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Introduction: Single-sided deafness (SSD) a�ects the ability to localize sounds

and understand speech in noisy environments, significantly impacting the quality

of life. Cochlear implants (CIs) have been explored as a solution for SSD, with

varying success attributed to di�erent factors, such as onset of deafness (pre-

vs. post-lingual), duration of especially pre-lingual deafness, and compliance

to rehab protocols, as well as the frequency-to-place mismatch, where the

frequency assigned to CI electrodes does not align with the cochlea’s natural

tonotopy. The objective is to investigate the influence of frequency-to-place

mismatch on hearing performance, sound quality, and patient satisfaction in SSD

CI recipients by comparing default and anatomical frequency mapping.

Methods: A retrospective study was conducted on 19 SSD patients implanted

with MEDEL CIs between 2014 and 2023. Post-activation, high-resolution

cone beam computed tomography scans were analyzed using OTOPLAN
®

(Version V4) to define anatomical frequency mapping. The average frequency

mismatch (AFM) between default and anatomical mapping was calculated.

Speech intelligibility was assessed using articulation function (AF) scores, and

sound quality was evaluated through patient questionnaires.

Results: A significant negative correlation between AFM and AF (R = −0.47, p =

0.042) was observed. Sound quality aspects, including natural sound perception

and similarity to the normal ear, inversely correlated with AFM (R2 = 0.281, p =

0.05, and R2 = 0.301, p = 0.043, respectively). Global satisfaction scores were

high (3.58 ± 0.77), una�ected by AFM.

Conclusion: Frequency-to-place mismatch impacts speech intelligibility and

sound quality in SSD CI patients. Anatomical frequency mapping using tools like

OTOPLAN can enhance CI outcomes, highlighting the need for individualized

cochlear measurements and electrode assignment.

KEYWORDS

cochlear implant, hearing quality, frequency allocation, cochlear length, OTOPLAN
®

Introduction

Hearing is a crucial sense that connects us to the surrounding world, enabling
communication, fostering relationships, and enriching our overall life experiences.
The human auditory system relies on the ability to differentiate between sounds
and localize their source. For individuals with single-sided deafness (SSD), this
natural ability is compromised, leading to a range of issues in environments where
background noise and multiple speakers are prevalent. SSD refers to the condition
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in which one ear has profound or severe hearing loss while the other
ear maintains normal hearing or has a less severe impairment. It
affects 3%−6% of the total population (Ross et al., 2010). While this
condition may seem manageable in quiet settings, the difficulties
become pronounced in noisy situations, making it challenging for
individuals with SSD to effectively understand speech in noise and
engage in social interactions. This situation requires compensatory
mechanisms, and patients’ quality of life may be affected by social
isolation (Taylor, 2010; Tokita et al., 2014; Kitterick et al., 2015).

In recent years, advancements in auditory technology have
paved the way for transformative solutions, and one such
breakthrough is the use of cochlear implants (CIs) to address SSD.
The first use of a CI for treating SSD was reported in 2008 (Van
de Heyning et al., 2008). CIs, originally designed for individuals
with bilateral hearing loss, are currently being explored as an
innovative option to restore hearing in those with SSD. They
can support better-ear listening and provide access to interaural
intensity cues. Studies have demonstrated that CIs can improve
sound localization and speech understanding in noise (Dillon et al.,
2022; Wesarg et al., 2024; Park et al., 2023; Távora-Vieira et al.,
2019; Seebacher et al., 2023; Mertens et al., 2017). Evidence from
a previous study involving SSD children and adults has shown that
CI use significantly improves performance across all three target-
to-masker configurations [speech at 0◦ azimuth, masking noise
at 0◦ azimuth (collocated) (S0N0), p = 0.013; speech front and
masker to the CI or left ear (S0Nci/L), p = 0.027; and speech front
and masker to the normal hearing or right ear (S0Nnh/R), p <

0.001] (Park et al., 2023). Additionally, significant improvements
in Speech Reception Threshold (SRTs) with a CI, compared to
the preoperative unaided condition, were found in all spatial
configurations (Wesarg et al., 2024).

As we delve into the possibilities and challenges associated with
CIs in the context of SSD, it becomes evident that these devices
offer newfound hope for a more inclusive and enriched auditory
experience. The criteria and predictive factors for recommending
implantation have been recently published (Dillon et al., 2022;
Park et al., 2023). During CI activation, auditory frequencies are
typically assigned in a quasi-logarithmic and identical manner
(which is a standard procedure) based on the specific implant
model. However, due to limitations in the electrode array’s ability
to reach the most apical regions of the cochlea, as well as natural
variability of cochlear anatomy (Alexiades et al., 2015; Escudé
et al., 2006; Spiegel et al., 2022), this frequency assignment may
not align with the cochlea’s natural tonotopy. As a result, there
is a discrepancy between the default frequency assigned to an
electrode and the actual frequency of the stimulated neurons. This
phenomenon is commonly referred to as the frequency-to-place
mismatch. The current challenge in CI fitting lies in incorporating
anatomical data (Mertens et al., 2022). A collaborative effort
between CASCINATIONAG (Switzerland) andMED-EL (Austria)
has resulted in the development of OTOPLAN

R©
, a tablet-based

software. This innovative tool offers otologists an intuitive and
efficient method to evaluate the anatomy of the temporal bone,
enabling them to plan personalized cochlear implantation for
optimal outcomes. By utilizing computed tomography (CT) scans
of the temporal bone, OTOPLAN

R©
accurately identifies crucial

structures such as the modiolus, round window, and the tonotopic
location of each electrode contact. The software’s reliability was

confirmed for estimating cochlear canal length and insertion angle
depth of the electrodes (Canfarotta et al., 2020). Therefore, this
program can provide a tonotopic setting for CI patients.

This retrospective study aims to investigate the influence of
frequency-to-place mismatch on the hearing performance, sound
quality, and patient satisfaction in individuals with SSD, by
comparing anatomical frequency mapping defined by OTOPLAN
with the default mapping used at the time of CI activation.

Materials and methods

This retrospective study included patients with post-lingual
deafness implanted unilaterally with MEDEL CI from 2014 to
2023 at the University Hospital of Liege, a tertiary care center.
The inclusion criteria were age >18 years and unilateral post-
lingual hearing loss eligible for CI implantation in the deaf ear
with normal hearing in the contralateral ear [Pure Tone Average
(PTA) <20 dB for 500, 1,000, 2,000, 4,000, and 8,000Hz]. The
exclusion criteria were: age <18 years, abnormal hearing threshold
in the contralateral ear (PTA >35 dB at 250, 500, 1,000, 2,000,
4,000, and 8,000Hz), pre-lingual deafness, cochlear malformations,
contraindication to CT imaging, unavailable or poor-resolution
scans, or incompatibility with the OTOPLAN program.

All implants were activated and fitted with a processing strategy
(FS4) using a standard frequency allocationmap (logFS) distributed
on active electrode contacts, as prescribed by the manufacturer. All
patients underwent a post-operative, high-resolution cone beam
CT of the temporal bone, which was analyzed using OTOPLAN
(V4; CE-certification number: G1 17 10 95657 003). The software
performed automated anatomical landmark assignment without
manual intervention (Figure 1). Using theMAESTRO 9.0 anatomy-
based fitting tools, an automated formula was used without manual
intervention to determine a frequency allocation that followed the
natural tonotopic map of the cochlea. In our calculation, we used
the logFS bandpass-filter center frequencies.

The default frequency assigned to each electrode at the time of
fitting was compared with the frequency established by OTOPLAN
based on the position of the spiral ganglion neurons. The difference
between these two values was calculated for each electrode for
the frequencies corresponding to the speech spectrum (500–
2,000Hz) and then averaged and presented as “average of frequency
mismatch” (AFM).

Finally, the AFM was compared with the hearing results for
patients as assessed by speech audiometry. We used the articulation
function (AF) as an index of speech intelligibility, defined as the
average speech discrimination score obtained at 40, 55, and 70
dB. The speech audiometries were performed in a soundproof
booth, with the patient sitting 1m from the sound source and
their normal-hearing ear masked using an earphone. We used the
words of Fournier’s dissyllabic list in French, pronounced to the
patient through a loudspeaker. Measurements were recorded at
40–55 and 70 dB Sound Pressure Level (SPL) to calculate the AF.
All tests were conducted in a quiet environment, using the default
frequency allocation.

The patients were interviewed to fill out a satisfaction
questionnaire composed of five questions on an analog scale
ranging from 0 (not at all) to 5 (completely), with one exception
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FIGURE 1

Correlation between average frequency mismatch and articulation function.

for the question on robotic sound quality, which ranged from 0
(completely) to 5 (not at all). The following aspects of satisfaction
were evaluated: (1) global satisfaction of the cochlear implant, (2)
sound detection (is the implant activated), (3) robotic quality of
sound, (4) similarity of the sound to the normal ear, and (5) natural
sound sensation.

All data sets are available upon request.

Results

Patients

Nineteen patients were included in this retrospective study.
Among the 7 men and 12 women, the mean age of implantation
was 60 ± 11.8 (range 44–80 years). All participants were French-
speaking. Eight patients were implanted in the right ear and 11
in the left ear. No post-operative complications were observed.
Implantation with a round window approach was performed for
all patients; a MEDEL FLEX 24 (24-mm) electrode array was used
for 13 patients, a FLEX 26 (26-mm) electrode was implanted for
2 patients, and a FLEX 28 (28-mm) electrode was implanted for
4 patients. The normal-hearing ear showed a PTA of 19.6 ± 10.99
dB, and the implanted ear showed a PTA of 93.66± 20.09 dB before
surgery and of 38.32± 4.42 dB with the implant activated.

AFM

The main objective of this retrospective study was to evaluate
the outcome of speech intelligibility as a function of the difference
between the default frequency mapping for each electrode and the
frequency fitted by the OTOPLAN software. All patients (100%)
had a frequency mismatch of at least 159.8Hz and a maximum of
985Hz, and the average mismatch was 489.09± 193.21 Hz.

AF

The relationship between AFM andAFwas analyzed (Figure 1).
Among implant-activated patients, the AF measured at the plateau
reached after implant activation was 77 ± 17.03%. The average
frequency mismatch showed a significant inverse correlation (R =

−0.47, R2 = 0.22) with speech intelligibility, as measured by the
Articulation Function (p= 0.042).

Quality of sound

The increase in the difference between the tonotopic frequency,
as defined by OTOPLAN, and the fitted frequency strongly and
inversely correlated with the perception of a natural sound (R =

−0.476, R2 = 0.281, p = 0.05) and with the similarity of the sound
perceived in the normal ear (R = −0.494, R2 = 0.301, p= 0.043),
as assessed on an analog scale ranging between 0 and 5 (Figure 2).
Robotic sound quality (R = −0.22, R2 = 0.089, p = 0.395) and
perception of the presence of the implant ON (R = −0.172, R2

= 0.071, p = 0.52) were not significantly affected by the AFM.
However, overall subjective satisfaction remained very good for all
patients, with a score of 3.58 ± 0.77 (R = −0.347, R2 = 0.15, p =

0.17), and was not affected by AFM.
Overall, significantly, the closer the match between the adjusted

and predicted frequencies, the higher the total score for the five
questions on subjective sound quality perception after CI activation
(R=−0.562, R2 = 0.316, p= 0.0188).

Discussion

Previous studies on frequency mapping were mainly conducted
on patients suffering from bilateral hearing loss. The originality
of this retrospective study was to evaluate the outcomes of
speech intelligibility, as well as the quality of sound and the
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FIGURE 2

Natural sound (A), similar sound to normal ear (B), robotic sound quality (C), perception of the implant ON (D), and global satisfaction score (E) as a

function of the calculated frequency placed mismatch.

global satisfaction of patients presenting a SSD, as a function of
the difference between the default frequency mapping for each
electrode and the frequency suggested by the software OTOPLAN
based on the anatomy of the cochlea. CI implantation in the
deaf ear improves binaural function rehabilitation in SSD. Sound
localization can be restored, and speech understanding greatly
improved after implantation, while the severity of SSD-related
tinnitus can be reduced.Moreover, CI confers greater improvement
in sound localization than a bone conduction hearing aid or
a contralateral routing of signal device, which do not restore
meaningful sound localization (Van deHeyning et al., 2008;Wesarg
et al., 2024; Arndt et al., 2011; Cabral Junior et al., 2016; Kitterick
et al., 2016; Thomas et al., 2016; Hempel et al., 2018).

Criteria and predictive factors for recommended implantation
have been recently published (Dillon et al., 2022; Park et al., 2023),
suggesting that CI is an appropriate treatment for patients with
SSD. Parameters such as age at the time of implantation, duration
of hearing loss, preoperative speech intelligibility thresholds, and
the patient’s cognitive abilities can influence post-implant hearing
performance (Blamey et al., 2013). It has been established that CI
tends to produce a positive effect in noise for some SSD patients
(Firszt et al., 2012; Távora-Vieira et al., 2013; Gersdorff et al.,
2024) and that there is a significant positive correlation between
contralateral PTA and noise test results under certain conditions
(Gersdorff et al., 2024; Dorbeau et al., 2018). Overall, post-operative
CI hearing performance can be extremely inconsistent. Therefore,
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additional unknown factors still remain. Recent studies have shown
that several factors could play a role in hearing performance,
including the depth of electrode insertion, the percentage of
electrodes present in the scala vestibuli, and the amount of fluid
and scar tissue surrounding the electrodes (Holden et al., 2014; Van
Der Beek et al., 2016; Finley et al., 2008; Buchman et al., 2014).
As an additional factor, the variable anatomy and dimensions
of the human cochlea suggest that frequency maps could vary
considerably. Therefore, the electrode frequency assignment may
not align with the cochlea’s natural tonotopy and may not be
optimal for specific anatomical variations. Partial coverage of
electrical stimulation in CI recipients with profound post-lingual
deafness could lead to a frequency mismatch. In a previous study,
we reported that frequency-to-place mismatch could explain the
variability in results for speech intelligibility in bilaterally deaf
patients. The same trend could be observed with the length and
width of the cochlear base, the total cochlear volume, and the
volumes of the separate compartments (Starovoyt et al., 2023).
In this study, we confirm that the bigger the AFM is, the lower
the intelligibility in SSD patients will be. It has been shown that
matching electrodes to cochlear frequency maps is essential for
optimal fitting and performance. There is a strong interaction
between the optimal frequency–place mapping, electrode insertion
depth, and speech recognition (Li et al., 2020; Dhanasingh and
Jolly, 2017; Baskent and Shannon, 2005). Understanding and
incorporating these factors into research and development efforts
are essential for tailoring interventions to individual needs.

The primary outcome of this study was to compare the default
frequencies assigned to the electrodes of a CI at the time of fitting
with those established based on the anatomical values defined in
OTOPLAN. As expected, we demonstrated a systematic mismatch
between these frequencies as previously reported in several studies
(Mertens et al., 2022; Canfarotta et al., 2020; Venail et al., 2015;
Landsberg et al., 2015; Dessard et al., 2024). The average of the
mismatch was 489.09± 193.21 Hz.

The secondary outcome was to compare this mismatch with
the hearing performance of CI users. The maximum speech
intelligibility achieved by the patients was measured at 78.95
+ 13.87%. AFM showed a strong inverse correlation with
speech intelligibility, as measured by the AF. This inverse
correlation between the mismatch and speech performance is
statistically significant. A linear correlation between frequency-
to-place mismatch and hearing performance impairment was
described by Mertens et al. (2022). Our results are in line
with other studies (Mertens et al., 2022; Canfarotta et al., 2020;
Venail et al., 2015; Landsberg et al., 2015; Dessard et al., 2024),
highlighting the necessity of reducing this mismatch to improve
hearing performance.

The third outcome of this study was to analyze the perception
of a natural sound and the similarity of the sound perceived in the
normal ear, as assessed on an analog scale ranging from 0 to 5.
We showed a statistically significant negative correlation with the
AFM. The closer the match between the adjusted and predicted
frequencies, the higher the total score on the five questions
assessing subjective perception after CI activation. However, overall
subjective satisfaction remained very good for all patients, with an
average score of more than 3.5. The perception of “natural” sound
is inherently subjective and varies among CI users. Therefore,
considering an objective measurement of the quality of life as

defined by Kitterick et al. (2015) is important. It is particularly
relevant for SSD patients who are able to achieve a comparison
between both sides. We know that compliance could be an
issue for those recipients when they consider no similarity in
the perceived sound between both sides. Factors such as age at
implantation, duration of deafness, and individual differences in
auditory processing contribute to the diversity in user experiences.
In our study, we did not take those parameters into account, but
they should also be analyzed in further studies.

This study has several limitations. First, it is a retrospective
analysis based on data that were not originally collected for
research purposes, which may result in missing information
or inaccuracies. Stratifying the sample according to potential
influencing factors—such as cochlear anatomy, depth of electrode
insertion, age, and others—could help with better understanding
possible confounding variables. Multivariate models may also be
valuable to explore these associations, but they would require a
larger sample size.

This study should be considered preliminary. Further
prospective research with larger cohorts is needed to confirm these
findings and address these limitations.

Conclusion

In this study, we showed that sound quality and patient
satisfaction in individuals with SSD are inversely proportional to
the difference between the default frequency mapping for each
electrode, fitted by MAESTRO 9.0, and the frequency suggested by
the OTOPLAN (V4) software. In addition, we have demonstrated
a systematic mismatch between the assigned default frequencies
and those established based on the anatomical values defined
in OTOPLAN

R©
. We also highlighted that, in line with other

studies, the average frequency mismatch correlated statistically
with speech intelligibility (p = 0.042). CIs, originally designed for
individuals with bilateral hearing loss, are currently being explored
as an innovative option to address SSD. This study reinforces
the hypothesis that CIs are an appropriate treatment for patients
with SSD and that incorporating the concept of anatomy-based
fitting into clinical practice is valuable for tailoring interventions
to individual needs. Frequency-to-place mismatch could explain
variability in results for test-in-noise or in localization tests. This
should be considered in a further SSD prospective study.

This study encourages further research into the benefits of
personalized fitting strategies for SSD patients.
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