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Escherichia coli is found in diverse environmental niches, including meat and

meat products, and is known for its significance in both food safety and public

health. In South Africa, whole genomic sequencing (WGS) efforts for E. coli are

overwhelmingly skewed toward human isolates with limited studies conducted

on non-human isolates. Therefore, the aim of this study was to use WGS to

characterise generic strains of E. coli isolated from animal specimens, meat, and

meat-based products in South Africa. Based on WGS analysis, a total of 35 E. coli

strains were grouped into five phylogroups (A, B1, B2, C, and E), with A (46%)

being the most predominant. Virulence-associated genes identified the isolates

as either extra-intestinal pathogenic E. coli (69%) or intestinal pathogenic E. coli

(31%) pathotypes. Twenty-three different serotypes were identified, with O101:

H37 (17%), O2:H4 (17%), O6:H5 (13%), and O64:H19 (9%) being the predominant

ones. Among the 19 different sequence types (STs), ST1858, ST975, and ST10

were the most prevalent (11% each). Various virulence genes, antimicrobial

resistance genes, and genetic mobile elements carrying Tn2, IS26, and Tn6196

elements were detected, with the disinfectant resistance sitABCD being the most

predominant. The type 1 CRISPR system which functions by storing records of

previous invasions to provide immunological memory for a rapid and robust

response upon subsequent viral infections was detected in all isolates, consisting

of subtypes I-E (86%), I-A (57%), and I-F (11%). The findings of this study provide

an insight into the genetic diversity of generic E. coli isolates from animal species,

meat, and meat-based products in South Africa.
KEYWORDS
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Introduction

Food-producing animal slaughter establishments and processors

test for E. coli Biotype I (generic E. coli) to verify the effectiveness of

their process controls and sanitation practices. Faecal contamination,

one of the primary sources of pathogenic and non-pathogenic

organisms that contaminate animal protein foods, is commonly

indicated by generic E. coli (Gekenidis et al., 2018). This bacterium

is prevalent since it inhabits the gastrointestinal tract of humans and

warm-blooded animals (Murphy et al., 2021). The performance

criteria for generic E. coli are not enforceable, as the bacteria

numbers simply represent microbial loads used to monitor and

verify whether the slaughter and/or production process was

adequately controlled. These criteria provide guidance to livestock

slaughter establishments on the effectiveness of their processes in

preventing faecal contamination. Test results serve as evidence that

the slaughter or production maintained sufficient process controls for

hygienic dressing. E. coli is ubiquitous, inhabiting diverse

environments such as water sources, animals, and food (Lupindu,

2017; Galindo-Méndez, 2020). However, the characterisation of

generic E. coli and its potential pathogenicity to humans is often

overlooked, despite E. coli being a significant cause of serious diseases

in humans and animals.

In sub-Saharan Africa, E. coli diarrheal infections represent a

significant public health challenge, with a high incidence attributed

to factors such as limited access to clean water, sanitation and

inadequate hygiene (Robert et al., 2021). E. coli strains causing

intestinal infections are known as intestinal pathogenic E. coli

(InPEC), while those responsible for extraintestinal infections are

termed extraintestinal pathogenic E. coli (ExPEC). These infections

encompass various pathotypes, each characterised by specific traits

(Johnson and Russo, 2002; Meena et al., 2021, 2023). InPEC is

linked to pathotypes such as enterotoxigenic E. coli (ETEC),

enteropathogenic E. coli (EPEC), enteroaggregative E. coli

(EAEC), shiga toxin-producing E. coli (STEC), diffusely adherent

E. coli (DAEC), adherent-invasive E. coli (AIEC), and

enteroinvasive E. coli (EIEC). ExPEC infections are associated

with pathotypes such as avian pathogenic E. coli (APEC),

uropathogenic E. coli (UPEC), neonatal meningitis E. coli

(NMEC), and sepsis-associated E. coli (SEPEC), primarily

affecting humans (Martinez-Medina, 2021; Abdulabbas et al., 2023).

There is a compelling need to closely monitor the spread of E.

coli in animals and food derived from animal sources (Ramos et al.,

2020). Furthermore, there’s a growing apprehension regarding the

potential for E. coli to acquire antimicrobial resistance (AMR) traits

within livestock environments. This evolution could not only

complicate but also escalate the cost of treating infections in both

humans and animals (Palma et al., 2020). Such antimicrobial

resistance poses a significant public health concern, as it reduces

the effectiveness of antibiotics, thereby limiting treatment options

and potentially increasing the severity and duration of illnesses

caused by E. coli infections.

Studies have increasingly highlighted the intriguing link between

the virulence of E. coli strains and their Clustered Regularly

Interspaced Short Palindromic Repeats (CRISPR-Cas) systems.

CRISPR-Cas systems, originally identified as adaptive immune
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mechanisms in bacteria and archaea, play a crucial role in

defending against foreign genetic elements such as bacteriophages

and plasmids (Koonin et al., 2017; Murugan et al., 2017). Several

studies have suggested that certain E. coli strains with more robust

CRISPR-Cas systems may exhibit decreased virulence due to their

enhanced ability to fend off invading genetic elements (Garcıá-

Gutiérrez et al., 2015). Conversely, strains with compromised or

less effective CRISPR-Cas systems might be associated with higher

virulence as they struggle to combat invasive genetic elements,

potentially including virulence factors (Louwen et al., 2014).

Furthermore, the interplay between CRISPR and virulence in E.

coli is complex and multifaceted. It involves various factors such as

the specific composition and activity of CRISPR systems, the presence

of virulence genes, and the environmental context in which the

bacteria reside. Understanding this interrelationship can offer

insights into the evolution of E. coli pathogenicity and potentially

inform strategies for combating E. coli-related infections (Kang and

Lee, 2022).

Cases and outbreaks of E. coli in both animals and humans are

well-documented in South Africa (Gambushe et al., 2022; Khabo-

Mmekoa et al., 2022; Manyi-Loh and Lues, 2023). However, the

primary focus of whole-genome sequencing (WGS) endeavours has

predominantly targeted human clinical strains associated with

outbreaks (Muloi et al., 2018; Massella et al., 2020). Additionally,

attention has been devoted to analysing environmental samples

(Igwaran et al., 2018; Bolukaoto et al., 2021). Nonetheless, genomic

data regarding the complete diversity of E. coli colonising food and

animals, their array of antimicrobial resistance genes (ARGs),

associated mobile genetic elements (MGEs), virulence-associated

genes (VAGs), and the possible presence of ExPEC is lacking in

South Africa. This study utilised WGS to analyse 35 E. coli isolates

collected from animals, meat, and meat products in South Africa in

order to highlight the significance and requirement of such studies

within South Africa over extended period of time, few of these

samples are international samples which were collected from ports

of entry in South Africa.
Materials and methods

Isolate selection

The isolates utilised in this study were obtained from samples

processed between 1988 and 2018 at the Bacteriology Laboratory of

the Onderstepoort Veterinary Research Institute in South Africa, as

part of their routine diagnostic testing. Hence, for this research, a

selection of 35 E. coli isolates was made, encompassing diverse

geographical regions within the country (Gauteng, Free State,

North-West, Limpopo, and Mpumalanga), as well as international

locales, different isolation sources (animal, meat and meat products

such as a traditional sausage called wors), and a range of animal

species (poultry, porcine, bovine and ovine) (Table 1), a water

sample was included in this analysis in order to trace the source of

E. coli contamination. These international samples are isolates from

imported meat samples intended for local consumption. The

isolates were stored in lyophilised form and then reconstituted by
frontiersin.org
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TABLE 1 E. coli isolates sequenced in this study (n = 35) and their corresponding metadata.

SAMPLE
NO.

ACCESSION
NO.

GEOGRAPHIC
LOCATION

REGION
SAMPLE
TYPE

SOURCE
OF ISOLATION

ANIMAL
SPP

SAMPLING
YEAR

S1
SAMN41920844 South Africa

North West Beef & Pork Wors
Processed meat Bovine

& Porcine
2016

S2 SAMN41920845 North America Canada Turkey drumstick Raw poultry Poultry 2016

S3 SAMN41920846 South Africa Mpumalanga Chicken drumstick Raw poultry Poultry 2016

S4 SAMN41920847 Netherlands Holland Chicken leg quarter Raw poultry Poultry 2016

S5 SAMN41920848 South Africa Free State Chicken wings Raw poultry Poultry 2016

S6 SAMN41920849 South Africa Free State Chicken drumstick Raw poultry Poultry 2016

S7 SAMN41920850 South Africa Free State Chicken fillet Raw poultry Poultry 2016

S8 SAMN41920851 South Africa Free State Chicken leg quarter Raw poultry Poultry 2016

S9 SAMN41920852 South Africa Free State Chicken drumstick Raw poultry Poultry 2016

S10 SAMN41920853 South Africa Free State Chicken wings Raw poultry Poultry 2016

S11 SAMN41920854 South Africa Free State Chicken drumstick Raw poultry Poultry 2016

S12 SAMN41920855 South Africa Free State Pork wors Processed pork Porcine 2016

S13 SAMN41920856 South Africa Free State Lamb leash Raw lamb Ovine 2016

S14 SAMN41920857 South Africa Free State Pork shoulder Raw pork Porcine 2016

S15 SAMN41920858 South Africa Free State Pork chops Raw pork Porcine 2016

S17
SAMN41920859 South Africa

North West
Chicken drumstick

& wings
Raw poultry Poultry

2016

S18 SAMN41920860 South Africa Free State Chicken thigh Raw poultry Poultry 2016

S19 SAMN41920861 South Africa Gauteng Animal faeces Digestive system Porcine 1988

S20 SAMN41920862 South Africa Gauteng Beef mince Processed beef Bovine 2018

S21 SAMN41920863 South Africa Gauteng Animal faeces Digestive system Ovine 1992

S22 SAMN41920864 South Africa Gauteng Animal faeces Digestive system Porcine 1998

S23 SAMN41920865 South Africa Gauteng Animal faeces Digestive system Unknown 1988

S24 SAMN41920866 South Africa Free State Beef wors Processed beef Bovine 2018

S25 SAMN41920867 South Africa Gauteng Animal faeces Digestive system Unknown 1998

S26 SAMN41920868 South Africa Gauteng Animal faeces Digestive system Porcine 1976

S27 SAMN41920869 South Africa Gauteng Animal faeces Digestive system Unknown 1988

S28 SAMN41920870 Europe Belgium Chicken leg quarter Raw poultry Poultry 2018

S29 SAMN41920871 South Africa Gauteng Animal faeces Digestive system Porcine 1988

S30 SAMN41920872 South Africa Gauteng Animal faeces Digestive system Unknown 1992

S32 SAMN41920873 South Africa Gauteng Animal faeces Digestive system Porcine 1988

S33 SAMN41920874 South Africa Gauteng Animal faeces Digestive system Unknown 2003

S34 SAMN41920875 South Africa Gauteng Animal faeces Digestive system Porcine 1996

S35 SAMN41920876 South Africa Gauteng Water Water N/A 2004

S36 SAMN41920877 South Africa Limpopo Beef biltong RTE beef Bovine 2018

S37 SAMN41920878 South Africa Gauteng Animal faeces Digestive system Unknown 1992
F
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inoculating them into brain heart infusion (BHI) broth, followed by

an incubation period at 37°C for 18 to 24 hours.
Genomic DNA extraction and
whole-genome sequencing

Genomic DNA was extracted from overnight cultures using the

High Pure PCR template preparation kit (Roche, Germany) in

accordance with the manufacturer’s instructions. Purity and

concentration of the DNA were assessed using a Nanodrop 1000

spectrophotometer. Subsequently, WGS was performed at the

Biotechnology Platform Agricultural Research Council,

Onderstepoort, South Africa using a HiSeq 2500 instrument

(Illumina, San Diego, CA, USA). The construction of DNA

libraries was accomplished using TruSeq DNA library preparation

kits (Illumina, San Diego, CA, USA).
Data pre-processing, quality control

The raw read quality was assessed with FastQC v.0.11.9

(Andrews, 2010) and the adapters and low-quality reads were

trimmed using Trimmomatic v.0.39 (Bolger et al., 2014). SPAdes

(v3.15.3) was used for assembly of each isolate (Prjibelski et al.,

2020) and assembly quality was analysed using Quast v4.4

(Gurevich et al., 2013). Genome quality along with contamination

levels were assessed using CheckM v1.0.18 (Parks et al., 2015). The

isolates were annotated using Prokka v1.13.7 (Seemann, 2014). To

determine the strains taxonomic classification, a portion of the

complete nucleotide sequences assemblies in this study were aligned

using the Basic local alignment tool (BLASTN) against the

nucleotide sequences on the NCBI database. Isolate with a

percentage identity of >90% to E. coli on the NCBI database were

accepted (Peker et al., 2019).
Detection of phylogroups, serotypes
and pathotypes

Clermont quadruplex phylo-group assignment technique was

employed to determine E. coli phylogroups. Fasta files containing

E. coli contigs were uploaded on the Clermont Typing website

(http://clermontyping.iame-research.center/) and sequences were

analysed using the default settings (Clermont et al., 2019).

The assembled genomes of E. coli isolates were used to perform

in silico serotyping of the O and H antigens, employing

SerotypeFinder gene database hosted at the Center for Genomic

Epidemiology (CGE), accessible at https://cge.food.dtu.dk/services/

SerotypeFinder/. Specifically, for the O antigen, the database

analysed the wzx, wzy, wzm, and wzt genes, while for flagellin H-

antigen, it processed the fliC, flkA, flmA, flnA, and fllA genes

(Joensen et al., 2014). The analysis was conducted with the

default parameters specified on the website, including a minimum

sequence length of 60% and a threshold of 85%.
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Escherichia coli pathotypes in this study were classified based on

their virulence factor characteristics as seen in literature (Robins-

Browne et al., 2016; Jesser and Levy, 2020; Riley, 2020; Enciso-

Martıńez et al., 2022; Geurtsen et al., 2022) with isolates classified

as either intestinal-pathogenic E. coli (InPEC) or extraintestinal E. coli

(ExPEC) (Supplementary Material Table S1). Each isolate’s virulence

characteristics were analysed and assigned a pathotype based on the

presence of the target gene. Identification was based on a combination

of the main virulence factor genes which are capable of causing disease

and these included genes responsible for attachment, production of

toxins or hemolysis. In order to classify InPEC according to the

corresponding pathotype, ETEC must contain either LT or ST

enterotoxin, STEC must contain any stx gene and the EPEC must

contain the intimin eae. On the ExPEC classification, the UPEC,

APEC and NMEC pathotype assignment depends on presence of any

of the two target genes listed on Supplementary Table S1.
Multi-locus sequence typing

Sequence types were identified through multi-locus sequence

typing (MLST) using version 2.0 of the CGE tool, which is accessible

at https://cge.food.dtu.dk/services/MLST/. On the CGE tool, select

the MLST configuration (Escherichia coli #1), select the minimum

depth for allele of 5X, input the assembled genomes (Larsen et al.,

2012). Retrieve and analyse the results based on the sequence types

identified, confidence scores as well the allele profiles.
Determination of virulence factors

As part of the publicly accessible web-based tools forWGS analysis

offered by the CGE, virulence factors within this study were determined

using this web-based platform. The assembled genomes of E. coli

isolates were submitted on the VirulenceFinder database (https://

cge.cbs.dtu.dk/services/VirulenceFinder/) to detect virulence genes,

E. coli species was selected, a threshold of over 90% identity with a

minimum length of 60% was selected and assembled genomes were

analysed (Joensen et al., 2014). In order to select significant genes

which, encode virulence for InPEC and ExPEC, Chapman et al.

(2006) and Badi et al. (2018) were used as a reference guide to select

specific genes (Supplementary Data Table S1).
Determination of human-
associated pathogenicity

The isolates underwent analysis using PathogenFinder v. 1.1

(https://cge.food.dtu.dk/services/PathogenFinder/) to assess their

potential human-associated pathogenicity. Assembled genomes

were uploaded, and the phylum selection included all the classes

of bacteria that can be detectable by the system. The system predicts

the number of pathogenic and non-pathogenic bacterial families

(Cosentino et al., 2013).
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Detection of CRISPR-associated
genes (Cas)

The presence and characteristics of a cluster of regularly spaced

short palindromic repeats (CRISPR) were determined using the

CRISPRone online tool (https://omics.informatics.indiana.edu/

CRISPRone/). This tool allows searching for CRISPR-Cas system

genes and proteins, as well as class types and subtypes of the system.

It also returns the number of loci, length, and nucleotide sequences

of repeat spacers (Zhang and Ye, 2017).
Detection of resistance genes, plasmids
and mobile genetic elements

Resistance genes as well antibiotic phenotypes were obtained

from ResFinder v4.1 (https://cge.food.dtu.dk/services/ResFinder/).

Plasmid-associated genes and mobile genetic elements genes were

obtained from PlasmidFinder v2.1 (https://cge.food.dtu.dk/services/

PlasmidFinder/ and MobileElementFinder v1.0.3 (https://

cge.food.dtu.dk/services/MobileElementFinder/), respectively.

Plasmid Inc types hosted by pathogenwatch (https://pathogen.

watch/) was used to verify the result of PlasmidFinder (Argimón

et al., 2021).
Determination of antimicrobial
resistance phenotypes

Assembled genomes of isolates within this study were analysed

for presence of antimicrobial resistance phenotypes using Resfinder

v4 tool with default parameters, this tool is able analyse

antibiograms in silico. Using Resfinder, a threshold percentage

identity of 90% with a minimum length of 60% was used for

antimicrobial resistance genes (Bortolaia et al., 2020). Presence of

antimicrobial resistance genes within the isolates and the

antimicrobials identified by the tool were used to infer presence

of antimicrobial resistance phenotypes.
Results

Identification of E. coli strains

A total of 35 isolates were obtained from animal specimens,

meat and meat products in South Africa and some are international

samples from port of entries into the country. Supplementary Table

S5 contains an overall summary of the results obtained grouped

according to species. These isolates underwent WGS, and all were

identified as E. coli using NCBI BLASTN tool. The BLASTN results

showed that all the genomes from this study clustered among

publicly available E. coli genomes with a percentage identity of

over 95% to those on the NCBI database (Supplementary Table S3)

(Peker et al., 2019).
Frontiers in Bacteriology 05
Detection of Escherichia coli phylogroups,
serotypes and pathotypes

Upon phylogenetic classification revealed phylogroup A as the

most prevalent among poultry isolates, accounting for 46% of the

total, followed by phylogroup B1 (20%), B2 (6%), with phylogroups

C and E contributing 3%, these other phylogroups were widely

distributed among various animal species (bovine, ovine and

porcine). Phylogroup C was detected in both poultry and porcine

samples, while phylogroup E was exclusively isolated from poultry

samples. Notably, all phylogroups were observed across different

provinces in South Africa. Twenty-three different serotypes were

identified with O101:H37 (17%), O2:H4 (17%), O6:H5 (13%) and

O64:H19 (9%) being the predominant (Supplementary Tables S2,

S5). The distribution of serotypes across provinces showed that

majority of isolates originated from the Free State (43%) and

Gauteng province (36%), followed by some from Northwest

(14%) and only one (7.%) from a port of entry.

In this study, virulence-associated genes of E. coli pathotypes

were utilised to characterise isolates based on the pathotype they

belong to, thereby classifying them as either InPEC or ExPEC.

Majority of the isolates belonged to the ExPEC pathotype which

comprised of 69%, with APEC accounting for 37% and UPEC for

31%. Among the APEC pathotype, poultry contributed 20%, while

the UPEC pathotype, contributed 9% for bovine, and poultry each

and 3% for porcine. In contrast, InPEC pathotypes comprised only

31% of the isolates, with ETEC representing 23%. ETEC pathotype

in poultry, and porcine contributed 6% in each, in bovine and ovine

contributed 3%. STEC contributed 3% and was found in poultry,

EPEC was only found in porcine and contributed 6% of the isolates,

Supplementary Table S5 and Figure 1 lists the pathotype

assignment for each isolate.
Determination of Escherichia coli
MLSTs diversity

The isolates were classified into a total of 19 distinct STs.

Among these, ST1858, ST975, and ST10 emerged as the most

prevalent, each accounting for 11% of the isolates. ST95, ST88,

and ST2952, constituted 9%, while ST120 was 6% of the total

isolates, respectively. All the identified STs are presented in Figure 2;

Supplementary Figure S1 and Supplementary Table S2.
Detection of virulence genes

Figure 2 shows distribution of virulence genes detected in all the

isolates. The predominant virulence genes detected in the isolates

encompassed a variety of crucial factors. Notably, csgA (100%),

encoding the curlin major subunit, and nlpI (100%), responsible for

encoding the lipoprotein NlpI precursor, were universally present.

This was followed closely by terC (associated with tellurium ion

resistance) detected at 94%, and fimH (involved in type 1 fimbriae
frontiersin.or
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formation) at 89%. The YHD fimbrial clusters were also prevalent,

with 86% for yehA encoding the outer membrane lipoprotein,

88.6% for yehB encoding the usher, yehC (89%) encoding the

chaperone, and yehD (86%) encoding the major pilin subunit.

Among other notable genes were fdeC (86%), an intimin-like

adhesion, and hlyE (77%), encoding avian E. coli haemolysin. The

iss gene (54%), associated with increased serum survival, and irp2

(46%), encoding a high molecular weight protein 2 non-ribosomal
Frontiers in Bacteriology 06
peptide synthetase, were also detected in the isolates. Less frequently

observed genes included stx2 (3%), a Shiga-toxin gene, and various

type three secretion effector proteins such as espA, espB, espF, espJ,

and cif, collectively found in 6% of the isolates.

Major genes clusters were observed within the study. Genes

contributing to E. coli pathogenicity were identified which included

adherence genes (csgA, fimH, lpfA, pap, afa), iron-uptake genes

(fyuA, chuA, iucC, iroN), the capsule synthesis genes (kpsE, kpsMII,
FIGURE 2

A heatmap of E. coli virulence genes, the map shows presence/absence of genes. Violet colour indicates presence of genes and grey indicates
absence of genes in isolates from animal specimen, meat and meat products in South Africa. The genes are listed on the top panel of the x-axis. The
right panel indicates the sequence types and pathotypes of each of the isolates represented on the phylogenetic tress.
FIGURE 1

Heat map showing the distribution of E. coli antimicrobial resistance genes, violet colour indicates presence of resistance genes and grey indicates
absence of resistance genes. The top panel of the x-axis indicates the antimicrobial resistance genes detected. The right panel of the map indicates
the sequence types and pathotypes associated with these isolates.
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kpsMIII), genes responsible for invasion and survival (ompT, ibeA,

tia) and those responsible for the secretion system (esp genes).

Other virulence genes which could not be classified into a group

were also identified.
Determination of human-
associated pathogenicity

All the isolates within this study were confirmed as human

pathogens that belong to the Gammaproteobacteria class.
Detection of CRISPR-associated
genes (Cas)

The type 1 CRISPR system was found across all isolates, with a

noteworthy distribution of subtypes. Specifically, 86% exhibited

subtype I-E, 57% subtype I-A, and 11% subtype I-F. Among the

subtypes, 80% featured a singular CRISPR loci, while the remaining

20% exhibited two loci. Subtype I-E demonstrated distinctive

characteristics, including the presence of cas3 (82%), cas6e (51%),

and cas8e (77%). Subtype I-A was characterised by cas5 (51%) and

cas7 (51%), whereas Subtype I-F exhibited cas5f, cas6f, cas7f, and

cas8f, each detected in 11% of the isolates. Within the CRISPR

system, Cas genes featuring a nuclease with the DEDDh motif were

identified in 66% of the isolates. Additionally, the universal cas1 and

cas2 elements were present in 63% of the isolates, adding a

foundational element to the diversity observed within the CRISPR

loci across the studied isolates.
Antimicrobial resistance genes and
antibiotic resistance

The distribution of AMR gene presence among the isolates is

presented in Supplemntary Table S4, Figure 1, Supplementary

Figure S1. The disinfectant resistance gene sitABCD (43%)

emerged as the most detected resistance gene among these E. coli

isolates. Within the subset of isolates exhibiting sitABCD resistance,

additional genes were identified, including the tetracycline

resistance gene tet(B) (23%), and the disinfectant resistance gene

qacE (14%). Sulfonamide resistance genes sul1 (9%) and sul2 (6%)

were also identified, along with the chloramphenicol resistance gene

catA1 (6%). Beta-lactam resistance genes blaTEM-1B (9%) and

blaTEM-104 (3%) were detected. Furthermore, aminoglycoside

resistance genes aadA1 (6%), aadA2b (6%), aph(6)-Id, and aph

(3’’)-Ib (6%) were observed. Notably, at least fifteen isolates,

comprising 43% of the total, did not exhibit any resistance genes.
Antimicrobial resistance phenotypes

The putative AMR phenotypes of these isolates were

determined in silico using Resfinder tool, this was employed due

to lack of the minimum inhibitory concentration (MIC) results and
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also putting into consideration that these isolates are primarily

historic samples. The results revealed that all isolates exhibited

resistance to cotrimoxazole (100%), while 97% were resistant to

penicillin, Supplementary Table S5. Additionally, resistance to the

chemical disinfectant hydrogen peroxide was observed in 37% of

the isolates. Furthermore, resistance to amoxicillin (26%),

sulfamethazine (17%), tetracycline (14%), chloramphenicol (11%),

ceftazidime (14%), aztreonam (9%), piperacillin (9%), ampicillin

(6%), and azithromycin (3%) was also identified (Supplementary

Table S5). Multidrug resistance (MDR) was observed seven isolates

(20%), MDR was in this study is defined as those isolates were each

isolate conferred resistance to five or seven antibiotics. The most

common class of antibiotics among these multi-drug resistant

isolates were beta-lactams, sulphonamides, tetracycline,

and chloramphenicol.
Mobile genetic elements and plasmids

Mobile elements detected in the isolates from this study

exhibited a diverse array, showcasing various transposable

elements (IS elements), ISEc elements, transposons, and the

presence of a specific Miniature Inverted-repeat Transposable

Element (MITEEc1) of 123bp in each isolate. Among the detected

IS elements, a spectrum of types was identified, including IS4, IS5,

IS100, IS609, IS682, IS911, and IS45. The ISEc elements displayed

similar diversity, encompassing ISEc1, ISEc42, ISEc39, ISEc38,

ISEc10, ISEc45, ISEc30, and ISEc52. Notably, transposons such as

Tn2 and Tn6196 were also identified, further highlighting the

complexity of mobile genetic elements in these isolates.

Antimicrobial resistance genes detected within the multidrug

resistant isolate were found to be in different contig positions.

Sample S8 isolated from poultry meat was found to have resistance

genes on node 245, resistance genes were sul1, aadA1, qacE with

IS26, blaTEM-1B was found on node 252 with MGE Tn2 and tet(B)

was found on node 222 with no MGE. Sample S12 from porcine

meat had resistance on node 121 which carried tet(B) and blaTEM-

1B with MGE Tn2, node 143 carried aadA1, qacE and sul1 with no

MGE, node 146 carried catA1 with no MGE. Sample S14 from

porcine meat had resistance on node 24 which carried aadA4, sul1

and qacE, on the same contig Tn6196 was detected. Node 170

carried tet(B). Sample S20 isolated from animal faeces had a

resistance gene aph(6)-Id, aph(3’’)-Ib and sul2 on node 117 and

tet(B) was on node 112, MGE were not detected in this isolate.

Sample S25 from animal faeces had no MGE, node 180 carried tet

(B), node 187 had qacE, sul1 and aadA2, node 295 had blaTEM-1B

and blaTEM-104 and node 128 carried catA1. Sample S30 isolated

from animal faeces had no MGE, while node 113 had sul2, aph(3’’)-

Ib and aph(6)-Id and node 121 carried tet(B). Sample S32 from

animal faeces node 228 carried tet(B), node 225 qacE, sul1 and

aadA2b, node 185 carried catA1. Node 150 carried blaTEM-1B

with Tn2.

As illustrated in Figure 3, the analysis of plasmid replicons using

in silico WGS revealed a predominant presence of incompatibility

groups, particularly IncFII (n=23, 66%) and IncFIB (n=21, 60%),

across various isolates. Additionally, Col plasmid groups were also
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detected, with Col440I (n=2, 6%), Col156 (n=5, 14%), ColRNAI

(n=2, 6%), ColE10 (n=1, 3%), and Col440II (n=2, 6%) exhibiting

distribution among the isolates. Other plasmid types, such as

IncFIA (n=7, 20%), IncB/O/K/Z (n=1, 3%), IncI2 (Delta) (n=1,

3%), and IncHI2A (n=1, 3%), were also identified, contributing to

the overall plasmid landscape. Furthermore, the study identified

isolates displaying multidrug resistance that harboured the class 1

integron (intl1), characterised by cassette arrays including aadA1

and aadA2b, thereby adding another layer of genetic complexity to

the mobile elements within this E. coli population. These isolates

were isolated from porcine and bovine.
Discussion

A total of 35 generic E. coli isolates from various sources

underwent characterisation using WGS. The highly discriminative

nature of WGS enables comparison of genetic relatedness among

bacteria, even at the sub-species level, thus establishing it as the gold

standard for typing bacterial isolates (Uelze et al., 2020). Moreover,

WGS facilitates monitoring of antimicrobial resistance, virulence, and

pathogenicity profiling, as well as source tracing, root cause analysis

of contamination events, and enforcement of quality checks for

bacterial analysis (Allard et al., 2018). The application of WGS in

this study revealed that the generic isolates of E. coli belonged to five

phylogroups: A, B1, B2, C, and E, representing 2, 23 and 19 different

pathotypes, serotypes and STs, respectively. Therefore, the

information population structure of E. coli circulating in the

country of non-human clinical isolates provide critical information

for epidemiological purposes.

Understanding the dynamics of the E. coli population is crucial

for various reasons, including public health management and food

safety. Phylogrouping, a method used to categorise E. coli strains

based on genetic relatedness, plays a pivotal role in this regard. By

classifying strains into different phylogroups, researchers can gain

insights into how these strains are associated with the diseases they
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cause (Halaji et al., 2022). In the current study, the most prevalent

phylogroups identified were A, B2, and B1, with the less common

groups being C and E. This finding aligns with previous research

indicating that phylogroups A, B1, and B2 are often the most

predominant among E. coli strains found in various contexts,

including clinical human cases, as well as in food and animal

products (Pakbin et al., 2021; Aguirre-Sánchez et al., 2022; Zhao

et al., 2022). Of particular note, phylogroup B2 has garnered attention

for its association with extra-intestinal infections, indicating its

potential role in causing a majority of such infections. This

highlights the importance of understanding the distribution and

prevalence of different phylogroups in various environments, as it

can inform strategies for disease prevention and control.

In the current study, ExPEC strains were identified as the most

predominant, collectively contributing at least 69% of the isolates.

These strains were primarily classified into two pathotypes: APEC at

37% and UPEC at 31%. ExPEC strains are recognised for their

propensity to cause diseases beyond the intestinal tract, including

meningitis, urinary tract infections (UTIs), and sepsis (Rocha et al.,

2021). In human populations, UPEC is infamous for its association

with urinary tract infections, a prevalent and often recurrent medical

issue (Whelan et al., 2023). Conversely, APEC is predominantly

linked with avian colibacillosis, a significant bacterial infection

affecting poultry industries worldwide with serious economic losses

and welfare concerns in poultry farming (Kathayat et al., 2021). Most

APEC strains identified in this study were found to exhibit diverse

phylogenetic origins, with group A being the most prevalent. In

contrast, UPEC strains primarily grouped within phylogenetic group

B2. This pattern of phylogenetic distribution among APEC and

UPEC strains has been consistently observed across multiple

research studies (Malema et al., 2018; Rocha et al., 2021; Ghorbani

et al., 2022). This phenomenon underscores the significance of

phylogenetic characterisation in understanding the epidemiology

and pathogenesis of different pathotypes of E. coli, shedding light

on potential evolutionary and ecological dynamics shaping their

distribution and virulence.
FIGURE 3

Bar graph of the plasmid Inc Types detected. Eleven plasmids were detected within the thirty-five E. coli isolates. On the left side of the chart, the y-
axis indicates the percentage of each plasmid.
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Interestingly, InPEC strains were found in lower numbers

(31.3%) compared to ExPEC, with ETEC (23%), STEC (3%), and

EPEC (6%) pathotypes being the most predominant. Intestinal

diseases caused by InPEC play a significant role in burdening

low-income countries with infections (Rojas-Lopez et al., 2018).

ETEC, EPEC, and STEC are known to be found in various animal

species, including bovine, porcine, ovine or caprine, cats, and dogs,

with bovine recognised as the major reservoir of these pathotypes.

These three pathotypes are members of the diarrheagenic E. coli

(DEC) group, majority of the samples were these pathotypes were

identified were from animal meat that is used as a source of protein.

It has been observed that ETEC and EPEC pathotype tend to be the

most frequently isolated pathotypes which are known to cause

severe diarrhoea, this has been observed in South Africa were

farming of domestic animals occurs (Garcıá et al., 2018; Abdalla

et al., 2022). Presence of these pathotype constitutes as a

major public health risk since majority of these pathotypes

displayed resistance to various antibiotics including tetracycline,

cotrimoxazole, chrloramphenicol, penicillin, sulfamethazine and

amoxycillin (Eagar and Naidoo, 2017). It has been observed that

high prevalence of these pathotypes is due to contamination of food

products during processing (Tanih et al., 2015).

The occurrence of both InPEC and ExPEC pathotypes has been

described in other studies (Masters et al., 2011; Omolajaiye et al.,

2020). In this study, a higher prevalence of ExPEC may indicate that

pathogenic E. coli is currently persisting in various sources of food

and animals, suggesting a higher potential for health risks

associated with foods consumed by humans. In South Africa, the

presence of both InPEC and ExPEC has been detected in treated

effluents (Omolajaiye et al., 2020), highlighting the importance of

comprehensive surveillance and control measures to mitigate the

spread of pathogenic E. coli strains in both environmental and

food contexts.

In this study, all the E. coli strains were subjected to serotyping

using an in silico technique called serotype finder. In the past, O

(somatic) and H (flagellar) antigens were utilised for serotyping E.

coli isolates as either pathogenic or non-pathogenic (Joensen et al.,

2015). Presently, there are 187 O antigens and 53 H antigens

(Mare et al., 2021). The O antigen constitutes part of the

lipopolysaccharide layer, which forms the outer membrane of E.

coli, while the H antigen is the flagellar antigen responsible for E.

coli’s motility. Both are considered major surface antigens (Royer

et al., 2021). In this study, 21 O antigens were identified: O2, O6,

O9, O50, and O101 each contributed to 19% of the total O antigens,

making them the most prevalent. This was followed by O8, O11,

and O64, which accounted for 10%. Nineteen H antigens were

detected, with H4 being the most prevalent, followed by H37 (21%),

H16 (16%), and H9, H10, H19, and H27 each contributing 10.5% of

the total H antigen. Predominant combinations of serotypes in this

study included O6:H5, O9:H37 and O50:H4. Serotype O6:H5 has

been linked to causing UTI in humans and domestic animals such

as cats and dogs were O6 is found to be most predominant antigen

(Johnson et al., 2001; Ksiezarek et al., 2021). There are not that
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many reports of serotype O9:H37 and O50:H4, but both have been

isolated from poultry farms in China that keep goose and ducks

(Shawa et al., 2021; Hu et al., 2022).

Among the predominant STs, all detected ST1858 strains were

found to belong to the UPEC pathotype. One study conducted in

Germany detected ST1858 from a catheter in a hospital with

patients treated for UTI (Toval et al., 2014). ST975 belonged to

the ETEC pathotype and was found to belong to phylogroup A.

ST2952 belonged to phylogroup B1 and belonged to the ETEC

pathotype, while ST10 belonged to phylogroup A and was

associated with both APEC and UPEC. ST95, a group B2, was

associated with the UPEC pathotype. ST88 belonged to

phylogroups A and C and was associated with both APEC and

ETEC. ST120 belonged to groups A and B1 and was associated with

both UPEC and ETEC.

In porcine, ST88 belonging to phylogroup C has been observed,

while phylogroup A associated with ST88 has been isolated in avian

and are often commensal strains (Abraham et al., 2014; Maluta et al.,

2014). Isolates which belonging to A and B1 are often associated with

commensal E. coli which is often found in the gut of animals and

humans, ST120 is considered a commensal that belongs to

phylogroup A (Bahgat et al., 2023). In immunocompromised

humans, phylogroup B1 has been associated with resistance to

antibiotics and some clones of ST120 have been found to be

susceptible (Das et al., 2013; Liu et al., 2015).

This study also detected various virulence factors associated

with E. coli pathogenesis. Important virulence factor genes such as

fimH, papA/papG, hlyA, usp, cnf1, iutA, fyuA, afa, ompT, sfa, chuA,

vat, and fycV were detected in these isolates, and these genes are

associated with the UPEC pathotype (Khairy et al., 2019). Virulence

genes associated with the APEC pathotype were also detected,

including iroN, iss, ompT, tsh, hlyF, cvaC, iutA, sfa, papGII, fimH,

and nlpI. The ETEC pathotype presented genes such as elt and est

genes, which are associated with diarrhoea in children in low-

income countries. The ETEC isolates in this study possessed only

the est gene (Singh et al., 2019; Higginson et al., 2022).

The STEC pathotype was detected in very low proportions and

presented with the stx2 gene; stx1 was not detected in any of the

isolates. The presence of the stx2 gene is often associated with

undercooked food or contaminated water, and the disease caused by

STEC is characterised by haemolytic uremic syndrome, bloody

diarrhoea, and haemorrhagic colitis (Alfinete et al., 2022). The

EPEC pathotype presented with the eae gene, which is known for

causing severe diarrhoea in children in developing countries, and

mortalities in children have also been observed (Bolukaoto

et al., 2021).

PathogenFinder, a web-server that can identify genetic

characteristics linked to pathogenic and non-pathogenic isolates

was used to determine if the isolates in this study have the

potential to be pathogenic to humans. It is noted that some isolates

may appear to be non-pathogenic, when introduced into favourable

environments they may become opportunistic and become

pathogenic (Cosentino et al., 2013). All the isolates in this study
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matched to various pathogenic of E. coli strains with various protein

families identified which are linked to E. coli pathogenicity. This led

to the prediction that all the isolates in this study have a very high

probability (>0.90) of being human pathogens even though only a few

indicated to be resistant to multiple antibiotics. In addition, these

findings were supported by the virulence characteristics identified

using virulencefinder (Montso et al., 2022; Wang et al., 2024).

Four CRISPR loci were found in E. coli: CRISPR 1, 2, 3, and 4.

Depending on the presence of the corresponding cas genes, these loci

are categorised as Type I-E (CRISPR 1 and 2) or Type I-F (CRISPR 3

and 4) (Xue and Sashital, 2019). In this study, CRISPR 1 was the most

prevalent (86%) system, and it had a variable number of CRISPR

arrays. CRISPR 3 loci were detected in very low numbers (11%).

CRISPR2 and CRISPR4 systems were not detected. These arrays

provide RNA molecules with a pattern to follow, enabling CRISPR-

associated (Cas) proteins to precisely destroy viruses or bacteria upon

re-infection. Only Cas1 and Cas2 are needed for the genetic recording

of infections by obtaining spacers from DNA invaders. Despite the

diversity observed between mobile genetic elements and CRISPR

systems, nearly all known CRISPR-Cas systems share significant

conservation in Cas1 and Cas2. Currently, CRISPR-Cas systems are

classified into class 1 and 2, which are further subdivided into six

types, type I-VI, and thirty-three subtypes (Makarova et al., 2015;

Koonin et al., 2017; Murugan et al., 2017).

CRISPR-Cas systems play a crucial role in restricting phage

infection and proliferation, serving as a crucial component of

bacteriophage resistance mechanisms. These mechanisms enable

bacteria to detect and remove phage DNA upon reinfection by

gathering and preserving genetic material from previous phage

interactions (Oluwarinde et al., 2023). The CRISPR-cas3 protein was

themost predominant (83%) of all the CRISPR-cas proteins. Due to the

helicase and nuclease activity offered by the CRISPR-cas3 protein,

bacteria are well protected against phage attacks, increasing bacteria’s

chances of survival and prolonging its viability (Montso et al., 2022).

All the isolates presented with either the CRISPR or cas genes,

there was no significant difference observed within the CRISPR-cas

system between isolates which showed MDR (20%) and those that

did not present with MDR. In this study, it was observed that 80% of

the isolates were resistant to fewer antibiotics, while 20% of the were

deemed to be multidrug resistant isolates, but no clear difference

could be identified. It has been investigated in several studies with E.

coli that there is no significant correlation observed between the

CRISPR-cas system as well as antibiotic resistance (Touchon et al.,

2012; Toro et al., 2014). Studies have shown that the type 1 CRISPR

present in E. coli isolates has the ability to prevent a pathogen from

acquiring plasmids that are resistant to antibiotics (Tao et al., 2022).

The type CRISPR type I-F constitutes 11% of the strains in the

study, isolates belonging to this type were found to group with

phylogroup B2 and the isolates were resistant to three or more

antibiotics, other B2 phylogroups were found in CRISPR type I-E.

Strains within type I-F are often associated with UPEC pathotype

and are associated with causing urinary tract infections. Only one

isolate within the type I-F which forms part of the MDR strains had

plasmid IncFII, other isolates within this type did not present with
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any plasmid. This may support the finding that the type I-F CRISPR

system does interfere with survival of plasmids responsible for

antimicrobial resistance (Almendros et al., 2012; Aydin et al.,

2017). The type I-E CRISPR system is the most common type to

be found in E. coli, this system is considered to be inactive in E. coli

since its spacers are not suitable for attacking the viruses that

bacteria encounters (Dion et al., 2024). In this study, only four

isolates were found to contain both type I-E and I-F CRISPR, this is

very uncommon, this may be attributed to by gene flow or

ecological diversity of these bacteria (Garcıá-Gutiérrez et al., 2015).

Twelve resistance genes were detected in this study, with the

most predominant resistance gene being the sitABCD disinfectant

gene, which builds the ABC transporter system responsible for

causing resistance against hydrogen peroxide (Sabri et al., 2006;

Al-Mustapha et al., 2022). The disinfectant qacE was found in 14%

of the isolates on IS26, and it is responsible for resistance to

quaternary ammonium compounds. Resistance against qacE has

been observed in the food industry, where such chemical agents

are used (Zou et al., 2014). The resistance gene tet(B) was detected

in 23% of the isolates, with no MGE surrounding it. This gene

confers resistance to tetracycline and encodes an efflux pump that

plays a crucial role in the ability to cause resistance to antibiotics

(Arredondo et al., 2019).

The high occurrence of resistance against tetracycline in these

isolates may suggest overuse of antibiotics (Jaja et al., 2020).

Sulphonamides resistance genes sul1 (9%) and sul2 (6%) were

also detected, along with beta-lactam resistance genes blaTEM-1B

(9%) and blaTEM-104 (3%). Aminoglycoside resistance genes

aadA1 (6%), aadA2b (6%), aph(6)-Id, and aph(3’’)-Ib (6%) were

also observed. All the blaTEM-1B genes were found on the

transposable element Tn2. Any form of TEM-1 is encoded by

either Tn1, Tn2, or Tn3 resistance transposons (Partridge and

Hall, 2005; Stephens et al., 2020). Resistance gene sul1, aadA1,

qacE were found either on insertion elements IS26 or Tn6196.

Tn6196 were found on plasmid IncHI2A (Johansson et al., 2021),

IS26 is one of the elements known to speed up transmission of

antimicrobial resistance genes in various communities of

microorganisms (Behera et al., 2023).

Sulfonamides resistance genes such as the sul1and sul2 are

known to confer resistance to sulphonamides antibiotics, these

genes can be transferred from commensal bacteria through

mobile genetic elements to humans by consumption of meat-

based products and in turn persists to more virulence bacteria in

the human gut (Soufi et al., 2011). Sulfonamide antibiotics are

known to inhibit the enzyme dihydropteroate synthase (DHPS)

which is important for synthesis of folate in bacteria. Through the

process of horizontal gene transfer, resistance to sulphonamides

often occurs (Capasso and Supuran, 2014). Though in this study

there was less prevalence of these genes, they are commonly known

to be found in high prevalence in domesticated animals, humans

and in environments were aquatic animals are cultivated (Jiang

et al., 2019). Aminoglycosides are important antibiotics used for

various treatments of bacterial infections in humans and animals.

Resistance to this antibiotic occurs when the Aminoglycoside
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nucleotidyltransferases (ANTs) enzymes inactivate this antibiotics.

Aminoglycosides molecules have different adenylation positions

and there are five classes of ANT enzymes which are responsible

for targeting these positions for inactivation. There are also

Aminoglycoside phosphotransferases (APHs) enzyme with a

specific focus on disabling the antibiotics ability to bind to

bacteria (Van Duijkeren et al., 2019).

The mobile genetic elements and plasmids detected in these

isolates exhibited significant diversity. Among them, the IncFII,

IncFIB, Col440, and Col156 plasmid replicons were the most

common. Notably, the IncFIB plasmid replicon is known to carry

genes conferring resistance to cephalosporin, a phenomenon

observed particularly among poultry farmers in Nigeria (Al-

Mustapha et al., 2023), in silico analysis of antibiograms within

this study did not detect any isolates resistance to cephalosporins or

carbapenems. Additionally, the IS5 element is associated withmcr-9

and blaCTX-M55 resistance mechanisms (Mbanga et al., 2021).

The need for heightened surveillance is underscored by the

emergence of antibiotic resistance in diseases affecting both humans

and animals. E. coli has long been recognised as a gram-negative

indicator bacterium for antibiotic resistance due to its abundance in

humans and various animal species, making it a potential vehicle for

the spread of resistance genes between organisms (Chantziaras

et al., 2014; Jaja et al., 2020). Significant phenotypic resistance

was observed, particularly for penicillin, cotrimoxazole, amoxicillin,

hydrogen peroxide, and sulfamethazine. The fact that these

antibiotics are easily accessible could explain the degree of

resistance observed especially in penicillin especially in settings

where it is used as prophylactics to treat diseases or as a growth

promoter (Kazemnia et al., 2014; Deekshit and Srikumar, 2022).

Among the list of priority pathogens that the World health

organisation has, E. coli forms part of the pathogens that are

known to harbour cryptic resistance genes, these genes are

present on the bacteria but do not exhibit the corresponding

phenotypic resistance. This suggests that under certain conditions

some genes remain silent but when transferred to a new host they

become activated (Deekshit and Srikumar, 2022). This phenomena

of silent resistance genes has been observed in a number of studies

relating E. coli (Zhao et al., 2001; Enne et al., 2006; Li et al., 2014).

Antibiotic resistance patterns may vary between animal populations

and regions. Studies conducted in Africa have highlighted high

levels of antimicrobial resistance in foods derived from animal

products, particularly against antibiotics such as tetracycline and

sulfamethazine, which are crucial in both human and veterinary

medicine (Wesonga et al., 2010; Donkor et al., 2012; Alonso et al.,

2017; Jaja et al., 2020).
Conclusion

This study focused on a small subset of generic E. coli; thus, its

findings may not be generalised for all E. coli pathotypes. However,

this study adds to the knowledge that pathogenic E. coli can survive

and be disseminated in the animal specimen, meat and meat
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products, which is a public health concern. The findings on the

mobile genetic elements detected suggests a potential for horizontal

gene transfer and spread of resistance genes of E. coli of which some

may encode most of the significant virulence factors which affects

humans. Some of the virulence factors identified include genes

associated with adhesion, invasion and survival and they mainly

belong to the ExPEC pathotype which are indicative of a pathogenic

potential. The study also identified prevalence of antimicrobial

resistance genes which encode for beta-lactams, tetracycline,

sulphonamides and disinfectants, these findings suggests that an

active surveillance on drug usage is required, and new strategies for

control measures for E. coli infections are required. Results

presented on this study were mainly from domestic animals that

are used as a source of protein, these results demonstrated that there

is a high prevalence rate of E. coli isolates, and it is mainly from

animal-based food products, mainly poultry, porcine and bovine.

More comprehensive studies are required to characterise resistant

E. coli from animal-based food products with specific focus on

monitoring virulence traits and the genetic traits associated with

pathogenicity as well the risk factors posed by this bacterium.
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