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Background: Trachoma, an infectious disease that leads to blindness, continues

to pose a significant public health challenge in over 40 countries as of 2023. The

initial phase of this disease, “active trachoma” is characterized by inflammation

and can be effectively treated with non-surgical interventions. However, if left

untreated, it progresses to the “scarring” phase, often requiring surgical

intervention. Earlier detection of “active trachoma” is critical to prevent

unnecessary surgery and also to reduce the transmission of the infection.

Developing accessible tools for a region with limited resources is necessary.

Deep neural networks have proven their effectiveness in numerous image and

vision-related tasks, yet research on “active trachoma” has received still

little attention.

Method: In this study, we adapted several pre-trained state-of-the-art deep

neural network models like ResNet, Xception from image classification on “active

classification” task. Further experiments were also conducted in three cases:

training from scratch, training from pretrained models on raw images and on

region-of-interest (ROI) focused images.

Results and discussion: The results indicate that these models outperformed the

previous studies using the same dataset, achieving an improvement of 6\% on

detection of follicular trachomatous inflammation and 12\% for detection of intense

trachomatous inflammation. Furthermore, we employed the eXplainable Artificial

Intelligence tool Grad-CAM, which revealed a significant discrepancy between

eyelid's geometric centroid and attention centroid from models with high

classification accuracy. This finding suggests that the conventional method of

selecting a region of interest based on the geometric centroid may need to be

adjusted. Using XAI can offer valuable insights into understanding the classification

and progression of active trachoma.
KEYWORDS

active trachoma, image classification, image segmentation, deep neural netwok,
Grad-CAM
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1 Introduction

Trachoma has been one of the most neglected tropical diseases

for decades (Solomon et al., 2022). Being an infectious disease of

blindness, trachoma causes a considerable impact on patients and

public health. Back in 2012, the World Health Organization

(WHO) released the Global Alliance program for the Elimination

of Trachoma with the objective to eliminate trachoma as a public

health problem in 66 countries by 2020. As of 2022, according to the

latest report, only 15 countries have been validated for trachoma

elimination as a public health problem (WHO, 2021; WHO, 2022).

Unfortunately, trachoma still remains a public health problem in

42 countries.

In the same report (WHO, 2021), the WHO emphasized that the

monitoring and evaluation of trachoma are still insufficient in many

countries. Trachoma is indeed a treatable disease—the primary

treatment is the use of antibiotics. Actually, the WHO had already

adopted the SAFE strategy against trachoma in 1993: Surgery to treat

the blinding stage, Antibiotics to clear the infection, and Facial

cleanliness and Environmental improvement to reduce transmission

(Solomon et al., 2006; WHO, 1993). However, unawareness of the

patients or resource limitations have often led to delays or denial of

access to essential surgical procedures and postoperative care,

ultimately resulting in severe cases of blindness. From a public

health view, it makes also the reduction of infection transmission

more challenging. So, efficient and cost-effective trachoma detection

becomes one of the top recommendations from the WHO.

Clinically, trachoma is caused by infection with Chlamydia

trachomatis (Dawson and Schachter, 2011). To fight against

trachoma, the WHO developed a grading system for trachoma

screening and population-level assessment back in 1987 (Thylefors

et al., 1987). This system allowed a simple yet efficient evaluation of

trachoma and has yielded significant benefits. It has been widely

used since its initial publication and was updated in 2020 (Solomon

et al., 2020). Five signs are defined in this system: 1) trachomatous

inflammation—follicular (TF), 2) trachomatous inflammation—

intense (TI), 3) trachomatous scarring (TS), 4) corneal opacity

(CO), and 5) trachomatous trichiasis (TT). They can be divided into

two main groups: active trachoma (TF, TI) and trachomatous

scarring (TS, CO, TT) (Solomon et al., 2022). These signs are

often considered as stages for simplicity, though this is not the

intended design. More than one sign could be present in an infected

eye, especially for TF and TI. Nevertheless, active trachoma may

lead to scarring or corneal opacity and further become inturned

eyelashes. Consequently, the timely identification of active

trachoma (TF, TI) assumes significant importance.

In recent years, significant advancements have occurred in the

field of computer vision, driven by the proliferation of deep neural

networks. The state-of-the-art (SOTA) networks have achieved

remarkable milestones in tasks related to image classification,

even reaching human-level performance. Notably, ResNet

(He et al., 2016), proposed in 2016, has become nowadays the

reference model for any image classification-related work, while

Xception (Chollet, 2017) stands as another robust model in image

classification. Some models even outperform clinical experts in

clinical image classification, for example, CheXNet (Rajpurkar
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et al., 2017). These breakthroughs have led to the exploration and

deployment of extensive image classification applications within

clinical settings. Regrettably, research into neglected diseases like

trachoma has received considerably less attention. A primary factor

may be the limited availability of data collected in countries afflicted

by trachoma. A recent survey (Naufal et al., 2022) indicates that the

majority of these studies have sample sizes of only a few hundred

images, with many having fewer than 100 images. This presents an

important challenge to develop sufficiently robust models for

trachoma classification.

Nevertheless, there are several notable studies on trachoma

classification. The study (Kim et al., 2019) in 2019 proposed to use

three blocs of double convolutional neural network (CNN) to

classify images into two groups (TF and TI). The 1,656 raw

images followed a common image preprocessing pipeline and

were finally cropped to 128 × 128 region-of-interest (ROI) images

which were then fed to the CNN model. In terms of performance,

the best models showed an accuracy of 0.70 for the TF class and 0.85

for the TI group which are above the hazard. Another interesting

study (Socia et al., 2022) focused on TF classification using the

ResNet101 model. The dataset contains 2,300 images with 5% TF

positive (115 images). Finally, a recent work (Yenegeta and Assabie,

2022) also studied trachoma image classification with a customized

CNN model. Unlike other studies on active trachoma, this study

investigated trachomatous scarring categories (TS, CO, TT). The

results are promising and reported an accuracy of 97.9%.

Despite these efforts on trachoma classification with deep neural

network (DNN) models, a discernible scope for enhancement in

performance remains extant. Indeed, the challenge of small sample

sizes is prevalent in numerous medical and clinical domains. An

effective strategy for addressing this concern involves leveraging

pretrained models that have been trained on vast datasets

comprising millions of natural images. These models exhibit a

broad understanding of image semantics, with nuances present in

medical images, such as those encountered in the context of

trachoma images. This strategy has not received much attention

in prior related studies.

This study is thus dedicated to the task of active trachoma

classification, representing the initial phase in diagnosing trachoma.

Rather than constructing and training a DNN from scratch, we

opted to adapt, retrain, and benchmark state-of-the-art pretrained

DNN models, harnessing their established knowledge and superior

capabilities. We also employed an explainable AI method to analyze

the obtained predictions.
2 Data and models

In this section, we introduce first the data and its associated

processing. Next, we present the models used in this work.
2.1 Data

As mentioned earlier, this work concentrated on classifying active

trachoma. This choice was made not only because it represents the
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initial stage of the disease but also because it presents a greater

classification challenge compared with images from the second

phase. This dataset comes from (Lietman et al., 2019), which was

discussed in the study (Kim et al., 2019) with a relatively small and

freshly trained CNNmodel. This dataset contains 1,019 control images

without any trachoma symptom, 365 TF images, 100 TI images, and

finally 162 images exposed to both TF and TI cases. Most images

(81.5%) are of large size (≥3,008 × 2,000 pixels). Only 18.5% of them
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have a smaller size but are still sufficient enough (1,024 × 680) as raw

input images. Sample images can be found in Figure 1, with three

images for each of the four groups (control, TF-only, TI-only, TF–TI).

However, as demonstrated in the example images, there are

several factors that could influence the classification performance of

the trained neural networks. These factors include fingers (wearing

gloves) on both sides, image rotation, or slight distortions in the

eye/eyelid caused by a doctor’s finger pressure. Consequently, one
Sample: neither TF nor TI Sample: neither TF nor TI Sample: neither TF nor TI

Sample: TF Sample: TF Sample: TF

Sample: TI Sample: TI Sample: TI

Sample: TF ,TI Sample: TF ,TI Sample: TF ,TI

FIGURE 1

Example images in four groups: control (neither TF nor TI); trachoma groups: TF-only, TI-only, and those that are labeled both TF and TI. Data/
image under General Public License GPL 3.0+.
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common preprocessing step is to perform segmentation in order to

extract only eyelid images.
2.2 Eyelid segmentation with SAM
and preprocessing

Eyelid segmentation is an essential part of the eye/iris image

processing pipeline. Common conventional methods for this task

rely on image processing techniques, such as (skin) color

classification (Phung et al., 2005) which is used in (Kim et al.,

2019) or wavelet transform (Aligholizadeh et al., 2011). While

effective in smaller datasets, these methods often fail when dealing

with larger or more heterogeneous datasets, requiring extensive

manual tuning efforts. Consequently, the field has shifted toward

machine learning-based approaches like CNNs (Fuhl et al., 2019b)

or more recent ones like generative adversarial networks (GANs)

(Fuhl et al., 2019a). These models have proven to be much more

robust and useful. In 2023, Meta introduced their latest image

segmentation model—the Segment Anything Model (SAM)

(Kirillov et al., 2023). SAM was trained with over 1 billion masks

on 11 million high-resolution images, which makes it by far the most

powerful model for image- and vision-related tasks. In this work, we

leverage SAM for eyelid segmentation.

Three SAM models have been released (base, large, and high).

The default and largest SAM (checkpoint sam_vit_h_4b8939.pth,

Python 3.10, PyTorch 2.0.0, Nvidia GeForce GTX 1080 Ti) is

used here.
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The raw images contain various unrelated objects, such as

gloved fingers and skin. Eyelid orientations exhibit significant

variation. Nevertheless, as shown in Figure 2, SAM is able to

generate considerably cleaner and semantically more meaningful

masks than those used in prior studies.

The final cleaned images are obtained after completing the

entire preprocessing pipeline (Figure 2), which includes

segmentation, artifact removal, centering, and rotation. It is

possible to use larger ROI image sizes, but increasing the input

size will increase the number of parameters in the models

considerably. Given the smallest image size and the capabilities of

deep learning models, the dimensions of the ROI images are set to

700 × 300 pixels.
2.3 Models

2.3.1 Model architectures and experiment design
The choice of model in image classification may depend on

many factors. Except for very specific datasets or image types, it is

preferable to start with the SOTA models that are well-established

and have been proven by millions of applications. Two common

SOTA models for the image classification task are ResNet (He et al.,

2016) and Xception (Chollet, 2017) as mentioned in the

Introduction section. Modern neural network architectures are

generally designed to provide scalable usage for data structures

and problem complexity (Figure 3). Variants of the ResNet

include ResNet18, ResNet50, ResNet101, and others, which
Sample 1: TF , raw image masks generated fromSAM overlay of raw image and SAM masks

segmented ROI

Sample 2: TF ,TI, raw image masks generated fromSAM overlay of raw image and SAM masks

segmented ROI

Sample 3: TI, raw image masks generated fromSAM overlay of raw image and SAM masks

segmented ROI

FIGURE 2

Demonstration of segmentation pipeline with the Segment Anything Model. Left column, raw images; middle columns, segmentation masks
generated by SAM (with false colors) and overlay with raw images; right column, final eyelid images after cropping and rotation.
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correspond to architectures with 18, 50, and 101 convolutional

layers, respectively. Our primary model architecture is ResNet.

Considering the relatively small size of the dataset, only ResNet18

and ResNet50 are used in this work. To further investigate the

capacities of the pretrained models, we conducted also an analysis

with the Xception model, which has a similar architecture size to

that of ResNet50.

The analysis of trachoma classification here is divided into three

cases (Table 1):
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1. Since our objective is to investigate the capabilities of

pretrained models, it is necessary to establish a reference.

The first case involves models trained from scratch. Default

configuration from models like ResNet and Xception has

fixed input image sizes (224 × 224, 299 × 299). Using input

dimensions other than these default sizes requires adapting

the input layer accordingly.

2. In the second case, we adapt and retrain the pretrained

models on resized images without any artifact removal.
TABLE 1 Model configuration of the eight experiments, divided into three cases: 1) training from scratch and 2) retraining with pretrained models on
raw images and 3) on ROI-focused images.

Case Architecture Training strategy Image type Input size Nb parameters

1. ResNet50 Fresh training Raw 224 × 224 25.5M

ResNet50 Fresh training Eyelid ROI 700 × 300 23.5M

ResNet18 Fresh training Eyelid ROI 700 × 300 11.1M

2. ResNet50 Pretrained Raw 224 × 224 25.5M

Xception Pretrained Raw 299 × 299 22.9M

3. ResNet50 pretrained Glove-masked 224 × 224 25.5M

Xception Pretrained Glove-masked 299 × 299 22.9M

ResNet50 Pretrained Eyelid ROI 224 × 224 25.5M

Xception Pretrained Eyelid ROI 299 × 299 22.9M
Input size unit: width × height by pixels; number of parameters unit in millions.
FIGURE 3

Scalable model architectures of ResNet18 (upper, input size 700 × 300) and Xception (lower, input size 299 × 299 pixels). Generated with
Visualkeras (Gavrikov, 2020).
frontiersin.org

https://doi.org/10.3389/fbrio.2024.1333641
https://www.frontiersin.org/journals/bacteriology
https://www.frontiersin.org


Pan et al. 10.3389/fbrio.2024.1333641

Fron
This case would show us the out-of-box performances of

the studied pretrained models.

3. The last case is conducted on cleaned ROI-only images. As

gloves in the images are the most unrelated objects, we also

evaluated model performances on images with gloves

removal only (all the other objects are kept).
2.3.2 Training options and statistical analysis
Due to the fact that TF and TI can co-exist, the active trachoma

classification becomes a multilabel classification problem. So, all the

models’ last activation is set to sigmoid instead of the default

softmax. The training options are consistent across all models:

stochastic gradient descent with momentum (SGD) optimizer, a

learning rate of 0.0005, a batch size of 32, and a maximum of 50

epochs for training. For each run, the dataset is randomly stratified

into three sets (training 70%, validation 15%, and test 15%) based

on the control/TF/TI ratio.

One common statistical approach to evaluate the model

performances is based on k-fold cross-validation. The challenge of

k-fold validation is, in the case of relatively small datasets, each fold

in k-fold cross-validation might not contain enough data to

ensure that the model can learn effectively. This can lead to high
tiers in Bacteriology 06
variance in model performance across different folds, making it

difficult to reliably assess the model’s performance. To address this

issue, another commonly used approach is to randomly split the

data into training, validation, and test sets ensuring that the

model has a consistent amount of data to learn from during

training. This can be more stable than k-fold cross-validation in

scenarios where data are limited. In this work, we opt for this

approach. Ten runs were conducted for each model to reduce the

potential overfitting problem and to ensure meaningful and robust

conclusions. Regarding the evaluation metrics, we report the

common metrics for image classification: sensitivity (Sen),

specificity (Spe), accuracy (Acc), F1 score (F1), and area under

the curve (AUC).

All experiments are run under MATLAB and on the

same workstation as for the segmentation task with Xeon E5-

2697 V3, 128G RAM, and on a GPU of Nvidia GeForce GTX

1080 Ti.
3 Results

The eyelid exhibits an elliptical shape, which can be quantified

using various geometric measurements. These measurements
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FIGURE 4

Basic common metrics for ROI eyelid segmented with SAM: eccentricity, circularity, solidarity, extent, and orientation.
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include eccentricity, circularity, solidity, extent, and orientation.

Many of these measurements demonstrate similarity across

different groups (Figure 4). However, unlike other medical

imagery, the images of eyelids are far from standardized. One of

the most influential factors is the manner in which the doctor

manipulates the eyelid, whether through pushing or not. In

numerous cases, the eyelid may be subject to deformations. This

would also confirm that this type of measurements cannot be used

as features for classification.

In the following sections, we present only the results based on

the test dataset. We assess our performance using two reference

metrics. The first metric leverages the best accuracy achieved in the

work (Kim et al., 2019), yielding the following highest values: TF

class, 0.72; TI class, 0.85. The second metric involves accuracy

through random selection, which signifies the ratio of TF and TI

within the dataset (0.6818 and 0.8357, respectively). Any

performance above the random baseline value indicates that the

model is capable of extracting relevant group features from the

images. In the three results figures (Figures 5-7), only the median

values of the 10 runs for each epoch are shown.
3.1 Classification with the baseline models

For the baseline models (Figure 5), while they all outperformed

random selection, their performance can only be described as

modest. In both classes (TF and TI), ResNet18 exhibited higher

accuracy compared with the best models from (Kim et al., 2019). On

the contrary, ResNet50 and Xception underperformed in this

context, with their accuracy consistently hovering around the

random baseline. The primary reason for this disparity is that

ResNet50 and Xception have a significantly larger number of

parameters, requiring a more extensive dataset for effective

training. ResNet18, in contrast, has less than half the number of

parameters, making it more amenable to learning.
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3.2 Classification with retraining of the
pretrained models: raw images

The second experiment aims to assess the ability of pretrained

models to classify these complex images (Figure 6). All images are

just resized to 224 × 224 or 299 × 299 without any other processing.

This time, the retrained ResNet50 and Xception demonstrated a

very interesting performance. The median accuracy for the TF class

increased from 0.72 to 0.80 (ResNet50) and 0.83 (Xception),

marking an improvement of 8%–11%. The better performance of

Xception can be attributed to its larger input image size, allowing it

to capture and retain more information from the raw images. As for

the TI class, both models achieved a similar median accuracy of 0.9

which is 5% higher than the previous work.
3.3 Classification with retraining of the
pretrained models: ROI-focused

In this final experiment, our primary focus was on ROI-only

images. To provide a comparative analysis, we also conducted a test

using the ResNet50 model on images that had undergone glove

masking. As shown in Figure 7, in terms of TF classification, when

compared with the test on unaltered raw images, the removal of gloves

did not yield any performance improvement with the ResNet50

model. In fact, it exhibited a slight decrease of approximately 1.5%

compared with the previous scenario. However, when the ResNet50

model was trained on ROI images, its performance exhibited a

remarkable increase of 3%, resulting in an accuracy rate of 83%.

Regarding TensorFlow image (TI) classification, the ResNet50 model

performed even more impressively than in the previous case,

achieving an accuracy increase of 1%. On the contrary, the Xception

model showed a contrasting behavior. In TF classification, its accuracy

decreased by 1.5%, while in TI classification, it remained relatively

unchanged with a similar accuracy of 0.9.
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FIGURE 5

Median accuracy on the test dataset from 10 runs each with independent random train–validation–test splits on resized raw images or ROI eyelid
images. Tested with the three models trained from scratch (ResNet18 and ResNet50).
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The overall performance metrics for all models can be found in

Tables 2, 3. It is important to note that, while the top-performing

models often suggest a higher likelihood of randomness,

particularly when dealing with a small sample size during training

or evaluation (even on an independent test dataset), their metrics

are reported here only for recordkeeping purposes rather than being

the basis for final evaluation. The median performance metrics are

those in the median category.

Our results showed that ResNet50 exhibited the best

performance in classifying TF, with an overall median accuracy of

0.8273 and an AUC of 0.8939. This represents a substantial

improvement of 15% compared with the random reference

accuracy of 0.6818 and a 10.7% enhancement over the accuracy

reported in the previous study (0.72). A similar conclusion can be
Frontiers in Bacteriology 08
drawn for the performance in classifying TI, where ResNet50

emerged as the clear winner.

Upon retraining the ResNet50 model using either glove-

removed images or cleaned eyelid ROI images, it achieved an

accuracy of 0.90 to 0.91 on the test dataset, which is

approximately 5% to 6% higher than the referenced model’s

performance. Notably, the metrics in the new training setting

exhibit a better balance across various metrics, including

sensitivity, specificity, and accuracy. In contrast, the referenced

work indicated a substantial disparity between specificity and

sensitivity (0.58 vs. 0.86 and 0.72 vs. 0.96), indicating a higher

rate of false-positive predictions. The choice between sensitivity and

specificity should be context-specific and aligned with the specific

requirements or applications of the model.
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FIGURE 7

Median accuracy on the test dataset from 10 runs each with independent random train–validation–test splits. Tested with the four models
(ResNet50 and Xception) retrained with weights from ImageNet on segmented images: glove-masked and ROI eyelid-only images.
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FIGURE 6

Median accuracy on the test dataset from 10 runs each with independent random train–validation–test splits. Tested with the two models (ResNet50
and Xception) retrained with weights from ImageNet on resized (and zero-padded) raw images.
frontiersin.org

https://doi.org/10.3389/fbrio.2024.1333641
https://www.frontiersin.org/journals/bacteriology
https://www.frontiersin.org


Pan et al. 10.3389/fbrio.2024.1333641
3.4 Explainable AI analysis on the
trained model

The new models showed improved performance for both TF

and TI classes. One important reason is that the pretrained models

were built upon millions of real-world images. This extensive

exposure allows these models to gain comprehensive semantic

information about the world. The prior knowledge helped the

models to better understand and analyze the new unseen

trachoma images. Nevertheless, it remains imperative to
Frontiers in Bacteriology 09
investigate the mechanisms that enable these models to make

more informed decisions. This inquiry is particularly pertinent in

the context of prognostic decision-making with medical images,

where explainable artificial intelligence (XAI) could help make the

whole process more transparent and trustworthy.

For models incorporating CNN layers, Grad-CAM stands out

as one of the most frequently employed techniques in the field of

XAI. This method serves the essential function of producing an

activation map, thereby facilitating the identification of the specific

region within an image that exerts the most substantial influence on
TABLE 3 Performances of the models on the test dataset for TI class (median or max values): sensitivity, specificity, accuracy, F1 score, and AUC.

Sen Spe Acc F1 AUC Sen Spe Acc F1 AUC

Median Best models

ResNet50_fresh_raw 0.5909 0.8734 0.8474 0.3937 0.8025 1.0000 0.9486 0.8996 0.6667 0.9020

ResNet18_fresh_roi 0.6500 0.9028 0.8715 0.5455 0.8751 0.9231 0.9541 0.9157 0.7143 0.9307

ResNet50_fresh_roi 0.5000 0.8778 0.8353 0.4063 0.7678 1.0000 0.9412 0.8795 0.6173 0.8579

ResNet50_pretrain 0.7500 0.9220 0.8996 0.6579 0.9164 0.9231 0.9559 0.9277 0.7750 0.9471

Xception_pretrain 0.7429 0.9282 0.8996 0.6753 0.9067 0.8846 0.9439 0.9317 0.7671 0.9505

ResNet50_pretrain_w/out glove 0.7778 0.9343 0.9116 0.7013 0.9323 0.9310 0.9792 0.9357 0.7714 0.9651

Xception_pretrain_w/out_glove 0.7333 0.9180 0.8956 0.6479 0.9312 0.8929 0.9557 0.9237 0.7368 0.9502

ResNet50_pretrain, eyelid 0.7500 0.9266 0.9036 0.6842 0.9298 0.9429 0.9751 0.9598 0.8684 0.9767

Xception_pretrain, eyelid 0.7333 0.9180 0.8956 0.6479 0.9312 0.8929 0.9557 0.9237 0.7368 0.9502

Reference random 0.8357

Best model Ensemble of top 3

Reference (Kim et al., 2019) 0.98 0.72 0.85 – – 0.96 0.74 0.85 – –
fro
The maximum values are highlighted in bold.
TABLE 2 Performances of the models on the test dataset for TF class (median or max values): sensitivity, specificity, accuracy, F1 score, and AUC.

Sen Spe Acc F1 AUC Sen Spe Acc F1 AUC

Median Best models

ResNet50_fresh_raw 0.5167 0.7558 0.6908 0.4762 0.7238 1.0000 0.8977 0.7590 0.6474 0.8002

ResNet18_fresh_roi 0.6000 0.7937 0.7390 0.5657 0.7888 0.8000 0.9060 0.8072 0.7073 0.8552

ResNet50_fresh_roi 0.5085 0.7473 0.6867 0.4526 0.7029 1.0000 0.9231 0.7510 0.6465 0.7724

ResNet50_pretrain 0.7123 0.8380 0.7992 0.6711 0.8499 0.8000 0.8947 0.8594 0.7771 0.9017

Xception_pretrain 0.7467 0.8531 0.8233 0.7083 0.8679 0.8182 0.8800 0.8594 0.7651 0.8952

ResNet50_pretrain_w/out glove 0.6790 0.8296 0.7871 0.6452 0.8457 0.8393 0.9038 0.8394 0.7442 0.8745

Xception_pretrain_w/out_glove 0.6800 0.8329 0.7912 0.6526 0.8252 0.7671 0.8889 0.8394 0.7368 0.8955

ResNet50_pretrain, eyelid 0.7434 0.8663 0.8273 0.7249 0.8939 0.9048 0.9191 0.8996 0.8387 0.9459

Xception_pretrain, eyelid 0.6800 0.8329 0.7912 0.6526 0.8252 0.7671 0.8889 0.8394 0.7368 0.8955

Reference random 0.6818

Best model Ensemble of top 3

Reference (Kim et al., 2019) 0.92 0.48 0.70 – – 0.86 0.58 0.72 – –
The maximum values are highlighted in bold.
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a neural network’s predictive outcome. The utility of Grad-CAM

can extend beyond mere predictive accuracy; it offers valuable

insights into the identification of key regions within an eyelid

image that hold the potential to be discriminative in active

trachoma classification. Furthermore, this information may prove

to be instrumental in guiding treatment strategies, enhancing the

overall clinical decision-making process.
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We chose the ResNet50 model trained on eyelid ROI images as

reference. In the work (Kim et al., 2019), the ROI images of size 128

× 128 were typically extracted from the geometric centroid of the

eyelid. Figure 8 illustrates the overlay of the geometrically centered

eyelids for the TF and TI images, with the white regions

representing their locations. The first row showed the geometric

centroids, which are predominantly situated near the center of the

image, forming a closely knit cluster. The second row presents,

however, the centroids of the activation map obtained with Grad-

CAM. Notably, the attention centers of the ResNet50 model on all

the images differ significantly, encompassing nearly one-third of the

entire eyelid space. The median distances between the geometric

centroid and the attention centroid are approximately 9% of the

eyelid’s width (20 pixels for an eyelid of width 224 pixels, as shown

in Figure 9). The upper bound of discrepancy can go up to 45–60

pixels, representing 20%–27% of the eyelid’s width. This

discrepancy in attention focus, especially in the context of the

model’s high classification accuracy, raises questions about the

suitability of the conventional geometric centroid ROI as a

discriminator. Limiting the analysis to a small ROI region might

result in a loss of essential contextual information, potentially

leading to decreased classification performance. This discrepancy

could offer insights into the relatively modest results observed in

prior research.
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FIGURE 9

Distance between geometric centroids and maxima location from
activation maps by Grad-CAM (as shown in Figure 8).
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FIGURE 8

Locations of geometric centroids in ROI images and the centroids from the activation map obtained with the method Grad-CAM on training data,
model: {ResNet50 pretrain, eyelid}; image size: 224 × 224.
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4 Discussion and conclusion

Retraining pre-existing state-of-the-art models, such as

ResNet50, has demonstrated a significant improvement in

performance for image classification tasks. In the context of

classifying active trachoma, it has been observed that test

accuracy can increase by approximately 6% to 12% when

compared with the use of custom-built models on the same

dataset. Indeed, the choice of the model strategy depends on

several factors, including the possibility of employing a

customized basic CNN model. However, a more productive

approach involves giving preference to these state-of-the-art

models and harnessing their comprehensive semantic knowledge

derived from millions of images. Recent advances in deep learning

frameworks, such as TensorFlow Lite, now facilitate the deployment

of ResNet50-like models on mobile phones (Android, iOS) or edge

computing devices (Arduino, Raspberry Pi) while maintaining a

good balance between power consumption and performance.

Despite the fact that these pretrained models achieved better

performance, there are still limitations to consider and room for

further improvements. These models are retrained on a relatively

small dataset, despite it being the largest publicly available dataset

for this task. In this study, we adopted a training strategy involving

10 independent random triple splits (train, validation, test) to

mitigate the risk of overfitting, yet this may still limit

generalizability. To build more robust classification models, more

data are required. This challenge mirrors the broader difficulties

faced in the fight against trachoma, as the public health data

collection and sharing networks in countries where trachoma

remains a public health concern are not yet well-established.

Another finding of this study pertains to the conventional

geometric centroid-based ROI selection, which generated less

distinctive feature images. The activation maps generated by

Grad-CAM revealed a significant discrepancy between the

geometric centroid and the activation centroid. This indicates that

more sophisticated techniques or engineering in ROI selection may

be necessary. Such advancements would necessitate collaboration

with clinical experts and subsequent validation, which is a topic for

future research. More advanced techniques from XAI could also

confirm and refine the findings by Grad-CAM so that the results

will be more interpretable. As more data become available, the

trained models will become more robust. Furthermore, XAI

techniques applied to these new models have the potential to

yield a better understanding of trachoma and provide more

informative clinical feedback.
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The WHO has set a new objective to eliminate trachoma as a

public health problem by 2030. Many challenges remain to be

solved. Nevertheless, through the global collaboration and

advancement of artificial intelligence, there is a strong likelihood

that this objective can be achieved by 2030.
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