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Estimating Hidden Markov Models
(HMMs) of the cognitive process
in strategic thinking using
eye-tracking
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Hidden Markov Models (HMMs) are used to study language, sleep,
macroeconomic states, and other processes that reflect probabilistic transitions
between states that can’t be observed directly. This paper applies HMMs to data
from location-based game theory experiments. In these location games, players
choose a pixel location from an image. These players either have a common
goal (choose a matching location), or competing goals, to mismatch (hide)
or match (seek) in hider-seeker games. We use eye-tracking to record where
players look throughout the experimental decision. Each location’s numerical
salience is predicted using an accurate, specialized vision science-based neural
network [the Saliency Attentive Model (SAM)]. The HMM shows the pattern of
transitioning from hidden states corresponding to either high or low-salience
locations, combining the eye-tracking and salience data. The transitions vary
based on the player’s strategic goal. For example, hiders transition more often to
low-salience states than seekers do. The estimated HMM is then used to do two
useful things. First, a continuous-time HMM (cHMM) predicts the salience level
of each player’s looking over several seconds. The cHMM can then be used to
predict what would happen if the same process was truncated by time pressure:
This calculation makes a specific numerical prediction about how often seekers
will win, and it predicts an increase in win rate but underestimates the size of
the change. Second, a discrete-time HMM (dHMM) can be used to infer levels
of strategic thinking from high-to-low salience eye-tracking transitions. The
resulting estimates are more plausible than some maximum-likelihood models,
which underestimate strategic sophistication in these games. Other applications
of HMM in experimental economics are suggested.
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1. Introduction

Behavioral game theory is a collection of theories and evidence about how biological

limits on perception, strategic thinking, and stochastic response affect behavior in strategic

games. In this study, we combine elements of two behavioral approaches in a new way. The

first approach is a cognitive hierarchy of “level-k” thinkers in games. The second approach

makes use of eye-tracking data, recording where participants look on a computer screen at a

high temporal frequency to infer their choice process.
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We combine the level-k approach and eye-tracking data to

fit a “Hidden Markov Model” (HMM). Our hidden layer is the

mental states (or internal beliefs) of the player which are statistically

inferred from observations. The Markov property means that

the evolution of the process in the future depends only on

the present state and does not depend on history (this is a

simplification used in many areas of economic theory and is usually

a good approximation).

These HMM models are within a class of dynamic models

also used in many areas of applied economics. Most dynamic

models adopt a Markov assumption for simplicity. When an

unobserved state variable is thought to be a crucial driver of

behavior, researchers look for a proxy of that. The proxy is typically

assumed to be locally independent of everything else, in which case

those dynamicmodels are also HMMs (Cunha et al., 2010; Arrelano

et al., 2017; Hu, 2017; Hu et al., 2017). The major difference

in the application of HMM to experimental data, compared to

these very general dynamic selection models, is that experimental

control usually allows a much better selection of proxy variables for

hidden states.

In the games we analyze, HMMs are used to summarize the

dynamics of the cognitive process in thinking and choice selection.

HMMs enable us to see, for example, how hiders and seekers in a

hider-seeker game shift their attention differently. In addition, the

HMMs are used in two new types of analyses. The first new analysis

is to estimate the frequency distribution of level types, based on

between-state transitions. This is a novel way to estimate level types

(though related to Costa-Gomes et al., 2001) and can be done for

individual-game trial-by-trial data, then aggregated.

The second new analysis is the development of a continuous-

time version of HMM which creates a time series of the mental

states players enter throughout a game. In our experiment, mental

states refers to the player believing they are in a “high” or “low”

saliency location. This HMM can be used to predict the effect

time pressure may have on behavior–roughly speaking, are players

further from equilibrium when they have less time to choose? We

find that the answer is Yes but, more importantly, our continuous

HMM makes a quantitative prediction for the magnitude of the

behavioral statistic (the frequency of matching in hider-seeker

games under time pressure). This type of specific prediction from

one game to a time-pressured one is unusual in model-based

experimental economics.

2. Background

In this section, we describe the motivation and milestones

in combining level-k modeling, eye-tracking, and HMM for use

in economics.

Many previous studies have analyzed how level-k type models

work (Stahl and Wilson, 1994; Nagel, 1995; Camerer et al.,

2004; Kübler and Weizsäcker, 2004; Crawford and Iriberri, 2007b;

Kneeland, 2015; Alaoui and Penta, 2016; Friedenberg et al., 2016;

Brandenburger et al., 2017; Alaoui et al., 2020). Our approach

is loosely related to these contributions. Our HMM structure is

general, so it is not guaranteed to recover transitions between

mental states which correspond to levels of strategic thinking.

However, if the unconstrained structure indicates level-k-type

transitions, that is promising evidence that such theories are on the

right track.

In the last couple of decades, starting with Camerer et al. (1993),

experimental economists began to use “process” data, along with

choice data, to understand the cognitive process of human strategic

play. The most difficult way to study the cognitive process has

been to measure human brain activity directly (Bhatt and Camerer,

2005; Hampton et al., 2008; Coricelli and Nagel, 2009; Ong et al.,

2018; Mi et al., 2021). A simpler way is to use choice process

data that can be collected at low marginal cost, such as response

times, and eye gaze or mouse movement recordings (Camerer

et al., 1993, 2004; Costa-Gomes et al., 2001; Wang et al., 2010;

Brocas et al., 2014; Polonio et al., 2015; Devetag et al., 2016).

These choice process data provide better evidence of a participant’s

thought process than those from choices alone (Fudenberg and

Levine, 2016, p. 9). This improvement becomes clear when one

considers the following scenario: Suppose a careless player in

an experiment testing for mixed-strategy equilibrium does not

read the instructions describing the game structure carefully and

chooses haphazardly. This player may make a series of varying

choices that look similar to those of a sophisticated player who is

approximating a mixed strategy with a more thoughtful process.

Differentiating between these two players based solely only on

their choices or response times might be difficult. However, the

addition of eye-tracking data should enable a researcher to easily

differentiate these two participants, as eye movements of the

sophisticated player may show the player glancing at a sequence

of payoffs consistent with level-type thinking as opposed to the

careless player who may look around more erratically or hardly

look at payoffs at all.

Early attempts at differentiating thought processes from two

players with similar choice data in games, but distinct strategies,

made use of fixation times and choice frequencies. For example,

Camerer et al. (1993) and Johnson et al. (2002) found that in three-

stage alternating-offer bargaining games, most players did not look

at the third-stage payoffs (as is required to choose equilibrium

strategies). Visual patterns were correlated with deviations from

predicted bargaining offers. Carillo and Brocas (2003) found that

choices in games with forward induction were associated with

payoff lookups.

A deeper attempt at distinguishing level 1 (L1) play and D1 play

came from Costa-Gomes et al. (2001). L1 play is maximizing the

expected value against a random player. D1 play is similar to L1

but assumes the opponent does not play a dominated strategy. D1

maximizes the expected values against a player who is not entirely

random because she never plays dominated strategies. L1 and D1

strategies lead to similar choices in many games. But even when

L1 and D1 predict the same choice, they can be distinguished by

mouse-tracking measures of what payoffs players fixate on. The

D1 choices requires looking at the other player’s payoff and the L1

choice does not. In their study, Costa-Gomes found that there were

significantly more D1 players than L1 players.

After this first wave of studies, more sophisticated types

of analyses were developed to use both look-ups of specific

payoffs and transitions between payoffs (called “saccades” in

visual science) to infer the decision rules players appeared to use

Frontiers in Behavioral Economics 02 frontiersin.org

https://doi.org/10.3389/frbhe.2023.1225856
https://www.frontiersin.org/journals/behavioral-economics
https://www.frontiersin.org


Li et al. 10.3389/frbhe.2023.1225856

(Costa-Gomes and Crawford, 2006). Many of these second-wave

studies made use of eye-tracking data, captured by a camera-

based recording of temporally fine-grained (25 ms) visual fixations

to items on a computer screen (Costa-Gomes et al., 2001;

Wang et al., 2010; Polonio et al., 2015; Devetag et al., 2016).

Inference from payoff comparison has added substantial choice

process evidence. Costa-Gomes et al. (2001) studied the strategic

sophistication during normal-form game-plays via mouse lab. In

their paper, the authors pre-specify nine behavioral types; including

altruistic, pessimistic, optimistic, naive, L2, D1, D2, equilibrium,

and sophisticated. These types theoretically determine subjects’

information search patterns based on two principles: adjacency and

occurrence. This type-based model successfully captures different

strategic behaviors for the combination of choice search patterns.

The general finding from these studies is that the decision

rules players use are often simple, and often classified into

hierarchical levels. However, players do not have a perfect memory

and it is often easier to look again than to remember, and

are likely to be approximating cognitively demanding rules like

dominance detection by lookup shortcuts. Extracting decision rule

evidence, therefore, requires specialized econometrics and careful

specification of how errors might occur (see Costa-Gomes et al.,

2001).

Our paper uses eye-tracking data as in some earlier studies, but

fits these data to a “Hidden Markov Model” (HMM). Compared

to the previous methods in which behavioral types and patterns

need to be pre-specified, the HMMmethod can automatically infer

behavioral types “unsupervised” from the data. HMM is widely

used in machine learning and cognitive science, but there are only a

small number of previous applications in experimental economics.1

Hu et al. (2017) used a model with hidden state transitions to

compare Bayesian and reinforcement learning in an experimental

reversal learning task. They used visual attention to valued stimuli

as a proxy for subjective value. Alós-Ferrer and Garagnani (2023)

used HMM to study the temporal interplay between different

behavioral types such as Bayes or reinforcement when an agent

faces binary choice problems. They found that players transit

dynamically from the above types when facing a simple choice

problem (Ansari et al., 2012).

In HMM the states are “hidden” in the sense that we

cannot directly observe what state a person is in.2 However,

1 Connection to finite state “machines” were in vogue in the 1980–1990s in

game theory. Themain idea is to find the strategy transitioning pattern during

repeated games using automata structures, which share some similarities

with HMM. Both of them contain state-transitioning structures. Abreu and

Rubinstein (1988) analyzes equilibrium using two-person repeated games

with automata and shows interesting findings on equilibrium selection.

Almanasra et al. (2013) studies di�erent types of automata like adaptive or

cellular. Unlike automata games, which are in the repeated game regime,

HMM studies the process of one-shot games.

2 For example, suppose we could read the eyes and mind of a chess

player perfectly as she plans a move from a current board position Bt . The

board position is a plausible state. Transitions to new board positions Bt+1

correspond to moving a chess piece. A plausible model of her process of

“playing” is that she is mentally simulating di�erent sequences of transitions

from the current board-position state to di�erent future board-position

different hidden states and transition probabilities will

create different information-acquiring patterns and different

choice-generating schemas.

In this paper, we first present the main model of a discrete

HMM and how it corresponds to choices in strategic games in

Section 3.1. The next section introduces an eye-tracking data set

from Li and Camerer (2022). We estimate the proposed model

using the eye-tracking data collected and illustrate the new insights

the estimated HMMmodel gives.

In Section 5, we introduce a new level identification method

based on a gaze data set and an estimated HMM model. We show

the full distribution of levels across different trials, players, and

strategic games. An approximately exponential drop in levels is

observed, which is consistent with earlier results that people rarely

reason more than two levels.

In Section 6, we extend the HMMmodel to be continuous. The

continuous model can include state duration time for each hidden

state using fixation duration data. We call it cHMM to distinguish

it from the discrete one. The cHMM is dynamic in time and can

make new predictions of choices under time pressure. We estimate

the cHMM model using the gaze data we have and show predicted

strategies of different games at different time points.

The paper ends with a discussion section indicating the limits

of the model and other types of experimental questions it could be

usefully applied to.

3. HMM and its use in in-game
experiments

The games studied in this paper are location games. Two

players see a common 2D natural image (Li and Camerer, 2022).

Players have a few seconds to choose a pixel in the image (a

location) by clicking the region they’d like to select. They choose

simultaneously (i.e., without knowing what the other player is

choosing or has chosen). The game “strategies” are therefore pixel

locations. A circle with a radius of 108 pixels is drawn around their

chosen pixel. Figure 1 demonstrates examples of what the circle

and images look like. In matching games, players both earn a fixed

payoff if the pixel-centered circles overlap (even if only partially). In

hider-seeker games, the hider wins from a mismatch (circles do not

overlap) and the seeker wins from a match (the circles do overlap).

A carefully-trained algorithm [Saliency Attentive Model

(SAM)]3 is used to exogenously predict the bottom-up visual

salience of each pixel in each image. The salience values for any

image are normalized from 0 to 1 uniformly (i.e., the salience values

are quantiles).

Bottom-up salience is a concept from cognitive psychology and

neuroscience. Bottom-up visual features are low-level features, such

as color, orientation, intensity (brightness), centrality, and high-

level features such as objects, faces, or animals. The salience is

states. But as she is playing, her mental process of imagining probabilistic

transition is hidden from us.

3 SAM is an Attentive Convolutional Long Short-Term Memory network

(Attentive ConvLSTM) model which can predict human eye fixations on

natural images.
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FIGURE 1

Examples of trial outcomes. In the location game experiment, all games share the same rule of matching that if two circles overlap constitute a
successful match. The circles here give out a direct visual e�ect of how large it is comparing to the rest of an image.

predicted ex-ante, from an algorithm trained on entirely different

images and different players. Algorithmic salience is described

further below. Figure 2 gives two examples from Li and Camerer

(2022) both the visual salience map predicted by the Saliency

Attentive Model (SAM) and the actual choices people made in a

coordination game features (Cornia et al., 2018).

3.1. The general HMM model

In this section, we describe HMMs and what we can learn

about behavioral game theory from them. Our description is

very compact and notation-heavy, describing the basic discrete

dHMM following a standard framework in Murphy (1998).

We also note the critical assumptions that underlie the HMM

model. More details are easily found in Frühwirth-Schnatter

(2006).

AHidden Markov ModelH =< P,B,5 > is defined as:

• A finite set of states � = {h1, h2..hi..hn}. The number of states

n needs to be pre-specified.

• A transition matrix P. Each entry pij is the probability of

transitioning to state j from the current state i (and the

self-transitioning action i = j is included).

• A set of observation states O.

• A projection probability matrix B, mapping the hidden state

space elements of � to O. The value bmn is the probability

of observation state n conditional on the current hidden

state being hm if the observational space is discrete. Other

assumptions will be needed if O is continuous. A popular

assumption is to assume the projection is Gaussian distributed

(as we do in this paper).

• A n × 1 prior vector 5, indicating the initial probability

distribution over states hi.

Key Assumptions of HMM:

• Independence: Observations xt are conditionally independent

of all other variables given zt , so the observation at time t

depends only on the current state zt .

• Stationarity: The zt ’s form a (first order) Markov chain, i.e.,

P(zt | zt − 1, ..., z1) = P(zt | zt − 1) t = 2,..., T. The chain is also

typically assumed to be homogeneous because the transition

probabilities do not depend on t.

There are two special states that are different from others.

One is the start state S to initiate the game. The other is the end

state D, which means a decision is generated. These two states

are the only states that are not associated with any fixation, and

the end state is associated with choices. The reasoning process

that takes a player from S to the hidden states and then finally

to D is what the eye-tracking data set used to infer. Note that we

classify a player’s level-k by the number of transitions (during the

hidden states) that the player undergoes during the game, meaning

that a player whose transition pattern was HLHL (with H being

high salient locations and L being low salient locations) would be

considered level-3 while a player that transitioned HHLH would be

considered level-2.

Given a fixation data set and gameG, a dHMMcan be estimated

using the Baum-Welch algorithm. Baum-Welch is a special case of

the workhorse expectation-maximization algorithm. This process

uses available data to “learn” the best-fit transition matrix P and the

projection matrix B (for details about the estimation process, Baum

et al., 1970; see Appendix).

Our analysis below focuses on an HMMwith two hidden states

(excluding S and D). One state consists of fixations at locations that

have a distribution of low saliency values, classified as state L. In

this state, fixations are on locations with lower saliency as measured

independently, by the SAM algorithm. Note that SAM generates

predictions of salience based purely on the images—no data we
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FIGURE 2

(A) Is an image with seven salience centersa (C) is an image with one salience center. (B, D) Are corresponding maps (red dots) of actual choice data
when people are trying to coordinate. The choice map in (B) is more dispersed because the salience centers in (A) are more numerous. (E) Plots the
negative correlation between the number of salience centers and the matching rate. Data is taken from our experiment. aSalience center is defined
with respect to local maxima of the salience distribution. More salience center will make the image look “busier”.

collected changes those predictions. The fixations are recorded by

the eye-tracker.

In the HMM we estimated for matching games, the mean of

the L-state saliency levels is 0.57. That means that for a particular

image, there will be many pixel locations, with saliency around

0.57 (Gaussian distributed with mean 0.57 and a variance that is

estimated). A fixation is assigned to be in the L state if the saliency

of the pixel which the person is looking at is likely to come from

that distribution. Note that being “in the L state” is the same, for

the HMM, as being at one of the many pixel locations with saliency

around 0.57.

The other state is a high-saliency state classified as H. In this

state, fixations are on locations with higher saliency (estimated to

be a mean of 0.90 in matching games).

Recall that saliency is normalized to be uniformly distributed

from 0 to 1 across all pixels in an image. Because the L and H

state saliency means are 0.57 and 0.90, it follows that there is a high

percentage of low-saliency image locations, with saliency <0.40 or

below, which are not part of either state L or H. That’s because the

fitted model uses the information to derive the states; the model

concludes that there are so few fixations to those low-salience pixels

that they can be ignored. If such fixations were more common,

there would be a better-fitting model including a very-low-salience

state; but that’s not what the modeling tells us.

Salience levels in L and H are assumed to be drawn from

two Gaussian distributions of saliency levels, with the means

and accompanying variances of saliency levels within each state

estimated from the data. Though our states are “semi-observable,”

since we can observe fixations, modeling the hidden states in this

method allows the model class to fit as desired.

What is Markovian about HMMs? The Markovian property is

the usual one: Transitions out of a current state are assumed to

be independent of the sequence of states visited previously. Just as

in Markovian analysis of game-theoretic strategies, this simplifies

modeling greatly and is likely to be a good approximation (and can

also be relaxed to allow higher-order chains, Langeheine andVan de

Pol 2000).

HMMs were created by Leonard Baum in the late 1960s,

then advanced further at Carnegie-Mellon and IBM. They were

first applied to problems of signal processing such as speech
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recognition—for example, inferring words (hidden states) from

observations of spoken phonemes. Rabiner (1989)’s tutorial

catalyzed interest (see Juang and Rabiner, 2005, for more history).

HMMs have then been applied to many other domains.

Examples include detecting sleep apnea from PSG measures (Song

et al., 2015), detecting crime (Bartolucci et al., 2007), solving

verbal puzzles (Yu et al., 2022), and in bioinformatics (Yoon et al.,

2009). Visser (2011) describes HMMs as “the model of choice

for analyzing cognitive processes based on time serial data.” In

economics, HMMs have mostly been applied to study regime

changes in macroeconomic time series (Hamilton 1989, 1990; Bose

et al. 2017; see Fruhwirth-Schnatter et al. 2018 for a review).

3.2. What can be learned about strategic
thinking from an estimated HMM?

Our model’s hidden states are based on the salience levels of the

pixels players are fixated on at each moment. This is a sensible way

to think about the dynamic cognitive processes in both matching

and hider-seeker games, as the mental state that the player is in

(whether they believe they are in a high or low saliency location) is

unobservable but still impacts their next fixation. If players are in a

matching game we expect to see few transitions from the H state to

the L state. This is due to the player understanding that it is unlikely

that they will match by choosing L locations since the other player

is unlikely to choose to fixate on an L location. This is because

individuals with a low estimate of P(L | H) is the model’s way of

expressing that they rarely transition from H to L in such a game.

In a hider-seeker game, the transitions should look different.

Hiders are likely to transition from H to L, looking for a location

that seekers are unlikely to notice. Hiders also may go from the start

(S) to state L immediately. Of course, strategically sophisticated

seekers will “chase” the hiders by transitioning to L states as

well (and sophisticated hiders may transition to H states to trick

the seekers and so on). The differences in the hider and seeker

estimated transition rates P(L | H) and P(H | L) will tell us how

this process works quantitatively. It can also be used to approximate

the revealed level of strategic thinking. For example, a higher-level

hider will transition from H to L more often.

In addition to estimating a discrete HMM, we extend ourmodel

to the continuous domain by including the distribution of time

durations while visiting hidden states (because our data include the

length of time of fixation as well as where people are looking). In

a regular dHMM, the model is estimated from observable lookup

and choice data to produce a best-fitting structure of states and

transition probabilities. The cHMM also has these properties but

also learns an additional stochastic process about how long a

decision-maker thinks at each hidden state. That is, in a dHMM an

observation will be a string of ordered (but untimed) states, such as

{S,H,H,L,D}, while in a cHMM, it will be a time series of states and

how long the states are occupied.

A cHMM considers the time length of eye fixations so that the

observations are two-dimensional: eye-fixated locations (and their

associated salience) and fixation durations. The durations are taken

automatically from the fixation location data, using either eye-

trackers or mouse-based methods. Fixations at different locations

for shorter or longer durations can carry information about a

player’s thinking process, though this has rarely been studied in

behavioral game theory.4 Longer fixation times are likely to indicate

more cognitive reasoning or effort (though we do not explore that

hypothesis in our analysis).

As discussed, the HMM transition probabilities characterize

aspects of strategic thinking numerically. But they can also be

applied in three ways that are somewhat new to experimental

economics: Player Simulation; Level Classification; and Time

Pressure Prediction.

3.2.1. Player simulation
Once estimated, an HMM can be treated as a virtual game

player and used to generate data. In machine learning, this use is

called a “generative” model.5 For example, an HMM trained on

human subject data can then be used to simulate an artificial, but

lifelike player. This could be useful for experiments in which it is

expensive or infeasible to conduct experiments with many people

simultaneously (e.g., for online experiments, where coordinating

multiple subjects is possible but often challenging). This application

is not explored further here.

3.2.2. Level classification
A general challenge for level-k models is to identify or

classify levels of thinking. Classification has been done at the

level of population distributions across levels and individual-

level type classification (In principle, cross-game and trial-by-trial

classification would be useful too.). However, identifying levels can

be challenging for a couple of reasons which we explain below.

3.2.3. Time pressure prediction
A cHMM can also be used to predict what might happen if

experimental conditions are changed. For example, because the

continuous cHMM uses real-time-course data (rather than discrete

state transition steps) it can analyze and predict state-to-state

transition times and overall response times. A cHMM can predict

an estimated response time simply by adding up all the within-state

visiting duration times until transitioning to decision state D.

An interesting aspect of this model cHMM is that it allows us

to answer the question of what happens when a player is faced

with time pressure during the game. Below, a cHMM trained when

subjects have six seconds to respond can be artificially “interrupted”

after 2 s, and then the state the cHMM is in after 2 s becomes the

decision recorded. This time-pressured prediction could be useful

to study multiple-process models in which agents are hypothesized

to transition between decision processes that are fast and slow (such

4 Brocas et al. (2014) reported distributions of lookup times in di�erent

normal-form game payo� cells. However, they are highly correlated with

lookup frequency (since the time per lookup usually has low variance) and

they did not use timing data in a sophisticated way to infer decision rules.

5 Generativemodels are compared with discriminativemodels. The latter is

used to distinguish di�erent classes while the former can be used to generate

new data. HMM is a typical generative model.
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as “system 1 and 2” models in Kahneman 2003).6 This method is

used later in this paper.

3.3. Experimental details

Eye-tracking data were previously collected as players played

three types of games: matching, hiding, and seeking (Li and

Camerer, 2022).7

As noted earlier, two players see a common visual image and

simultaneously choose a “location”– a pixel. A circle is drawn

around the pixel choice (with a radius of 108 pixels). The circle

is about 1/5 of the screen width, about the size of a US nickel.8

The size of the baseline circle implies that if players are choosing

pixels randomly, they will match 7.1% of the time.9 The players

are considered to “match” if there is any overlap between the

two circles.

The experiment has three blocks of games: matching first, then

two blocks of hider-seeker games (switching roles between the two

blocks). During each block, there is a “feedback” sequence in which

the other player’s choice is revealed to the player, by showing a

circle around the pixel location of the other player’s choice. In a

“no feedback” sequence the other player’s choice is not revealed.

Examples of feedback trials are shown in Figure 1.

The experiment was similar to that of Li and Camerer (2022)

the matching block had two sets of 20 images, one for each of

the two feedback treatments (40 images in total). The hider-seeker

game used a different set of 19 images for each of the two feedback

treatments (38 images in total). For each image, subjects played

once as a hider and once as a seeker. An additional short session

of hider-seeker games followed in the last block (16 images) with

a bonus payment 10 times higher than in the baseline, to test for

effects of higher incentives.

There was unlimited time to read instructions but only

6 s to make a choice. Subjects got no payoff if they didn’t

respond before the known time limit. The results shown to

subjects in the feedback condition were drawn from previous

6 The time-interrupted predictions can also be compared to the

experimental “always be choosing” protocol used by Agranov et al. (2015).

In that protocol, subjects are continuously expressing a choice (e.g., using a

slider bar or mouse) and there is a probability that the recorded choice at any

time point will be randomly chosen for payment.

7 In Li and Camerer (2022), the game data were used to estimate level-

k models using only choices. The eye-tracking data were not used in the

main text. That paper also includes two other data sets. The HMM analysis

using eye-tracking as observations reported here is new, as are the level-k

identification and e�ect of time pressure.

8 If the pixel-centered circle extends outside the 2D boundary, the out-of-

bounds portion wraps around to the opposite side, as if the 2D image is a

torus.

9 Li and Camerer (2022) also did an experimental treatment in which the

circle size is 1.5 times bigger, and the predicting matching rate in the hider-

seeker game is 16% instead of 7.1%. The di�erence between the seeker win

rate and the Nash predicted win rate is +2%, the same as in the baseline

condition.

choices of actual subjects (using different previous subjects for

each image).

3.4. Eye-tracking data

N = 29 subjects (13 males, 16 females) participated in a

lab, one at a time, in a small testing room where their eye-

tracking was recorded (see Appendix for eye-tracking methods).

N = 15 subjects were from the Caltech community and N = 14

from the neighboring community (there were no differences in

results between the two groups). Five people failed the eye-tracking

calibration procedures so we discarded their gaze data. They will

earn $0.2, $0.1, and $0.4 in matching, hiding, and seeking games

respectively, for each “win” per trial (image). They were paid the

cumulative earnings at the end of the experiment.

4. The Gaussian discrete HMM

Figure 3 illustrates the sequence of five fixations for a single

actual trial in this particular game. The order of fixations is shown

by discrete numbers (the first fixation is denoted by “1,” the second

by “2,” etc.). The size of the dots at each fixation location is scaled

by the length of the fixation duration.

Figure 3B shows the same data in a time series, which also plots

(on the y-axis) the SAM-model salience of the location at which the

eye happened to be fixated at the time on the x-axis. In this example,

the fixations happen to be a step function that decreases in salience

from high to low (except for the super-short fixation 3). That is

not true in all trials, as the HMM will show. As is well-known in

human visual perception, it is evident in this example that the eye

is performing a series of rapid, discrete fixations (generally about

200–300 ms long), transitioning rapidly between fixations.

With this example in mind, we now explain how salience

judgments are made. Bottom-up salience is a concept from

cognitive psychology and neuroscience. Visual features that are

bottom-up are low-level features, such as color, orientation,

intensity (brightness), centrality, and high-level features such as

objects, faces, or animals. Top-down salience is the features of an

image that a viewer will direct attention to achieve a goal (e.g.,

maximize a rationally-inattentive objective function). It is well-

established that people tend to look at bottom-up salient locations

in the first 3–5 s of passive viewing, and that algorithms can predict

where they look quite accurately (see Li and Camerer, 2022 for

background details).

The algorithm we use is a “deep learning” convolutional neural

net trained on several “free viewing” data sets to compute bottom-

up salience for all image locations (Cornia et al., 2018). The data

came from several hundred people looking at large sets of natural

images of different kinds for 3–5 s, without any special goal in

mind. Their eye fixations were recorded with a physical eye-tracker

or a software-implemented pseudo-eye-tracker. The networks are

trained to predict accurately where most players look.

For the simplest discrete HMM, called dHMM, we observe

the order of fixations but not their duration. It is reasonable

to approximate the dynamic continuous attentional process as

a series of discrete transitions between states corresponding to
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FIGURE 3

An example of the fixation data sequence in one trial. (A) Shows five fixation locations overlaid on the original image and their numerical order (the
numbers are labeled in green). The radius of the red circle indicates the duration of each fixation. (B) Plots the saliency levels of the fixations in (A)

against the corresponding timestamp in that trial. Salience is normalized from 0 to 1 within an image. This specific trial starts at time zero. Note that
the third fixation is extremely short and hence is barely visible; it is plotted as a dot with saliency near one.

different levels of salience, ignoring the duration difference for new

fixations.10

As noted previously, the HMM hypothesizes four states: start

state S, decision state D, and two L and H salience hidden states.

While other assumptions about the number of hidden states were

tried, we found that two hidden states give the optimal BIC value

(see Appendix for details). One can specify more different hidden

states like three, four, or more salience-level states. But the best-

fitted results indicate that people do not distinguish any finer scale

of saliency other than the H and L levels when they are playing

these games. This is an interesting finding on its own. There is no

theory or intuition about why there are only two saliency states.

It is possible that players simply categorize saliency states crudely

into high and low (which is especially useful for the hider-seeker

game). It may also be that we do not have enough data, or trials with

long enough sequences of fixations, to detect more states. Studies

explicitly designed to figure out different possible structures would

therefore be useful.

The parameters that need to be estimated from the eye-tracking

data are the transition probability matrix P, and the means and

variances of the Gaussian L and H salience distributions. The

starting state has two transition probabilities, p(L | S) and p(H | S),

as well as a rare transition p(D | S).11

10 Some readers will be familiar with dynamic process models which

hypothesize a hidden accumulator or “drift-di�usion” models (DDM) leading

to choice (Ratcli� and McKoon, 2008; Ratcli� et al., 2016). These models are

designed to explain choices, error rates, response times (RTs), and di�erential

RTs for correct and erroneous choices (Krajbich et al., 2010; Ratcli� et al.,

2016; Fudenberg, 2020). DDM models are not ideal because, as Figures 3A,

B indicate, the core mental process is the transitions between salience levels

rather than accumulation toward one of two boundaries. It would certainly

be useful in future research to compare DDM and HMM more carefully.

11 These transitions from S directly to D only happened 1% of the time in

matching and 5% in hider-seeker games. And they are caused by a few players

who made their choices without even one fixation. The low probability of

these transitions also provides additional evidence that most people, even

after many trials, do make decisions by looking at the stimulus.

The states L and H self-transition internally with probabilities

P(L | L) and P(H | H), and transition between each other with

probabilities P(L | H) and P(H | L), and eventually transition to D

with probabilities P(D | L) and P(D | H). As noted, the estimation

is done using the standard Baum-Welch algorithm through the

HMM estimation toolbox in Matlab (Murphy, 1998; see Appendix

for details).

Figure 4 shows a graphic display of estimated transition

probabilities between states, and the estimated Gaussian

distributions of salience in the L and H states. There are

three figures, each corresponding to matching, hiding, and seeking.

In all three games, subjects transition from Start S to State

H most often (over 90% of the time). These high values of

P(H | S) in all games is evidence that SAM, which was

trained on free gazes of other people to predict the saliency

of an image, not on games, is doing a good job predicting

where the game-playing subjects look initially. The fixation

transitions afterward vary by the game structure and the subject’s
strategic role.

Transitions to the decision node D are also different across
games. In matching games, conditional transitions to D from H

states are more common than from L states (34 vs. 21%). In
matching games transitions from L to H are more common (31%)

than transitions from H to L (8%).
Readers who are new to HMM can think of these diagrams

as simply reporting a lot of conditional probabilities which are

interesting. For example, one interesting question is the conditional
probabilities P(H | Start), P(L | start) for hiders and seekers. These

conditional probabilities allow us to ask the question of whether

hiders and seekers begin their games differently. The answer is

basically No; 87% of hiders and 92% of seekers start at the high-

saliency H state. These data imply that even though their top-

down attentional goal is to find low-saliency locations, hiders

automatically look at high-saliency locations first (87% of the time).

There are lots of other questions about conditional probability that

are behaviorally interesting. The HMM gives all of these answers.

And instead of computing such statistics in a piecemeal fashion,

the conditional probabilities are all forced to come together into a

constrained and coherent whole.
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FIGURE 4

This figure shows the estimated HMM for three di�erent games, matching, hiding and seeking, separately. The estimated parameters consist of two
parts: The matrix P that gives the probabilities of being at the hidden states, and the parameters of Gaussian transition processes, which connect the
hidden variables and the gaze observables. In example in the hiding transition figure you can see that the probability of the next fixation being in a
high saliency (H) state given that you are currently in a H state is 54% and that the probability of switching to the low saliency (L) state is 32%. Likewise
the probability of switching to a H state given you are in an L state is 7% and that the probability that you switch to another L state is 59%.

In hider-seeker games, the transition rates among low- and

high-salience L and H states are different for hiders and seekers.

Hiders have a large asymmetry in rates of transitioning from H to

L (32%) compared to L to H (7%); this shows that these players

are looking for inconspicuous (low-salience) places to hide. Seekers

exhibit a similar difference but the asymmetry is smaller (21% and

12%). Hiders are slightly more likely to transition out of salient H

states (instead of L states) to D (14%) compared to seekers (18%),

reflecting strategic thinking by the hiders.

The estimated L and H state Gaussian saliency distribution

means are rather close across all three structures: The means are

(0.57, 0.90) in matching, and (0.45, 0.84) and (0.45, 0.86) for

hiders and seekers, respectively. Recall that every image contains

many low-salience locations because saliency values are normalized

to range from 0 to 1 in each image. However, the estimated

Gaussian means of saliency in states L and H are around 0.50 and

0.90, respectively. This implies that deeply low-salience locations

(saliency levels below 0.40) are fixated on so rarely that the

model practically ignores them. This is an important insight

because it indicates that hiders have limited strategic thinking (or

a limited perceptual inability to find very low-salience locations)

which explains the seeker’s advantage in winning more often than

predicted by Nash equilibrium.

5. A new way to identify strategic
thinking levels

This section introduces a new way to identify levels of strategic

thinking based on HMM transition data. The method relies on a

simple assumption: when people are reasoning between different

strategic options, their eyemovements are associated with thinking.

Under this assumption, we hypothesize that in hider-seeker games

higher-level players transition back and forth between different H

and L states more often, and low-level players have fewer fixations

and transitions, and faster response times. The HMM method

can then be used to infer an estimated k level on a single trial

basis (based on the number of state transitions), given a game

structure and gaze data. We will illustrate how it works in these

location games.

Level estimations can be sensitive to the specification of what

level 0 players do. The HMM solves this problem by using the

data to infer initial state probabilities (assuming the starting

state is the level 0 choice, which is as plausible as any other

conventional assumption). Second, in many games, such as 2 ×

2 normal-form games with mixed equilibria and some games

with strategic substitution, predicted choices cycle in the sense

that the same choice can be made by players using both low

and high levels of reasoning.12 While some elegantly designed

games have been created that do not predict level-k cycling and

hence make level classification easier (including the 11–20 money

request game, p-beauty contest game, and ring games Nagel, 1995;

Arad and Rubinstein, 2012; Lindner and Sutter, 2013; Kneeland,

2015). However, many games of economic interest will have

classification challenges.

Given an estimatedHMMmodel Ĥ, suppose a vector of fixation

emissions denoted by f = [f1, f2, ..fm] is observed in a single

trial under game G. The vector f can be projected back to h,

so that we get an ordered vector in the estimated hidden state

space by maximizing the posterior probability: P(ht | f, Ĥ, ht−1)

sequentially. Formally, a projection function go→ω : O → � is

defined as:

go→ω(f) = argmax
h

P(f | h, Ĥ)

12 That is, there exist strategies si, s.t si ∈ Bi[B−i(si)].
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Thus, the fixation vectors are now all transformed into hidden

state vectors. Take the salience game Hider as an example. A

recovered hidden state transition vector from actual fixationsmight

be [S, L,H,H,H,D].

With this transformed data set, strategic thinking levels can

be defined based on inferred hidden state transitions. First,

we assume that the initial fixation is the level 0 response as

several other studies have shown evidence that level 0 choices

are more likely to be salient options (e.g., Crawford and Iriberri,

2007a).13

Then we further assume that players switch roles when

they are trying to mentally simulate other players’ moves. Each

directional transition that fits the best response function of game

G and a current simulated level s and role ît adds one more

level. And just like the textbook best response notation bît (σ ˆit−1
),

the best response function maps to a set of strategies of the

current player ît when her hypothetical opponent (given by

her last stage thought) chooses σ ˆit−1
. For instance, one’s best

response is to choose the most salient location if she wants

to coordinate. An estimated level using HMM will be the sum

of all such switches in levels. For example, a transition vector

[L, L,H, L, L,D] in hider-seeker games will be identified as level

2 because there is a transition from L to H and then from

H to L.

Formally, given a transition vector h = {h1, h2...ht ...} in a single

trial and the best-response function B of the game, the strategic

level is defined by:

k =
∑

t

11(σît = B(σ ˆit−1
))

With fixation transition emissions and an estimated HMM

model based on those fixations, the above procedure can estimate

a system of strategic levels on a single-choice basis (one level

for each choice). Figure 5 shows the estimated level distributions

13 An open topic in behavioral game theory is the ideal cross-game

specification of level 0 player choices. Early versions assumed level 0’s

randomized across all strategies. Our current thinking is that level-0 players

choose salient strategies; equal randomization as a default when strategies

are equally salient. This assumption obviously begs the question of what

makes strategies salient to level 0’s. In location games, visual salience is one

answer, and the HMM estimate that P(L | S) is around 0.90 is strong evidence

for this answer. Other papers with large numbers as strategies have also

found concentration on ”lucky numbers”—e.g., Ho et al. (1998) found a large

number of Singaporean subjects choose 80 or 88 in the p-beauty contest

game (because 8 is a lucky number for many Chinese). In a Swedish lottery

game, LUPI choosing numbers from one to five digits, Östling et al. (2011)

found that disproportionately many people picked numbers corresponding

to birth years (e.g., 1900–2000). In games with private information states,

both auctions and sender-receiver games, it appears that level-0 players

choose strategies equal to their private information. For example a level 0

player with a private value V bids that same number in an auction, and a

level 0 sender’s message is the true state (Cai and Wang, 2006; Crawford and

Iriberri, 2007b; Wang et al., 2010).

of three different games aggregated for all subjects and all

images.14

These level identification results show an approximately

exponential decline but also fit reasonably well to a Poisson

distribution, which is consistent with the simplifying assumption

made in the Poisson cognitive hierarchy model. The best-

fitted τ s are 1.37, 1.33, and 1.29 for matching, seeking, and

hiding, respectively.

Note that the estimated frequency of level-0 types for both

seeking and hiding is high; it is around 30%. However, these

frequencies are roughly consistent with the Poisson specification

with low values of τ s (1.33, 1.29). And note that the Poisson

frequencies for level 1 and above match quite closely (i.e., the

Poisson distribution is a good fit for the estimation of level types

from the HMM).

In matching games, the level-0 frequency is estimated to be

quite high, at around 40%. But remember in the matching games

the goal is to find a location that will match what others will see.

Finding a highly salient location can end the strategic process—

and often, it should end the process. Indeed, this result is likely

to be consistent with what is predicted by a model in which levels

are endogenously chosen based on the assessed benefit of thinking

further. In matching games, if a salient choice is made that is

likely to match, there is little benefit to looking further Alaoui and

Penta (2016) so it is endogenously optimal to stop at level 0. In

our matching games there are range of images with high and low

density of saliency centers CONOR.

Similar to many previous estimates, the HMM level

identification indicates that most specific-trial inferred levels

are below k = 3. This is a non-obvious result because eye saccades

are effortless; a highly strategic hider, for example, could easily

transition back and forth from L to H states three or more times in

a few seconds. Yet our study finds that players who make three or

more transitions are rare.

Figure 6 compares the mean of population levels15 by using

our gaze-predicted method and two previous methods: structural

cognitive hierarchy and level-k models (for details about these two

benchmark models, see Li and Camerer, 2022). As can be seen, the

estimated mean level of the new method lies between the mean

level from the cognitive hierarchy model and the level-k model.

Furthermore, using our new method, the strategic level in hiding

games is not different from that in seeking games (p = 0.24),

14 One reviewer asked whether there are more H or L locations and hence,

whether there could be more opportunities for transitions from one state to

the other. The saliency values in an image are always normalized so they

are uniformly distributed from 0 to 1. In the H and L states as estimated, the

standard deviations of the Gaussian distribution of saliency levels are smaller

(about half as large) for the H state (see Figure 4). As a result, when a person is

in the H state there aremore L-state locations to transition to. This asymmetry

of the “size” of the saliency range in the two states can influence transition

rate if there is a high degree of randomness. However, the emissions data

used to estimate the HMM account for this possibility. Furthermore, it is easy

to equate the variance of the saliency levels for each of the two (or more)

states to eliminate this asymmetry.

15 Averaged among all individuals and all trials. We are showing results

ignoring heterogeneity of individuals for now.
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FIGURE 5

Level identification from gaze transitions and HMM. The blue bar shows the histogram of levels identified using the gaze transition method using all
gaze data across all individuals. The red line is the best-fit Poisson distribution of the gaze-identified level distribution.

FIGURE 6

Comparison of levels between the gaze estimated method and
benchmark traditional methods. The blue bars are the average levels
estimated using gaze data. Red bars are those levels using cognitive
hierarchy method. Yellow bars are the levels using level-k method
(assuming level-k players best response to k-1 group). The level-k
model su�ers from an identification issue in matching games, the
choice prediction is exactly the same for all levels, therefore, the
yellow bar is omitted there.

while in matching games, people behave as lower types than in the

hider-seeker game (p < 10−4).

Note that this level classification is done on a single-trial basis.

Each subject has a level classification for each trial and game type.

We can therefore explore how consistent players are in their level of

strategic thinking across roles and games. The estimated individual-

game base levels are shown in Figure 7. One dot indicates the

average strategic level for one person and one game. We found

that individuals’ levels are correlated for separate hiding games and

seeking game estimations as can be roughly seen in the figure (that

is most of the yellow and orange dots are close to one another, and

the correlation coefficient for hider- and seeker-levels is ρ = 0.55, p

= 0.005). However, in the matching game players’ levels are often

FIGURE 7

Estimated strategic levels across games at individual level. Each dot
shows the average strategic level of one individual in one game
session. Three dots in one column represents levels of di�erent
games for one individual. We order the data of all individuals by their
mean level performance (average of the three dots), from low to
high going left to right.

quite different from those in hider-seeker games (no significant

correlation was found). This result suggests that individuals behave

rather consistently in similar level depths when they encounter

similar strategic situations. It could be useful to test the individual

consistency in a wider range of games in the future to see how

different/same people behave under different strategic categories.

Because we have limited data per subject, the HMM analyses

aggregated data across subjects to give only a general picture of the

nature and frequency of high- and low-salience transitions (that’s

in Figure 4). Thoughtful readers have asked about what might be

learned about other types of likely behavior from our eye-tracking

data and from the HMM that distills all those data into states

and transitions.
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• Wouldn’t the initial search phase likely exhibit some

transitions between an H and L state at least once? The

answer is that as the HMM transition rates show, this type

of automatic high-to-low exploration behavior is not all that

common. When in the high-salience state, hiders and seekers

transition out with probability 0.32 and 0.21. Keep in mind

that subjects have six seconds to choose, and each image

is unique.

• How would we expect random or clueless players to behave?

This is an important question. In experimental economics,

we usually think of “clueless” (or unmotivated, or tired)

subjects as choosing randomly and quickly. But in these

experiments, truly choosing randomly among pixels means

ignoring their visual salience. A huge amount of evolved

adaptation and dedicated neural circuitry is devoted, in the

human brain (and in other mammals) to responding to

salience. So “clueless” players are unlikely to look at all aspects

of an image-they are more likely to look at high-salience

locations automatically and not look much more. That is

precisely why we estimate a substantial percentage of level-0

thinkers given the HMM results.

• Do multiple transitions between L and H states necessarily

show higher sophistication? Perhaps players are just “making

sure” of the relative salience by comparing the two states again.

Our answer to this question is that salience is a rapidly-coded

property of a location. It is not like a number in a payoff

matrix, which a person may need to keep in mind as part of

a working memory-constrained calculation (like finding the

level-1 strategy), and might therefore re-fixate on to improve

memory. It is, of course, conceivable that players transition

from H to L to H, but when they do it will be coded (perhaps

“over coded”) as high-level behavior, and as is evident in

Figure 5, such multiple transitions are rare.

• How confident should we be about the inferred levels of

reasoning in Figure 5? The answer is that there are certainly

many strong assumptions that go into inferring these levels

from the H-to-L transitions so we cannot be very confident.

But we are confident that the eye-tracking data, as distilled into

an HMM, is an improvement over trying to infer level-k and

cognitive hierarchy model parameters purely from choices.

In Li and Camerer (2022), the cognitive hierarchy just seems

wrong. The problem is that higher-level hiders should choose

low-salience locations and they just do not make those choices

very often. The model is so rigid that it has no choice but to

infer a low average level τ . Level-k models are more flexible

about the frequencies of level types and deliver frequencies

more similar to many other studies, but the overall fit is only

a little better for level k. In our view, using the H-to-L salience

transitions is a better biomarker of plausible level-k transitions

than the inference in Li and Camerer (2022) which did not use

eye-tracking data.

6. Using a continuous-time cHMM

The discrete dHMM model can be further extended to a

continuous Hidden Markov Model (cHMM) to predict choices

under time pressure. The cHMM preserves all the properties of the

discrete HMM, but it also adds information about the time length

of fixations.

A cHMM inherits everything from dHMM except that the

probability of transitioning to state j from i at time t is redefined

with respect to time denoted by Pij(t). In Section 3.2, we already

estimated the transition probability matrix P̂ and µ̂. In this section,

the main goal is to estimate Pij(t), the dynamic profile of time-

stamped transition probabilities over time.

This addition enables cHMM to predict how long the decision-

maker will stay in each hidden state and the probability of observing

a particular data emission at each time point beginning from time

zero. A sample prediction would be: at time 2 s when the decision-

maker is in a hidden state (L), she will switch to another hidden

state H with a probability of 0.7.

The cHMM model makes predictions about what information

a decision-maker will look at, and which strategy they will choose

if the exogenous limit on response time is reached. Specifically, a

cHMM can answer the following question: If the dynamic strategic

process of the player is artificially truncated earlier, what does the

player do? Does she not have time to find a reasonable strategy, and

hence suffers from losing more in the game under time pressure?

Next, we will use data from the salience game to validate the

prediction. Similar to the previous section, the association function

is assumed to be Gaussian, thus the model is called the continuous-

time Gaussian Hidden Markov Model (cHMM). As in dHMM,

the data set consists of emission vectors, which are the saliency

values of the fixation location. In cHMM, the saliency values of

these fixations are combined with the duration of eye fixation at the

location of interest. As with the estimated dHMM model, we use

the standard MLE method described in Ross (2002) and a cHMM

package tutorial16 to further estimate Pij(t) for each game. The

results of estimated salience levels output by the continuous models

are shown in Figure 8. The model predicts that in all three games,

people start at salient locations (H) in the first couple of hundred

milliseconds. In the matching game, the decision path mostly stays

in state H and so the predicted saliency level falls only slightly over

time. In hider-seeker games, the probability of being at the high-

saliency state H drops much faster than in the matching game and

drops more rapidly for hiders than for seekers.

The basic prediction is that time pressure will increase the

average saliency of locations chosen because over time the general

trend of both seekers and—more strongly—hiders will be to

transition from H to L during a trial. If that process is interrupted

prematurely, average salience levels will be higher as the player

will not have time to shift their fixations to lower salient locations.

That should lead to increased matching rates, and thus seekers

will win more often. Time pressure should therefore increase the

seeker’s advantage.

That directional prediction is not too surprising. However, the

goal here is more ambitious than just predicting the direction of

the effect. The HMM predicts the numerical size of the seeker’s

advantage for various amounts of time pressure. Note that a crucial

maintained assumption in this exercise is that players do not adjust

16 https://research.fredhutch.org/content/dam/stripe/etzioni/files/

cthmm%20manual.pdf
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FIGURE 8

cHMM model predictions of salience strategy over time. The figure
shows the probability of people being in the high-salience state as
time goes by in the unit of seconds. The simulation results of cHMM
predicting the matching rate averaged against reaction time over all
the task images. Point X is the estimated average matching rate of
the time-pressure group and point Y is the estimated average
matching rate of the baseline (no time pressure) group.

their HMM structure due to time pressure. If this assumption is

wrong, the predicted effects of time pressure will not be accurate.

To test this hypothesis, we compared two new groups from

mTurk. The control group (N = 38) faced the same experimental

setting as the lab subjects (with a constraint of 6 s for response). The

treatment group (N = 31) had a shorter time constraint of 2 s. All

other features of the design were unchanged.17

The seeker’s advantage between control (time limit = 6 s) and

time-pressure treatment groups (time limit = 2 s) was measured

in new experimental sessions.18 In the baseline 6 s condition, the

online group still shows a significant seeker’s advantage at precisely

the same matching rate, 0.09, as in the local lab population. The

seeker’s win rate increased significantly to 0.15 (p < 10−4, t-test)

in the time pressure condition. This result is shown in Figure 9,

labeled by point X (time-pressure matching rate) and point Y

(baseline matching rate). The cHMM model correctly predicts the

change in seeker win rate will go up from 6 s to 2 s deadlines,

although the predicted magnitude of change is only about half as

large as the change in the actual data.

To investigate whether this increase in the seeker’s advantage

was due to subjects choosing more salient locations under time

pressure, we compared the mean saliency level of location choices

in the control and time pressure treatments. Hiders’ mean choice

saliency increased under time pressure, from 0.52 to 0.59. The

corresponding seekers’ mean saliency rose from 0.61 to 0.81.

17 For both conditions, trials with no click point recorded during the time

constraint occurred in 13.3% of trials for the control group and 14.7% for the

treatment group. The number of observations for feedback and no feedback

group di�ered by <5%. The smaller one is reported.

18 These data are reported here for the first time, they are not included in

Li and Camerer (2022).

FIGURE 9

cHMM model rate change over time. Simulation results of cHMM
which predict the matching rate against reaction time over all the
task images. Point Time Pressure Group is the estimated average
matching rate of the time-pressure group and point Normal Time
Group is the estimated average matching rate of the baseline (no
time pressure) group. Finally note that time-pressure should not
change the matching rate in matching games, because the saliency
change is very little.

Note that in the no-feedback condition, the seeker win rate was

a bit higher than the feedback condition, 0.23 (We do not have a

particularly clever explanation for why this rate is higher than the

0.15 observed for feedback, except that opportunities to learn from

feedback decrease noise.).

Thus, our understanding of how saliency interacts with the

depth of strategic thinking enabled us to predict a change in seeker

advantage due to time pressure. While the effect of time pressure

might seem obvious, no model currently used in behavioral game

theory predicts this change.19 That is because there are no theories

integrating salience and dynamic attention as the HMMs do. The

prediction that the seeker’s win rate will go up under time pressure

is indeed intuitive, but it rests entirely on the hypothesis that under

time pressure, hiders cannot inhibit the automatic tendency to look

at—and also choose—salient locations. Additionally, the cHMM

goes even further than that time pressure intuition by delivering

a continuous predicted profile of seeker win rates across the entire

range of game durations. It should be easy to imagine interesting

experiments testing such numerical predictions on these data and

many others where dynamic attention is measured and understood.

An important methodological comment is that in economics

experiments it is not generally thought to be likely, or even

important, that exact numerical results generalize from lab to field.

There is typically sufficient difference between a simple artificial lab

environment and a target field setting (to which there is intended

generalizability) that we do not expect specific numerical results to

19 And note that if choices were more random under time pressure, the

matching rate would move toward the Nash prediction of 7.1%, but it moves

in the opposite direction.
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carry over from the lab to the field. For example, how much lab

workers reciprocate being paid generous “gift exchange” wages, in

numerical terms, is unlikely to give a good estimate of workers in a

company reciprocating year-end bonuses with extra January work

hours. The exact number derived from the simpler lab environment

is not designed to be a number useful in predicting company bonus

reactions. In those common cases, the lab is thought to be useful

for generating qualitative insights—such as the sign of an effect,

and whether it is small or large (compared to prior beliefs or

other studies). It is not expected to generate portable quantitative

insights (see Kessler and Vesterlund, 2015 for a good articulation

of this view).

The importance of the precision of the cHMM-derived time

pressure prediction here is different. In our case, the precision

shows that when a method such as dynamic HMM is applied to

one set of decisions, and a prediction is derived from interrupting

theHMM, the prediction is precise and not too far off. This suggests

that if an HMM was used to study states in field data (as has been

done inmacroeconomics), and the HMM is interrupted in a certain

way, the prediction based on interruption would not be too far off

either. The numbers would of course be different, but the ability of

the interrupted-HMM procedure to produce a reasonably accurate

prediction is—we conjecture—likely to have some accuracy.

7. Discussion

In this paper, HMMs were used to distill eye-tracking data

to understand strategic dynamics in visual location games. The

HMM derives the best way to infer hidden states and connect them

to observable eye fixations and strategic choices. The best-fitting

model shows that players generally begin trials by fixating on highly

salient choice locations, regardless of game structures. Transitions

to high- and low-salience states then take place at different rates

depending on the goal in each; matching, hiding, or seeking.

The HMM itself is novel and is hopefully an insightful way to

summarize the cognitive process and compare it across player roles.

Beyond those insights, HMM is used to generate two new insights.

The first insight is how to estimate level-k models. We created

a new method to classify the strategic thinking level for every

game trial using the trainedHMM. The results consolidate previous

findings that level frequencies are often approximated by a Poisson

distribution, and the average level is around 1.5. The new type

classification has two differences (and potential advantages) over

previous methods: (1) Level identification does not depend on an

a priori level 0 specification; and (2) levels are defined by inferred

state transitions.20 The resulting level profiles—with average levels

around 1.3—match other experimental data sets reasonably well.

The second insight uses continuous-time cHMM built on top

of the dHMM. dHMM is a model of discrete state transitions but

does not have a running time clock– it runs on event sequences,

not clock time.21 The continuous model includes the fixation time

20 The use of state transitions has a similar goal to eye-tracking

applications that use sequences of fixations to infer decision rules, as in

Costa-Gomes et al. (2001) and Polonio et al. (2015). The di�erence in dHMM

is that sequences of inferred states are used instead of fixations. Further

research comparing or combining the methods should prove useful.

lengths and uses them to predict a time profile of salience level

choices. This model successfully predicts a change in matching

rates in hider-seeker games when there is exogenous time pressure,

although it does under-predict the magnitude of the effect.

Additionally, we believe that our findings can be extended to

non-location-based games. There is evidence to suggest that the

same saliency algorithm we used in our location games can be used

effectively to discern saliency in other domains such as identifying

salient locations of a stock chart (Bose et al., 2020) or in a matrix

game (Li and Camerer, 2022). With this knowledge, we believe our

HMM approach can be extended to gain insight into the reasoning

of players in these games as well.

One limitation of our study—and all other studies measuring

time and visual fixation—is that we do not know exactly how

people are reasoning about the game independently of their visual

fixations. The presumption in HMMusing fixations is that fixations

are reflecting a choice process. The working assumption is that

when a payoff or structural feature is not seen it is not used

in computation. This assumption may underestimate strategic

thinking levels because it does not identify higher-level players who

are reasoning mentally (e.g., using memory) without redirecting

their gaze.We suspect that such reasoning-without-seeing behavior

will be less prevalent when the game is novel or complicated.

An important open question for behavioral game theory is

whether the HMM method might help address the challenge of

portability, raised most sharply by Hargreaves Heap et al. (2014).

Portability in general is the ability to predict frommodel parameter

estimates in one game to other games, preferably new games

that are different in structure.22 [Hargreaves Heap et al. (2014)

are skeptical about portability of level-k models. Crawford (2014)

challenges their skepticism.] One type of useful portability is

how trait-like level-k thinking levels are, for an individual, across

different types of games. In psychology, this long-standing question

is called “states versus traits.”

Deriving thinking levels from an HMM or some other

dimension-reduced use of fixations and choices can address the

problem of personal-parameter portability (i.e., traits) to some

extent, but not directly. Since HMM levels are defined on single

trials instead of people, it naturally relaxes the condition that

the same individual should necessarily have consistent thinking

levels across games (Indeed, analyses like Alaoui and Penta, 2016

which endogenize thinking suggest levels should not be the same

across games, or even in different games within a person, because

endogenous levels will depend on payoff incentives for more

thinking.). It is still meaningful, though, to ask this question: do

people have different abilities in strategic games? If so, how should

we define ability? A possible future research direction is to collect

large data sets across subjects on different games, making sure

to collect their gaze data, and then to use HMMs to investigate

21 This is a good, or necessary approximation, if there are no response time

data or if fixations corresponding to states or very similar in length.

22 The term “portability” in behavioral economics has come to mean how

well a model and particular functional forms, or even specific parameter

values, can be derived in one domain and predict behavior in a di�erent

domain.
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the differences in depth of strategic thinking across people and

game structures.

Note that HMMs have even more general applications than

the ones used here. Any observable information can be used as

covariates, to estimate the state transition matrix P or condition

its values. For example, if the trial number t is included, the HMM

can estimate whether learning—in the form of changes in transition

rates based on t—is happening over the course of an experiment.

Many social scientists outside of psychology are now drawn

to, and trying to make sense of, the idea and value of a dual-

process “system 1, system 2” type of decision-making (Kahneman,

2003, 2011). This idea originated in studies of the psychology of

judgment. If there really are two dissociable systems of perception

and judgment, and they transition sequentially from system 1 to

system 2, a two-state HMM is ideally suited to identifying the states

and their properties and transition rates.

HMMs may be applied insightfully in other domains of

experimental economics besides matching and competitive hider-

seeker games. Any domain in which data or theory suggest there

might be distinct modes in a mixture distribution of observables,

and in which those modes are stochastically related to hidden

hypothesized states, is a good candidate for HMM analysis. These

could be the mental states of individuals fixating on locations in

visual images, in our location games, or collective or individual

states in auctions or markets. Here are some speculative examples:

• Market equilibrium: Classroom supply-demand experiments

study equilibration and efficiency in markets for perishable

goods (see Smith, 1962; Lin et al., 2020). The observables are

the timing of bid and ask arrivals and the resulting “order

book,” price levels and changes, etc. Plausible hidden states are

whether the market is near competitive equilibrium or not.

• Bubbles: The observables are features of price changes, bid

and ask arrivals, and the resulting “order book,” social media

discussion (Shiller, 2015, 2020, or even brain activity of

traders, Smith et al., 2014). Plausible hidden states are whether

a stock is in a price bubble.

• Optimal bidding: Experimental bidders in second-price

Vickrey auctions do not always bid their values (though it

is a dominant strategy to do so). The observables are bids,

response times, and even neural activity measured by fMRI

(Grether et al., 2007). Plausible hidden states are bidding in

and out of equilibrium. Related applications include: “Game

form recognition” (Chou et al., 2009; Cason and Plott, 2014;

Bull et al., 2016) and “epiphany” learning where a player

seems to suddenly discover an optimal strategy (Chen and

Krajbich, 2017; Chen and Wang, 2020) (Those models might

be a lot like how regime shifts are studied using HMMs in

macroeconomics—an epiphany is a mental regime shift.).

A more general question is whether bidders adjust bidding

rules dynamically. Others applied an HMM to experimental

data from English and first-price sealed-bid auctions (Shachat

and Wei, 2012). They find a slight tendency to shift from best

response bidding to an absolute markup (fixed profit) rule.

• Deception in sender-receiver games: The observables are

timing and content of sender messages and receiver actions,

and potentially eye-tracking, pupil dilation, psychophysiology,

facial muscles, etc. (Crawford and Sobel, 1982; Wang et al.,

2010). Plausible hidden states are whether senders are

deceptive and whether receivers are naïve or sophisticated.

Other experimental paradigms in which there may be

deception and lying (Abeler et al., 2019) could be studied

similarly using HMM. A related application is detecting

collusive states in experimental markets (Fonseca and

Normann, 2008).

• Insider trading: A challenge for securities regulators is

detecting whether insiders are illegally trading in a market

(Detecting market manipulation is a similar challenge

conceptually.). The observables are features of bid and ask

arrivals and the resulting order book, block size and trader

identity of orders, etc. Plausible hidden states are whether

insiders are trading in the market. An advantage of using

lab experiments is that one can control the number of

insiders. A derived HMM that tries to infer insider trading can

then be matched with the actual insider trading observed in

the experiment.

• Cooling off: In ultimatum games, it is well-established that

many responders reject positive offers of money (see Lin et al.,

2020 for recent evidence). Rejections appear to reflect a trade-

off between receiving money and tolerating unfair inequality.

A related interpretation is that the rejection decision is

influenced by an emotion such as anger at being treated

unfairly. If so, the emotion might be transitory so that an

angry respondent “cools off” over time, and is more likely

to accept the same offer if she has to wait a while. There

is mixed evidence that waiting periods can affect rejection

rates (although in both directions, Cardella and Chiu, 2012;

Oechssler et al., 2015). In this example, possible observables

are emotion measures (e.g., facial emotion see Nguyen and

Noussair, 2014), arousal such as galvanic skin response, self-

reported emotions, etc. Plausible hidden states are whether the

respondent is in the “hot” emotional state or has cooled off.

By varying the length of time between receiving an offer and

responding, HMM could deliver a prediction about roughly

when the cooling-off occurs.

We add two remarks about the speculative examples that were

just listed: First, in most previous research on these topics the

experimenters use a specialized statistical analysis which essentially

tries to associate observables with hidden states, without using the

language of HMM. For example, in a single-period supply-demand

experiment, measures such as how much prices deviate from a

predicted competitive equilibrium crudely distinguish whether the

market is in equilibrium or not.

In HMM those two states—the market in and out of

equilibrium—would be treated as hidden states which are

hypothesized to be statistically identifiable by observable

“emissions.” The key difference is that HMM is appropriate,

and is likely to add insight when observables appear to be created

by a mixture of statistical modes. For example, in the equilibrium

hidden state, the trade-to-trade price changes might be much

smaller in magnitude than when in the out-of-equilibrium

state. That is, a histogram of price changes would look like a

non-Gaussian mixture of a big spike at price changes close to

Frontiers in Behavioral Economics 15 frontiersin.org

https://doi.org/10.3389/frbhe.2023.1225856
https://www.frontiersin.org/journals/behavioral-economics
https://www.frontiersin.org


Li et al. 10.3389/frbhe.2023.1225856

zero, in equilibrium, and another variable distribution with larger

changes which is out-of-equilibrium adjustment. Because cHMM

is dynamic, it could also provide a tentative answer to the question:

When did the market reach equilibrium?23 The answer would be

the time at which the market is in the “equilibrium” state with high

probability and is unlikely to transition out of that state. There

might also be more than two states which represent various degrees

of near-equilibration.

Second, in many cases, the important behavioral states are not

hidden and are known to the experimenter. For example, in a

sender-receiver game, an experimenter can directly measure if a

sender is deceptive by comparing the sender’s message and the true

state because the true state is known to the experimenter. What is

“hidden” is the observable aspects of activity—mouse movements,

perhaps eyetracking or facial emotion– which are associated with

what an experimenter knows is a deceptive behavior. Then one

could train an HMM using those other kinds of data (and knowing

whether a sender is deceptive or not), then use it as a generative

model to infer a true state that is known to the sender but not to the

experimenter. Such a model could conceivably be applied to data in

a field application outside the lab where true states are unknown.

For example, an HMM could be trained to detect whether bidding

is in equilibrium in a setting where the experimenter knows

the bidders’ true object values, then use it in an experiment or

field setting to detect whether bidders appear to be bidding in

equilibrium or not.

Finally, putting aside the HMM framework, this paper adds to

evidence from Li and Camerer (2022) about the potential value of

algorithmic measures of visual salience to study decision making

and economics. In simple decisions with mild time pressure,

bottom-up attention based on the salience SAM is designed

precisely to predict a lot of what people first notice, which will often

influence decisions. In retail stores, vendors pay a premium for shelf

space at eye-level because products at that location are central in

the visual field and are therefore more rapidly salient. “Nudges”

make simple changes to choice architecture that impose low costs,

and improve decisions as consumers or citizens themselves would

judge them. For many such decisions, making desirable choices

more visually salient is something that is not difficult to do, using

algorithms such as SAM (or a more locally-tuned algorithm) but is

not a large, systematic part of current nudge cartography.
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