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colonies as examples
of superorganisms
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Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium, 3Biological Evolution
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Evidence is widespread that many species of Bombus are in population and

biogeographical decline in response to adverse effects of global climate

warming. The complex interactions of the mechanisms at the root of the

declines are poorly understood. Among the numerous factors, we posit that

heat stress in the nests could play a key role in the decline of bumblebee species.

The similarity of the optimum temperature range in incubating nests is

remarkable, about 28–32 °C regardless of species from the cold High Arctic to

tropical environments indicates that the optimal temperature for rearing of brood

in Bombus spp. is a characteristic common to bumblebees (perhaps a

synapomorphy) and with limited evolutionary plasticity. We do note that higher

brood rearing temperature for the boreal and Arctic species that have been

tested is stressfully high when compared with that for B. terrestris. The Thermal

Neutral Zone (TNZ), temperatures over which metabolic expenditure is minimal

to maintain uniform nest temperatures, has not been studied in Bombus andmay

differ between species and biogeographic conditions. That heat stress is more

serious than chilling is illustrated by the Thermal Performance Curve Relationship

(TPC) (also sometimes considered as a Thermal Tolerance Relationship). The TPC

indicates that development and activity increase more slowly as conditions

become warmer until reaching a plateau of the range of temperatures over

which rates of activity do not change markedly. After that, activity rates decline

rapidly, and death ensues. The TPC has not been studied in eusocial bees except

Apis dorsata but may differ between species and biogeographic conditions. The

importance of the TPC and the TNZ indicates that environmental temperatures in

and around bumblebee nests (which have been rarely studied especially in the

contexts of nest architecture and substrate thermal characteristics) are factors

central to understanding the adverse effects of heat stress and climatic warming

on bumblebee populations, health, and biogeographical decline.
KEYWORDS

thermoregulation, Thermal Neutral Zone, thermal performance, thermal tolerance, nest
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1 Introduction

Bumblebees are eusocial, large and conspicuous insects. More

than 250 species are described throughout the world (Williams,

1998), but in some respects they are remarkably uniform in form

and behaviour. Their colonies can be considered individually to be

single “superorganisms” (i.e., a group of synergetically interacting

organisms of the same species) because the entire colony, rather

than the individual resident bees, is the reproductive unit subject to

Darwinian selection. An important feature of the “superorganism”

concept is the ability of the whole colony to maintain its

temperature within a range over which metabolic rates are

minimal and activity can be maintained. That range is the

Thermal Neutral Zone (TNZ) (Figure 1) and was elucidated by

Moritz and Southwick (1992) for the western honeybee (Apis

mellifera). Thermal stress has been indicated to result in workers

of smaller size and poorer condition through accelerated

development and more energy devoted to respiration during

development. Similarly, the reproductives, especially the gynes,

may mature at a smaller size with concomitant adverse effects on

overwintering success, spring founding of new colonies, fewer eggs

in the ovaries, and overall reduced colony strength (see

Vanderplanck et al., 2019).

Bumblebees are recognised as important pollinators from the High

Arctic to the tropics and are exploited in commercial agriculture
Frontiers in Bee Science 02
(Cameron and Sadd, 2019). They form amonophyletic genus, Bombus,

that includes the subgenus of socially parasitic Psithyrus, within the

Family Apidea (Hymenoptera) (Cameron et al., 2007). Aspects of the

bionomics of several species of bumblebees have contributed to their

commercial value in pollination of crops (Velthuis and Van Doorn,

2006), assessing natural problems in pollination and associated issues

in conservation (IPBES, 2016; Potts et al., 2016).

Bumblebees are widely considered to be in decline globally, with

climate change (especially warming) being a major contributor

(Vannote and Sweeney, 1980; Williams, 1986; Colla and Packer,

2008; Cameron et al., 2011; Bommarco et al., 2012; Rasmont and

Iserbyt, 2012; Sunday et al., 2014; Kerr et al., 2015; Martins et al.,

2015; Rasmont et al., 2015; Arbetman et al., 2017; Ogilvie et al., 2017;

Woodard, 2017; Koch et al., 2018; Sirois-Delisle and Kerr, 2018;

Françoso et al., 2019; Naeem et al., 2019; Vray et al., 2019; da Silva

Krechemer and Marchioro, 2020; Jacquemin et al., 2020; Rollin et al.,

2020; Soroye et al., 2020; Marshall et al., 2021; Martıńez-López et al.,

2021; Oyen et al., 2021). In the few examples when the diversity and

abundance of bumblebees have been assessed by a standard method

over several years, wide interannual fluctuations have not been

explained (Turnock et al., 1997). The conclusions from most

studies rely on inferences, circumstantial evidence, and correlations

without invoking experimentally elucidated root physiological causes,

or suggesting a suite of interacting ecological, behavioural to

physiological causalities.

We suggest that assessment of the effects of stress at the

superorganism level (i.e., colony) would help explain their plight

under climate change. Conditions within nesting habitats are a

rather neglected but probably important factor under conditions of

heat stress, such as during heat waves (Vanderplanck et al., 2019;

Martinet et al., 2021; Gradisěk et al., 2023), in constraining and

adversely affecting the health and survival of bumblebees as the

effects of global warming become increasingly severe. The effects of

stress may be well measured by whole colony respirometry which

seems to have been rarely undertaken. The stress of parasitic

tracheal mites adversely affects the respiratory rates of whole

colonies of honeybees (Apis mellifera) and helped understand

winter mortality (Skinner, 2000). Respirometry of honeybees in

clusters held at differing temperatures has helped understand

superorganism effects in colony thermoregulation (Moritz and

Southwick, 1992; Stabentheiner et al., 2021).

The aim of this report is to stress the importance of nest

thermoregulation and brood incubation, and their apparent

consistency throughout the genus, as being highly sensitive to

disruption, especially under heat stress. Then, by returning to

classic understandings of thermal performance, we point out that

more and comparative studies on this common character could

explain the recorded sensitivities of various Bombus spp. to the

effects of climate change.

Coupled with the remarkable uniformity in the nest incubation

temperatures across the genus (Table 1), other studies on nesting

ecology are needed, such as the ambient heat load (soil

temperature), nature of the substrate, architecture of the nests,

thermal buffering properties of the substrate, considerations of

aspect to insolation, shading, and other environmental factors.
FIGURE 1

Generalised relationship between rate of performance (i.e. activity)
and environmental temperature in animals, notably in those with
capacity to thermoregulate as in the nests of eusocial insects (from
Moritz and Southwick, 1992). As conditions become colder (in blue),
thermoregulation requires more and more metabolic energy (e.g.,
through vibration of thoracic muscles) until cold torpor and then
death set in (BMR). The Thermal Neutral Zone (TNZ) (in green)
represents temperature conditions under which the metabolic rate
required to thermoregulate remains minimal. If heat stress occurs (in
red), the metabolic cost of thermoregulation for cooling increases
(e.g., by fanning, evaporation, mass defecation, etc.) until
thermoregulation becomes impossible and death ensues. In general,
the slopes of metabolic and thermal stress are longer and shallower
for warming than for cooling (i.e. overheating is more metabolically
stressful than chilling) (see Figure 2). The TNZ has not been studied
in Bombus and may differ between species and
biogeographic conditions.
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The extent of behavioural plasticity is probably greater than noted

in published studies but may be constrained in the face of other

risks, such as flooding, predation and potential for disease.
2 Uniformity of nest
incubation temperatures

Seeley and Heinrich (1981), Heinrich (1993), and Jones and

Oldroyd (2007) review what is known about temperature regulation

in the nests of various social insects. It is widely known that

honeybees [Apis spp. (Hymenoptera: Apidae)] control the

environmental conditions in their colonies (Huber, 1814; Milum,

1929; Seeley and Heinrich, 1981; Moritz and Southwick, 1992;

Sudarsan et al., 2012; Stabentheiner et al., 2021), but the extent

and mechanisms by which other eusocial insects, such as ants

(Roeder et al., 2021; Nascimento et al., 2022) and bumblebees

[Bombus spp. (Hymenoptera: Apidae)] do so is less understood

(Goulson, 2010).

Newport (1837) presented probably the first detailed accounts

of the temperatures generated for the incubation of the brood by

bumblebees, as later pointed out by Hoffer (1882) as being similar to

birds incubating their eggs and chicks. The informative books by

Heinrich (1979, 1993, 2004) summarise the scientific information

on both cooling and heating in terms of temperature control in

individual bumblebees and of the nest.

Table 1 presents information on the species of Bombus for which

nest incubation and body temperature data are published. From the

first publication by Newport (1837), it has become increasingly

accepted that the general optimum temperature within the brood

of various species bumblebee is much the same, at about 28–32 °C,

regardless of species. That narrow temperature range applies when

the colony is well developed, but the brood nest may be much cooler

when a lone queen needs to leave her nest to forage at the early phase

of nest establishment. In small, queenless, colonies of B. terrestris

thermoregulation is also tightly controlled, notably under conditions

of cold stress. More recent research (e.g., Vogt, 1986; Weidenmüller

et al., 2002; Weidenmüller, 2004; Gardner et al., 2007; Vanderplanck

et al., 2019) has stressed behavioural responses, especially fanning, in

response to high temperatures, cooling, and preventing the

overheating of brood in developed colonies.

The temperature regime at the periphery of the cluster and

within the cavity occupied by the nest varies depending on the

ambient temperature outside the cavity or domicile in which the

colony lives. The ambient temperature immediately outside

the cavity is, of course, similarly influenced but the surrounding

materials (e.g., wood, straw, animal nest residues, soil and so on)

and their thermal properties, especially conductance (see below).

Our review of the published literature over the past 180 years

indicates that bumblebees of all species so far studied maintain

constant brood nest temperatures of 30–35 °C at the core of the

colony (Table 1). This range seems to be wider at lower

temperatures than for honeybees, however comparative studies

have not been made. As with honeybees, the narrow temperature

range of incubation and thermoregulation seems not to have been

studied in bumblebees in relation to brood survival. It can be
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assumed that bumblebee brood would not survive at temperatures

above 36 °C, and at temperatures at about 30–32 °C the brood

survives and develops normally, prolonged chilling can be assumed

to be detrimental.
TABLE 1 Generalised brood temperatures of various species of Bombus
arranged primarily in chronological order of studies made.

Species Brood
temperatures

Reference

Bombus terrestris 22.5–34.5 °C Newport, 1837

30–34 °C Linhard, 1912

29–35 °C Hasselrot, 1960

31.3–33.4 °C Weidenmüller
et al., 2002

31 °C Livesley et al., 2019

28–34 °C Wynants
et al., 2021

Bombus pascuorum (as
B. agrorum)

29–32.5 °C Himmer, 1933

Bombus hypnorum 30 °C Nielsen, 1938

Bombus borealis 30.5 °C Fye and
Medler, 1954

Bombus rufocinctus 29.5 °C

Bombus fervidus 29.5–32.2 °C

Bombus lapidarius 20–35 °C Hasselrot, 1960

Bombus terrestris 29–35 °C

Also B. hypnorum, B. lucorum, B.
so[a]ro[e]ensis, B. pratorum

Bombus lapidarius 27–33 °C Wojtowski, 1963

Also B. pascuorum, B.
derhamellus, B. terrestris,
B. silvarum

Bombus polaris 25–35 °C (despite
the cold ground
surrounding
the nest)

Richards, 1973

Bombus vosnesenskii 24–34 °C Heinrich, 1974

Bombus impatiens, B. terrestris,
B. ruderatus

29–32 °C Pomeroy and
Plowright, 1980

Bombus agrorum (=B.
pascuorum), B. hortorum, B.
saroeensis, B. subbaicalensis,
B. distinguendus

27–34 °C
(29–31 °C)

Eskov and
Dolgov, 1986

Bombus impatiens and
Bombus affinis

30–32 °C Vogt, 1986

Bombus lapidarius 27 – (29–33) °C Schultze-
Motel, 1991

Bombus huntii 28–32 °C (implied
as optimum)

Gardner et al., 2007

Bombus atratus 28 (by implication) Vega et al., 2011

Bombus hypnorum, B. hortorum,
B. argillaceus, B. pascuorum, B.
humilis, and B. sylvarum

ca. 31 °C for all
species, especially
at night

Gradisěk
et al., 2023
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3 Thermal performance & tolerance

In general, temperature affects rates of biological activity (A),

from enzymatic reactions, bacterial population growth rates,

various metabolic functions, organ development and maturation,

to organismal growth and development. Together and in

combination temperatures and rates of biological activity (also

metabolic rates) constitute the Thermal Performance Curve

(TPC) (Schulte et al., 2011; Rezende and Bozinovic, 2019)

(Figure 2), sometimes referred to as the Thermal Tolerance

Relationship (TTR). TPC is highly diverse across life forms, from

organisms that thrive at near freezing temperatures to extreme

thermophiles. Nevertheless, for all life forms, TPC may be modelled

as the product of two functions, an exponentially increasing rate of

the forward reaction to the optimum and a steeper exponential

decay (till death) presumably resulting from enzyme denaturation,

membrane dysfunction, deceleration of mitochondrial activity as

temperatures increase beyond the optimum, and perhaps effects on

DNA-methylation. The optimum, where the change in activity

remains nil (homeostatic) as temperature increases (dA/dT = 0

for TTR) may be extended by biochemical plasticity, acclimation,

thermoregulatory behaviour, and evolutionary adaptation.

In classical ecology it is generally recognised that the ranges of

most terrestrial organisms, especially animals, can be explained

ecophysiologically by temperature and moisture (Uvarov, 1931;

Andrewartha and Birch, 1954; Lutterschmidt and Hutchison,

1997; Kinsolver and Umbanhower, 2018). In particular, the
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relationship between temperatures for development and survival

of all organisms shares the common feature of being negatively

skewed (i.e., the TPC, which indicates that once the optimal

temperature for development, activity, or survival is exceeded, the

decline is steep with death ensuing after a few more degrees of heat)

(bacteria: Rezende and Bozinovic, 2019; plants: Rezende and

Bozinovic, 2019; fungi: Rezende and Bozinovic, 2019; insects:

Uvarov, 1931; Wigglesworth, 1972; Kinsolver and Umbanhower,

2018; Rezende and Bozinovic, 2019; vertebrates: Lutterschmidt and

Hutchison, 1997; Rezende and Bozinovic, 2019).

Surprisingly, it seems that few experimental studies have been

made to elucidate the thermal performance and tolerances (TT,

see discussion below) of bees and their brood together (but see

Vogt, 1986; Vanderplanck et al., 2019). It may be assumed that

brood temperatures lower than optimal are more tolerable and less

damaging over a greater range than temperatures above optimal.

That is because temperatures lower than the optimum just slows

down metabolism but going higher causes irreversible damage. In

general, one may assume that heat stress may be lethal even if

slightly elevated above optimum. Himmer (1932) suggested that

the vital upper limit for temperature of honeybee brood (Apis

mellifera) is 36 °C and Mardan and Kevan (2002) showed that for

Apis dorsata brood does not survive when incubated at 36 °C or

above. For adult bumblebees it is known that this curve may have

different positions on the temperature continuum, with some

species able to function at lower or higher temperatures and

some species that can acclimate in response to ambient and

local conditions (Oyen et al., 2016; Oyen and Dillon, 2018;

Oyen et al., 2021; Gonzalez et al., 2022).

Food is the source of energy for thermoregulation and colony

maintenance and can be influenced by climate change (e.g., Miller-

Struttmann et al., 2015). Vanderplanck et al. (2019) studied the

interactive effects of heat stress reduction of dietary resource quality,

and colony size in bumblebee colonies. Using 117 colonies of B.

terrestris, they applied a fully cross-treatment experiment to test the

effects of three dietary quality levels under three levels of heat stress

with two colony sizes. Both nutritional and heat stress reduced colony

development and caused lower investment in offspring production.

Small colonies were much more sensitive to heat and nutritional

stresses than were large ones, possibly because a higher proportion of

workers are needed to maintain social homeostasis in the former.

From a nutritional viewpoint, the effects of heat stress were far less

pronounced for small colonies which received relatively good diets

than for those that received inferior diets.
4 Bumblebee nest architecture and
soil temperature profiles

We suggest that the thermal environments in which bumblebee

nest (mostly underground, some in cavities, and few on the surface

of the ground) are a neglected area in bumblebee ecology. We have

not found any reports that link experimentally the various

factors involved.

Bumblebee nests take on many forms but are generally

enclosed. The most well-known form is ovoid enclosed in a
FIGURE 2

Generalised relationship between temperature and activity (Thermal
Performance Curve; TPC) showing the more pronounced impact of
heat stress (steep decline in activity after optimal temperatures are
exceeded) than of chilling (left-hand tail). The position and breadth
of the curve differs between organisms, being transposed to the
right for thermophiles and to the left for organisms adapted to
cooler conditions. The optimal temperature range, at which activity
can be the greatest, may broader or narrower depending on
adaptation and/or acclimation. For poikilotherms the relationship is
generally broader, especially at cooler temperatures, but for
homoeotherms the relationship is tight at across the range of
tolerable temperatures as is well-known for incubation and
successful development of birds’ eggs. The general form of the
relationship is recognised by biologists who have studied
temperatures and activity/development from bacteria to mammals
(see Rezende and Bozinovic, 2019).
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protective cavity. Those bumblebees using vacated rodent nests may

be as much as 20 cm beneath the soil surface (Free and Butler, 1959;

Goulson 2010; Martinet et al., 2022). The nest itself includes the

central complex of brood cells within an involucre of waxy material

adhering to an outer layer of insulation. That insulation may be a

centimetre or so thick. Outside the cavity is the substrate in which

the nest is enclosed is soil, wood (as in cavity nesters), or rarely

vegetation (living and/or dead) for surface nesters (Figure 3) (for

examples, see Free and Butler, 1959; Sakagami et al., 1967; Hines

et al., 2007; Goulson, 2010; De Meulemeester et al., 2011; Martinet

et al., 2022).

From a thermodynamic viewpoint, nest temperatures are

influenced by thermoregulation by the colony (metabolic or

behavioural) (Figure 1) (Vogt, 1986). The buffering of the

temperature within the colony must be influenced by the

insulation afforded by the involucre and insulation; that is,

the capacity of the materials together to resist the flow of

conductive heat (R- or RSI values and U-units) (see Figure 3).

The involucre of the nest is likely to have high insulational value

with RSI at about 20 (https://en.wikipedia.org/wiki/R-value_

(insulation)) based on data for sheep fleece, straw, etc. Outside

the involucre, the soil or wood substrate likely has a much lower RSI

at less than half that of the involucre but its conductivity

presumably varies widely depending on water content,

compaction, and composition. We know of no measurements of

RSI values for materials that make up bumblebee nests.

The actual temperature profile from the outside of the nest’s

involucre to the surface presumably and typically would show the

highest heat loads at the surface, especially if insolated with

temperatures exceeding lethal temperatures for many organisms.

Under shaded, night-time and rainy conditions the surface

temperature of the soil is known to be close to that of the

ambient air (Geiger et al., 2003; Holmes et al., 2008). We know of

no records in which the soil temperature profile over bumblebee

nests is given but Linhard (1912) provided data on ambient
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temperatures associated with wooden-cavity nests (bird nesting

boxes) inhabited by B. hypnorum.
5 Discussion

This essay brings to readers’ attention that the issue of climate

change and ensuing range reductions in bumblebees is complex. We

hope that our readers recognise that we have attempted to provide a

vista of the “Horizon” by presenting this “Frontier” for

contemporary “Bee Science”.

Climate change and especially increases in global temperatures

seem to affect bumblebees in various and interrelated ways.

Anatomical adaptations have been recorded and include changes

is size, body part dimensions (notably mouthparts) and possibly

pilosity (Miller-Struttmann et al., 2015; but see de Keyzer et al., 2016

and, more recently, Gérard et al., 2018, 2021, 2022a, 2022b). Other

adaptive morphological and physiological changes in bee species

have been proposed for bees living in urban heat islands (Polidori

et al., 2023). Flight activity is influenced by temperature, insolation,

and other weather conditions in nest-seeking queens, foraging

workers, and the next generation of sexuals. Thermoregulation in

nests and incubation of brood are in themselves thermodynamically

and behaviourally complex and presumably part of species and

colony differences in nest site choice, nest design and construction,

and use of materials. The nest differences must also reflect

strategies and adaptations for overcoming periods of adversity

(e.g., heat, cold, damp, dearth of resources and even hibernation/

diapause/metamorphosis).

Excessive heat is clearly a major issue for perhaps most species

of bumblebees and it is the factor considered in most detail for the

effects of climatic warming. Most contemporary research has

focussed on standard meteorological data and coincidental or

circumstantial changes in the ranges of various species on

bumblebees. Experimental explanations of cause and effect need

more detailed and integrated studies with special attention paid to

colonies as “superorganisms” (Moritz and Southwick, 1992).

Thermal performance and tolerance (TT) studies in perhaps all

organisms show that heat is more hazardous than cold [see Figure 2

(TPC) with its negatively skewed shape]. After a certain ambient

temperature is reached, the effects of increasing heat are more

pronounced and deadly than are the effects of cooling. The

relationship between temperature and larval death has been

studies in only a few species of social insects and not in

bumblebees. The maximum for the level of activity with

temperature can be presumed to reflect a preferred range and the

temperature at which social insects, including bumblebees, would

try to keep their nests. That range lends to the general relationship

(Figures 1, 2) but the variability in that feature seems not to have

been assessed in insects, neither physiologically nor in the broader

contexts of evolutionary ecology and behaviour. We suggest that

such studies, specific and comparative, could elucidate explanatory

aspects to climate change and biogeographical range shifts as well as

providing insights into possible variability in the TNZ (Figure 1).

The remarkable similarity of nest temperatures recorded from

numerous species of bumblebee (Table 1) needs to be seriously
FIGURE 3

Diagram of the main components of the subterranean nest of
Bombus species (see Martinet et al., 2022). Such nests are usually
about 15 cm below the surface.
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considered as a possible limitation on their abilities to withstand not

just cool conditions but heat as well. The idea of the TNZ (Figure 1)

provides insights as to the possible nature of ecological and

evolutionary constraints. Few species have been studied for

nesting TNZ. We suggest that various species differ in that

respect, with cool-climate species possibly having broader TNZ

than others from subtropical and tropic environments. Tropical and

subtropical bumblebees may have narrow TNZs reflecting that

thermoregulation for cooling is more energetically expensive than

in temperate zone species. Thus, the latter with their abilities to live

over a broad range of temperatures may represent greater variability

in potential survival under relatively limited hot and cold

conditions. That aspect of comparative energetics and

thermoregulation remains unexplored but may suggest reasons

for some changes in bumblebee ranges. The apparent and

approximate inverse relationship between TPC (Figure 2) and

TNZ (Figure 1) reflects mostly the general shape of the TPC

curve with its extended tail at the cold end of the temperature

range coupled with the preferred temperature range as maintained

by thermoregulatory processes (TNZ, Figure 1).

Thermoregulatory behaviours are various. Air exchange is the

most commonly considered reaction to temperature changes in the

nests of various bees. The thermodynamics and biophysics of

colony clustering within the nest have been elucidate by Sudarsan

et al. (2012) for western honeybees (A. mellifera) and those

principals likely apply to other cavity nesting social insects.

Fanning to expel excess heat from the nest is well known in

honeybees and bumblebees. That behaviour can be coupled with

the evaporation of water (the swamp cooler effect) within the

nesting cavity (e.g. hive) or on the surface of open nests, such as

in A. dorsata which indulge in gobetting and mass defecatory flights

related to cooling the colony under conditions of heat stress

(Mardan and Kevan, 1989). Those behaviours seem not to have

been recorded in bumblebees but may be important.

The placement, construction, and architecture, of nests of social

bees and wasps have been described to greater or lesser extents for

several species but not especially so for thermoregulatory

considerations. Subterranean nesting is well-known in bumblebees.

They use various substrates and materials, but nests are usually only a

few centimetres below the surface (Figure 3). Less seems to be known

about the nesting structures of bumblebees that nest in above ground

cavities (e.g., hollow trees or bird-nesting boxes). Some may nest above

ground in available cavities (even discarded household furniture) or, as

the tropical Amazonian B. transversalis which even forages for nest-

building thatch materials along its established walking trails (Cameron

and Whitfield, 1996). Human beings have domesticated a few species

so that they inhabit artificial domiciles (Velthuis and Van Doorn,

2006). Interspecific and intraspecific comparative studies on the nature

of the nests and their locations, together with considerations on

thermoregulation, may elucidate factors that pertain to physiological

ecology and biogeographic limitations. A major problem confronting

bumblebee studies is finding nests in the wild. For locating nests of

subterranean species, perhaps non-invasive studies by ground-
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penetrating radar (GPR) could be useful. Sherrod et al. (2019) record

nesting burrows of the ground-nesting, solitary bee, Colletes inaequalis

at about 0.5 m depth. We know of no published studies using that

technique for bumblebees.

We suggest that studies using flow-through respirometry

(Skinner, 2000; Stabentheiner et al., 2021) of whole colonies

whereby the temperature of the atmosphere, its saturation deficit,

and possibly partial pressures of gases can be manipulated would

provide more comprehensive and comparative ecophysiological

understandings of the TNZ and TPC. Such studies could also

involve measurements of the insulation properties of materials

from which nests are constructed and of their surrounding

matrix. We know of no measurements of heat loss through bee

nesting materials. Skowron and Kern (1980) used basic principles of

thermodynamics and heat flux to measure the insulation afforded

by birds’ nests. Their approach could be followed with

modifications possible by modernisation of instrumentation. We

suggest that measuring heat flow (i.e., thermal resistance or

conductance) across bee nest walls may be instructive and can be

done when the temperatures inside and outside are known so as to

calculate the temperature difference from inside to the outside of the

nest. Then, by measuring the area or volume of the nesting material

or matrix being considered and the amount of time taken for the

temperature difference to stabilise the insulational properties of the

nest can be measured (R-value or U-value for heat transmittance).

We are not aware of any such measurements for materials

comprising bumblebee nests, either artificial or natural.

Calculation could be adjusted to account for the thickness and

nature of the wall materials. Readers are referred to Çengel and

Afshin (2015) and Tritt (2004) for principles and methods.

By linking the various ecophysiological and behavioural factors,

with environmental concerns and constraints on evolutionary

plasticity through the superorganism approach to bumblebee

nesting, several novel approaches suggest themselves for

understanding how climate change asserts its influence on

bumblebees’ population dynamics, changing biogeography, and

possibly conservation. We suggest that the same principles should

be applied to the effects of climate change on other eusocial and

other insects (e.g., ants, termites, other Hymenoptera, community

gall-formers, etc.).
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