used behavioral assessments data to cluster APD children into four

sub-groups using hierarchical clustering techniques. The auditory

processing assessments used by Sharma et al. (2019) were different

than those used in the present study; we used both behavioral

and physiological data, as recommended by [American Speech-

Language-Hearing Association (ASHA), 2005]. The sub-groups

identified by Sharma et al. (2019) have very few similarities

to those identified in the present study. However, the group

identified as “global deficit” is similar to the group we identify

as “behaviorally abnormal and physiologically abnormal (BaPa),”

where all assessments are outside of the normal thresholds. The

study conducted by Strauss et al. (2004) used the β-waveform of the

binaural interaction component in auditory brainstem responses

along with a support vector machine model to detect APD in

children. The study did not identify subgroups in the data, but

rather aimed to identify children at risk for APD from those not

at risk. Cassandro et al. (2021) have used cluster analysis to identify

issues in students tested for dyslexia accompanied by poor auditory

skills. Out of the four participants in the cluster who had poor

audiometric profiles and were suspected of APD, only one subject

was identified as APD.

The clinical workflow used here can be adopted in future work

aiming to study APD data as we followed a comprehensive test

battery based on ASHA guidelines. The use of ML techniques

discussed in this paper may also be applied to future studies

aiming to develop automated platforms to assess other clinical test

batteries. Since this study focused on the technical aspects of ML,

we did not discuss the clinical management of the identified sub-

groups in detail. This would require further work by clinicians

and researchers. However, we believe our study may aid such

discussions as we have presented an objective tool to categorize

children with APD into clinical sub-groups. We have further

revealed the contribution of each assessment contained in the AP

test battery on the model outcomes. It should be noted that the use

of ML tools are meant to complement rather than replace clinical

decision making.

There are relatively few referrals made for APD assessments

in children and there is no definitive way to determine how

much data is needed for an ML experiment before collecting the

data. Our experiments were done based on the limited data we

had available. Hence, the sample size of the clinical population

is the main limitation of our study. A larger dataset will ensure

improved generalization, model performance, stability, and validity

in machine learning models. Future studies should be conducted

with a larger data set in children referred for an auditory processing

evaluation. A wide variety of complex algorithms, such as deep

neural networks, could be explored with larger datasets which will

help to derive a strong understanding of the clinical problem and

reduce the number of tests used in the diagnosis. Hence, this study

can be viewed as exploratory, where future studies may adopt our

methods from both clinical and ML workflows. Future studies may

explore solutions to the difficulties associated with collecting APD

datasets such as forming larger, multi-center collaborations. One

such solution may be the use of a federated ML system, in which

researchers for different centers may contribute training data to the

same model without exposing personal information (Yang et al.,

2019).

5. Conclusion

The purpose of this study was to explore the use of ML

techniques as a potential tool to aid in the analysis of the AP

test battery. Data from children suspected of APD were classified

into clinical sub-groups based on their performances on both

behavioral and physiological hearing assessments. The RF model

was shown to perform the best, with an average accuracy of 90%,

an average sensitivity of 91%, and an average specificity of 96% for

all sub-groups. The model was able to identify the critical subgroup

BaPa, in which children performed poorly in both behavioral

and physiological assessments, with a sensitivity and specificity
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of 93 and 91%, respectively. The group that performed within

normal limits in the test set (BnPn) were correctly identified with

a sensitivity and specificity of 100 and 98%, respectively. This study

further highlighted the utility of each individual test contained

within the AP test battery in making predictions that agree with

clinical understanding.
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Appendix

TABLE A1 Tuned hyperparameters of Machine Learning models used in

the study.

ML model Tuned hyperparameters

Random forest Number of estimators, size of the random subsets of

features, maximum depth of individual trees, minimum

samples to split on at an internal node of the trees, minimum

leaf nodes after splitting a node

Xgboost Column sample by tree, gamma, learning rate, maximum

depth, number of estimators, subsample, regularization

parameter alpha

Neural network Hidden Layers, Activation function, Optimization function,

Learning Rate, Iterations
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