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Unraveling information
processes of decision-making
with eye-tracking data

Chih-Chung Ting* and Sebastian Gluth

Department of Psychology and Hamburg Center of Neuroscience, Universität Hamburg, Hamburg,

Germany

Eye movements are strongly linked to the perception of visual information

and can be used to infer mental processes during decision-making. While

eye-tracking technology has been available for several decades, the

incorporation of eye-tracking data into computational models of decision

making is relatively new in neuroeconomics. This review article provides an

overview of the interaction between eye movement and choices, highlighting

the value of eye-tracking data in decision-making research. First, we provide an

overview of empirical work studying the interaction between eye movement

and choices. In the second part, we present existing models that incorporate

eye-tracking data into process models of decision-making, emphasizing

their assumptions regarding the role of attention in choice formation and

contrasting models that use gaze data to inform behavioral predictions with

those that attempt to predict eye movements themselves. Additionally, we

discuss the potential of using cognitive models to understand the connection

between choice and gaze patterns and normative aspects of decision-

making. Overall, this review underscores the significant role of eye-tracking

data in understanding decision-making processes, particularly in the field of

neuroeconomics, and its potential to provide valuable insights into individual

di�erences in decision-making behavior.

KEYWORDS

attention, eye-movement, cognitive model, decision-making, drift-di�usion model
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1 Introduction

When making decisions in both real-life and laboratory settings, individuals

selectively attend to specific information, search for relevant details, but also

appear to overlook certain cues deliberately and systematically (Sims, 2003;

Gluth et al., 2020; Sepulveda et al., 2020; for review, see Orquin et al., 2018;

Wedel et al., 2023). Consequently, different sources of information usually

receive unequal amounts of attention, and it is crucial to consider “what”

information is perceived and “how” this information is processed when investigating

decision-making. Over the past few decades, two powerful tools—eye-tracking

technology and cognitive models—have been adopted to unravel these fundamental

questions. Eye-tracking allows recording dynamic eye movements throughout
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the task, thereby offering invaluable insights into the role of visual

(mostly overt) attention1 in information search and acquisition. In

parallel, cognitive models specify the latent mechanism underlying

decision-making. Yet, to date, only a few cognitive models

recognize the integral role of eye movement in information

processing and attempt to account for or even predict eye-

movement patterns.

The emergence of this evolving class of models aligned

in time with eye-tracking studies that revealed a robust link

between option values, eye-movement patterns, and choice

behavior, by now known as the Gaze cascade effect: people

tend to look at more attractive options, and looking at an

option increases its preference (Shimojo et al., 2003). The

association between eye movements and choice behaviors is

further supported by studies investigating the causal role of

visual attention on choices. For instance, when the duration of

option presentation was experimentally manipulated, participants

tended to choose the option that was displayed relatively

longer (Armel et al., 2008; Lim et al., 2011; Pärnamets et al.,

2015; Tavares et al., 2017; Ghaffari and Fiedler, 2018; Pleskac

et al., 2022). At the neural level, Lim et al. (2011) directed

participants’ gaze to one of two options using a cue, and the

authors observed that the brain’s representation of subjective

value to identical options was modulated by participants’ gaze

positions. These findings, again, suggest that visual attention

is involved in decision-making, emphasizing the importance of

considering eye movements in cognitive models when studying

mental processes.

The present review aims to introduce cognitive models that

incorporate eye-tracking data. In particular, we elaborate on how

these models utilize eye-movement data to capture the variability

in choice patterns. Among the various forms of variability that

are captured by these models, we mention inter- and intra-

individual differences in speed-accuracy tradeoffs, variability in

choices due to varying fixation patterns or varying strength gaze

effects on preference formation, and variability in fixation patterns

(as well as choice accuracy and response times) due to differences

in search costs. To ensure accessibility for readers unfamiliar

with eye-tracking studies, we will first introduce the visualization

of eye-tracking data and how these measurements have been

used to study choice behaviors. Subsequently, we will introduce

existing models that incorporate eye-tracking data to predict

1 Unlike covert attention, which selectively processes information without

orienting the eyes, eye movements measured by eye-tracker are commonly

used to infer visual overt attention and where a participant is looking.

Despite controversies surrounding the interchangeability of eye movement

and attention (Mormann and Russo, 2021), these two terms play similar

roles in selecting and filtering information. While visual information can

be perceived without directly looking at items (i.e., covert attention), the

looked-at items are often processed in more detail (Deubel and Schneider,

1996). Furthermore, eye movement and attention might share the same

neural mechanisms as they are associated with the activation of the superior

colliculus, a brain region associated with saccade preparation (Kustov and

Lee Robinson, 1996). Given the strong connection and similar functions

observed between eye movements and attention, we use these two terms

interchangeably throughout the rest of the review.

purely behavioral measures (i.e., choices and response times) and

their association with eye-tracking data. Then, we will discuss

existing models that do not only predict behavior but also eye

movements. In the final section, we will summarize the insights

gained from these models and outline promising avenues for

future research.

2 Eye movement basics and measures

Eyes serve as a mechanism for filtering visual information

through gaze. Although the human eyes cover a broad

visual field, detailed processing occurs primarily at the

center of gaze (Figure 1A), as this spot refers to the fovea

on the eye’s retina (Loschky et al., 2005; Leigh and Zee,

2015). Consequently, monitoring gaze position provides a

proxy for identifying what visual information is processed

in detail. Modern eye trackers allow recording of this

gaze position by detecting near-infrared light reflections

from both the pupil and cornea. Gaze position is then

measured in x-y coordinates based on the screen resolution

(Figure 1B). With high temporal resolution, such as 1 kHz, it

is possible to record gaze positions at very rapid rates at the

millisecond level.

The sequence of x-y coordinates is typically categorized based

on spatial and temporal proximity, resulting in saccades which

indicate dynamic shifts in gaze position, and fixations which

represent time periods of (relatively) immobile gaze positions

(Figures 1C, D). These sets of x-y coordinates are then labeled in

terms of order (e.g., first, second fixation; first, second saccade)

and areas of interest (AOIs) (Figure 1D). Summing up the same

labeled x-y coordinates can be further used to quantify the

tendency of focusing on specific AOIs, the so-called dwell time.

For instance, in Figure 1D the dwell time of AOILeft is the

combined duration of the two fixations within AOILeft (dark

gray areas).

With respect to decision-making research, the described

measures have revealed two robust relationships between gaze

patterns (e.g., final fixation and dwell time) and choices. First,

a longer dwell time on an option increases the likelihood

of it being selected. Second, the last-fixated option is most

often on the chosen option (Krajbich et al., 2010; Smith and

Krajbich, 2019). To illustrate the former effect, the probability

of selecting a particular option is depicted as a function of

the dwell time difference (or dwell-time advantage) between

options (e.g., Dwellleft – Dwellright) (Figure 1E). The latter effect

is typically illustrated by the probability of choosing the left

option as a function of the value difference between the left and

right option (i.e., Valueleft – Valueright), separately for decisions

in which the left option was fixated last and those with the

final fixation on the right option (Figure 1F). Note that both

effects indicate that people choose what they look at longer

or/and last, which in turn seems to hint toward a causal

influence of gaze’s location on choice. In the next section, we

will introduce cognitive models that implement this putative

influence before turning to other theories that challenge this

(uni-)directional interpretation (Section 4; see also Mormann and

Russo, 2021).
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FIGURE 1

Tracking eye movements and their relationship with choices. (A) An example illustrating that only the central gaze point provides clear and sharp

visual information, while peripheral areas exhibit blur and reduced clarity. (B) Presentation of an individual eye-tracking data point, quantified as an

x-y coordinate relative to the reference point. In this example, the reference point is defined as the left-bottom corner of the screen (another typical

reference point would be the center of the screen). (C) Dynamic eye movements recorded as multiple data points (samples), with successive samples

forming fixations. Red rectangles on the left and right denote Areas of interest (AOIs) for the left and right options, respectively. Thick blue lines

depict saccades between AOIs, while thin blue lines represent movements within an AOI. Each black dot corresponds to one data point. (D) Timeline

summary of the example in (C), starting from displaying options to the moment of making a decision marked by the button-press. Dashed lines

denote the separation of two eye-movement events (fixations and saccades). (E, F) Illustrations of gaze-related choice biases. (E) Relationship

between choice and dwell time di�erence. Options with longer dwell times are associated with a higher probability of being chosen. (F) Association

of the final fixation with the final choice. The option looked at last is more likely to be chosen, especially when the value di�erence is smaller. The

data presented in (E, F) are taken from Ting and Gluth (2023).

3 Cognitive models incorporating
eye-tracking data

Cognitive modeling of decisions has been widely used to

quantify latent mental processes that underlie certain choice

patterns. However, many choice models in behavioral economics,

consumer psychology, and judgement and decision-making

research only account for choices but not response times (e.g.,

Prospect Theory; Kahneman and Tversky, 1979). This could pose

challenges when making inferences about information processing,

because participants may address the speed-accuracy tradeoff

(SAT) differently in the same task. Specifically, the observation of

varied levels of choice consistency (i.e., probabilities of choosing

options with higher subjective values) might originate from distinct

levels of noise in the choice process or different SAT strategies. To

resolve this ambiguity, it is necessary to take response times (RTs)

into account (Smith and Ratcliff, 2004; Busemeyer et al., 2019).

Following the same logic, if a cognitive model does not consider

eyemovements as part of information processing, then gaze-related

choice biases such as the ones described abovemay bemisattributed

to other cognitive functions (Shevlin and Krajbich, 2021).

3.1 Sequential sampling models

With respect to the SAT ambiguity, sequential sampling models

(SSMs) resolve this concern by accounting for choice and RT

simultaneously. In the framework of SSMs, a decision is viewed as

the outcome of accumulating noisy evidence (e.g., value differences

between options) over time until that accumulated evidence reaches

a threshold. In the case of the Diffusion Decision Model (DDM),

arguably the most dominant variant of SSM (Smith and Ratcliff,

2004; Ratcliff et al., 2016), the evidence for the left option vs. the

right option in a value-based decision-making task is assumed to

be accumulated from one time point to the next as follows:

RDVt = RDVt−1 + ν + ε (1)
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where RDVt−1 refers to relative decision value at time point t−1,

ν refers to the drift rate or the strength of the evidence, and ε is

the noise sampled from a normal distribution (mean= 0, standard

deviation = σ). The drift rate (ν) is computed as the value2

difference between options with scaling parameter d that governs

the overall speed of accumulation:

ν = d× (VLeft − VRight). (2)

It is notable that the way we introduce DDMs in this paper

differs from the original version of DDMs in two key aspects.

Firstly, we assume evidence accumulation to occur at discrete time

points (e.g., every millisecond). While this is different from the

classical DDM assuming continuous evidence accumulation over

time (Ratcliff, 1978; Smith and Ratcliff, 2004), discrete evidence

accumulation can approximate continuous evidence accumulation

when time steps become minuscule. Secondly, our assumption that

the drift rate (ν) is a function of value difference between options

(and thus the difficulty of a decision) in Equation 2 does not need

to be made. It can also be estimated as a free parameter. Note,

however, that a strong link between drift rate and difficulty has

been established for both perceptual (Ratcliff and Rouder, 1998)

and value-based decision-making contexts (Krajbich et al., 2010;

Fisher, 2017).

Another standard sub-class of SSM are accumulator models (or

race models), which assume an accumulation trace for the value

of each option. Unlike DDMs, the existence of multiple parallel

accumulation processes allows these models to be easily extended

to contexts with more than two options (i.e., multiple-alternative

decisions): n accumulators for n options race against each other

until one reaches the threshold.

Diffusion and accumulator models correctly predict that value

difference positively influences the probability of choosing the

option of higher value and negatively influences RT. That is, when

one option has a much larger value than the rest (e.g., VLeft >

VRight), the rate of accumulation will be accelerated toward the

threshold of that option (aLeft or aRight),
3 resulting in a faster

decision and higher probability of choosing that option. Apart from

value difference, the threshold in SSMs also affects choice and RT, as

it determines the amount of evidence needed for eliciting a choice

and thus plays a crucial role in the SAT. Specifically, when the

threshold is low, decisions are made rapidly and are more prone

to errors (e.g., choosing the option of lower value). This increased

susceptibility to wrong choices is due to the greater impact of

random noise on the decision process. With lower thresholds,

there is less time for the accumulation process to approximate

2 In studies using consumer products, the value of each option is usually

measured as the level of liking, wanting, or willingness to pay (Gluth et al.,

2015; Frömer et al., 2019; Amasino et al., 2023). In studies using intertemporal

choices or risky gambles, value is often transformed by a function such as

hyperbolic discounting or Prospect Theory’s value and weighting functions

(Gluth et al., 2017; Amasino et al., 2019; Zilker and Pachur, 2023).

3 In di�usion models, upper and lower thresholds are respectively

associated with two options, typically represented as a and -a (Figure 2A) or a

and 0. In accumulator models, each option has its own accumulator, usually

starting a 0 and racing toward its threshold of height a.

the mean of drift rate. On the contrary, decisions are made more

deliberately and are more likely to be accurate when the threshold is

higher. Thus, SSMs allow disambiguating changes in task difficulty

(e.g., intensity of stimuli or value difference) and SAT adjustments

by considering RT in addition to choices themselves. Alongside

these model predictions, both variants of SSM introduced above

have been used as the basic frameworks for incorporating eye-

tracking data and elucidating gaze-related choice biases. Next, we

will introduce two of such extensions of the diffusion model and

the accumulator model.

3.2 Di�usion model incorporating eye
movements

The attentional drift-diffusion model (aDDM; Krajbich et al.,

2010) extends the DDM by incorporating eye movements as

integral components of information processing and assumes that

visual attention amplifies the value difference between attended

and unattended options. Specifically, unlike the conventional

DDMs assuming that all available information equally contributes

to the evidence accumulation process, the aDDM discounts the

unattended option by multiplying it with parameter θ (with

0 ≤ θ ≤ 1):

{

νt = d× (VLeft − θ × VRight), if the left option is attended.

νt = d× (θ × VLeft − VRight), if the right option is attended.

(3)

Hence, alongside the value difference (Vleft – Vright), the

strength of evidence, quantified as drift rate ν at the time point t,

is jointly determined by the fixation location (e.g., on the left or

right option) and the discounting parameter θ.

The inclusion of θ and gaze location in Equation 3 allows

the aDDM to capture gaze-related choice biases. In particular,

the aDDM predicts that the probability of choosing an option is

increased when it is viewed longer than other options (Figure 1D).

To illustrate, consider a scenario where you are deciding between

two comparable options (i.e., VLeft = VRight = 10) and you look at

the left option 90% of the time in a trial.4 According to Equation 3

and assuming d = 1 and θ = 0.3, 90% of the time evidence will be

accumulated according to VLeft – θ×VRight and thus 10 – 0.3
∗10=

7, and only 10% of the time the accumulation will follow θ ×VLeft –

VRight and thus 0.3
∗10 – 10=−7. Stated differently, we can specify

an average drift rate in favor of the left option (see also below) as ν

= 0.9∗7 – 0.1∗7= 5.6, indicating an accumulation dynamic toward

the left option despite equal subjective values (see also Section

3.2.3). The same example demonstrates how the other gaze-related

choice bias can be explained: the final fixation is more likely to be

4 The percentage of time allocated to each option discussed here serves

merely as a simplistic illustration and is not directly forecasted by the models.

In practical application, fixation durations in these models are typically

derived from actual data. While gaze patterns are associated with option

features such as attractiveness or salience, we will delve into this aspect in

Section 4.
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FIGURE 2

Illustrations of evidence accumulation predicted by aDDM in a two-alternative choice (A, B) and by GLAM in a three-alternative choice (C). (A)

Evidence accumulation is a�ected by attention (θ = 0.3). When θ is smaller than 1 and the two options share the same value, the value di�erence is

amplified as the non-fixated option is discounted by θ. This e�ect is more pronounced when option values are generally high (thick line) than when

they are generally low (thin line). Consequently, it leads to accelerated evidence accumulation (i.e., drift) rate, reaching the threshold (aLeft or aRight)

earlier, hence, resulting in shorter RT. (B) When the discounting factor θ in the aDDM is 1 and two options share the same values, the relative decision

value is primarily determined by noise, irrespective of the fixation location. (C) Upper panel: GLAM assumes evidence for three options are

accumulated separately over time. Each color line represents the path of evidence accumulation for each option. To facilitate parameter estimation,

GLAM does not model within-trial noise in accumulation (semi-transparent line) but instead use the drift rate as the slope of a linear and noiseless

accumulation process. This figure is reproduced from Thomas et al. (2019). Lower panel: the drift rate for each option depends on the option’s value

Vi, but also on how much this option has been looked at in a given trial.

on the final choice (Figure 1E), because the accumulation process is

most often heading toward (and ultimately ending at) the currently

fixated option.

In addition to gaze-related choice biases, the multiplicative

aDDM also accounts for a critical RT pattern: the magnitude

effect. This phenomenon refers to a negative correlation between

RT and the overall attractiveness or intensity of the available

options. Numerous studies have demonstrated that individuals

often decide quicker when confronted with more salient options

in perceptual tasks (e.g., choosing between two bright options) or

more appealing choices in value-based decisions (e.g., selecting

between favorite snacks) (Polanía et al., 2014; Teodorescu et al.,

2016; Gluth et al., 2018, 2020; Frömer et al., 2019; Smith and

Krajbich, 2019; Sepulveda et al., 2020; Shevlin et al., 2022; Ting

and Gluth, 2023). The multiplicative aDDM has been employed

to model and explain this specific behavioral tendency (Ratcliff,

2018; Smith and Krajbich, 2019; Pirrone and Gobet, 2021; Pirrone

et al., 2022). Recall that in Equation 3 the drift rate is defined by

both individual options’ values and θ. Therefore, even when the

value difference and θ are fixed, the drift rate is larger when option

values are generally higher. Imagine you are choosing between two

options, either from set A (with values 10 vs. 10) or from set B

(with values 5 vs. 5). When the scaling parameter d is 1 and the

discounting parameter θ is 0.3, the value of the unattended option

will be discounted more when the overall values of the options are

higher (set A: 10 – 0.3 ∗ 10 = 7 or 0.3 ∗ 10 – 10 = −7) compared

to when the option values are lower (set B: 5 – 0.3 ∗ 5 = 3.5 or

0.3 ∗ 5 – 5 = −3.5). As a consequence, the evidence trace tends

to move toward the threshold of the attended option, facilitating

the speed of evidence accumulation and resulting in shorter RTs

(Figure 2A). In contrast, when the discounting parameter θ is 1,

the drift rate remains identical in both sets regardless of the gaze

location resulting in no relationship between RT and overall value

(Figure 2B).

To amplify the value difference between attended and

unattended options, an alternative approach is adding a specific

value to the attended option (Cavanagh et al., 2014). In contrast to

the multiplicative aDDM, this additive version of aDDM assumes

a general influence of attention on drift rate regardless of option

value. Specifically, given the fixation location, the drift rate is
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increased or decreased with a constant value η (with η > 0),

independent of option value:

{

νt = d× (VLeft − VRight + η), if the left option is attended;

νt = d× (VLeft − VRight − η), if the right option is attended.

(4)

While both multiplicative aDDM and additive aDDM

encompass the notion that attention plays a causal role in valuation

and successfully predict gaze-related biases, it is noteworthy that

the additive aDDM cannot explain the negative relationship

of overall value and RT. Note, however, that other accounts

of the overall value effect on RT are conceivable (Mormann

and Russo, 2021; Pirrone et al., 2021), and that a recent study

(Westbrook et al., 2020) proposed a hybrid account of first

multiplicative but then additive effects of attention within

single choices.

3.2.1 Extending the aDDM to multi-alternative
decisions

With the same idea of discounting unattended options, the

aDDM has been extended for multi-alternative choice problems

(i.e., choosing between three or more options) (Krajbich and

Rangel, 2011). For example, Krajbich and Rangel (2011) conducted

an experiment in which participants had to make a decision among

three options presented on the right, left and the center of the

screen. In order to adapt the aDDM to the data from this ternary

decision, the researchers computed a drift rate in one accumulator

for each option given their option values (V), gaze location, and the

discounting parameter θ:















νLeft = d× θ × VLeft, if the left option is not attended;

νRight = d× θ × VRight, if the right option is not attended;

νCentral = d× θ × VCentral, if the central option is not attended.

(5)

When attention is directed toward an option, the drift rate

associated with that option is calculated without attentional

bias (i.e., θ = 1). For each option i, evidence (Ei,t) at

timepoint t is then updated by the drift rate in Equation 5.

This accumulated evidence is then used to compute the relative

decision value (RDV). Unlike Equation 1 directly comparing

two latent values and forming a single RDV, three RDVs are

computed for three options by comparing the accumulated

evidence of one option to the maximum of the rest of

accumulated evidence.

RDVi, t = Ei,t − Max(Ej,t) (6)

As a result of Equation 6, RDV of an option is greater and more

likely to reach the threshold first when the option is fixated longer

and when the option value is higher.

3.2.2 aDDM in multi-attribute decisions
Real-life decisions often involve considering multiple attributes

for each option. In order to investigate how people evaluate options

and make decisions in such scenarios, individual attributes of

options are presented separately on the screen in a laboratory

setting (e.g., two attributes of two options are presented at

the four corners of the screen). This setup allows tracking

eye-movement patterns at the attribute level and, for instance,

categorizing fixations into two key search patterns: within-

attribute search (comparing options within the same attribute)

and within-alternative search (evaluating all attributes within

an option). Notably, many previous studies found that gaze

patterns were more in line with the view that participants’

choices emerge from the comparison of one or two attributes

between options, rather than integrating all attributes within

an option into a single value (Noguchi and Stewart, 2014,

2018; but see Glickman et al., 2019). These findings imply

that attentional effects may not be restricted to the assessment

of options as a whole but rather extend to the evaluation

of attributes.

To take the attribute level into account, variants of attention-

dependent SSM have been proposed (Amasino et al., 2019;

Glickman et al., 2019; Fisher, 2021; Molter et al., 2022; Yang

and Krajbich, 2023). For example, Yang and Krajbich’s (2023)

multi-attribute attentional drift-diffusion model (maaDDM)

discounts both unattended options and unattended attributes with

discounting parameters θ and φ, respectively. When faced with a

choice between the left option and right options, each comprising

attributes A (e.g., VLeft,A and VRight,A) and B (e.g., VLeft,B and

VRight,B), the drift rate can be expressed as:



























































νt ∼ (VLeft,A − θ × VRight,A)+ ϕ(VLeft,B − θ × VRight,B),

if VLeft,A is attended;

νt ∼ ϕ(VLeft,A − θ × VRight,A) + (VLeft,B − θ × VRight,B),

if VLeft,B is attended;

νt ∼ (θ × VLeft,A − VRight,A) + ϕ(θ × VLeft,B − VRight,B),

if VRight,A is attended;

νt ∼ ϕ(θ × VLeft,A − VRight,A) + (θ × VLeft,B − VRight,B),

if VRight,B is attended.

(7)

Estimates of these two discounting parameters (i.e., θ and

φ) were taken from the best fitting model and compared

(θ – φ). The authors found that the impact of attention

at the alternative level (θ) is smaller than its impact at the

attribute level (φ) (Fisher, 2021; Yang and Krajbich, 2023).

Furthermore, the unattended option’s attribute is discounted

most as it is discounted by both discounting parameters.

However, it remains unclear whether this is due to the

more cognitive element of currently not “thinking about” the

unattended attribute of the unattended option, or the more

perceptual element of “not seeing” the unattended attribute of

the unattended option as it is furthest away from the fixation

center. Overall, these models not only account for gaze-related

biases but also quantify the impact of visual attention in multi-

attribute decisions.
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3.2.3 Enhancing e�ciency in parameter
estimation

First instantiations of the aDDM (e.g., Krajbich et al., 2010)

used a time-consuming parameter estimation approach. This

involved simulating the model and identifying parameter values

that approximated the maximum likelihood given the data through

grid search. To enhance the efficiency of estimating the aDDM,

Cavanagh et al. (2014) summarized the dynamic fixation patterns

as the proportion of dwell time on each option and computed the

average drift rate per trial. Specifically, Equation 3 is reformulated

by incorporating the proportion of dwell time (PD) for each option:

ν = β0 + β1×
(

PDLeft × VLeft − PDRight ×VRight

)

+ β2×
(

PDRight ×VLeft − PDLeft ×VRight

)

(8)

where β1 represents the impact of fixated option and β2 represented

the impact of non-fixated option. In comparison to Equation 3,

β1 and β2 are equivalent to d and d∗θ, respectively. Thus, the

discounting factor θ can be written as β1/β2 in Equation 8. The

advantage of this approach is that a single average drift rate per trial

can be defined, once the dwell time for each option is known. This

allows using the DDM’s closed-form solution of the first passage

time problem (i.e., the question of when the first crossing of a

decision threshold is to be expected), which is implemented in

many toolboxes such as the hierarchical DDM package (Wiecki

et al., 2013), which in turn greatly simplifies, accelerates, and

improves parameter estimation (see also our 90/10% example above

as well as Lombardi and Hare, 2021).

3.3 Gaze-weighted Linear Accumulator
Model

The aDDMs have been applied to both two and multiple-

alternative decisions. However, only the traditional aDDMs for the

two-alternative decision possess a closed-form solution (Cavanagh

et al., 2014). To enhance efficiency in parameter estimation

for multi-alternative aDDMs, one potential approach involves

accumulating evidence for each option based on the proportion of

dwell time on that option. The Gaze-weighted Linear Accumulator

Model (GLAM; Thomas et al., 2019) implements this idea.

Specifically, GLAM uses the framework of accumulator models and

assumes that the average drift rate (νi) for each option in each

trial is computed as a linear combination of option value (Vi)

and the proportion of dwell time on the option, expressed by the

following equation:

νi ∼ PDi × Vi + (1− PDi) × θ × V i (9)

where PDi represents the proportion of dwell time spent on option

i, and θ denotes the discounting factor for the proportion of time

the option is not attended (see Figure 2C for visual illustration).

The average drift rates in Equation 9 are then used to compute the

relative decision values (RDV)

RDVi = νi − Max(νj) (10)

which are subsequently scaled to a range of 0–1. In Equation 10,

these scaled values are then employed to update the evidence for

each option (Figure 2C, top).

It has been shown that GLAM is capable of predicting the

gaze-related choice biases in binary, ternary and even 36-alternative

decisions (Thomas et al., 2019, 2021; Weilbächer et al., 2021).

Unlike most other SSMs, GLAM does not estimate non-decision

time (NDT), which usually accounts for motor and perceptual

processing that is unrelated to the decision or accumulation process

itself. This might be problematic, as the model maymisattribute the

variability of RT caused by purely sensory or motor components to

changes in information processing.

3.4 Applications

The parameter θ in aDDM and GLAM not only quantifies

the impact of gaze on valuation during evidence accumulation

but also provides an opportunity to explore how visual attention

influences valuation in different contexts. For example, Weilbächer

et al. (2021) observed a heightened influence of gaze on information

processing and choices when participants needed to retrieve

options frommemory. This effect was evident through lower θ (i.e.,

discounting the unattended option more) in memory-demanding

conditions, suggesting that the attentional bias is further amplified

by memory demands. Relatedly, Eum et al. (2023) manipulated

the visibility of the unattended option via a gaze-contingent

design and observed that the influence of attention on valuation

is more pronounced (i.e., lower θ) when the unattended option

is hidden compared to when it is visible. This suggests that

peripheral viewing, beyond the center of gaze, also plays a role in

determining the level of discounting. Overall, these findings not

only demonstrated that the strength of the association between

gaze and choice is modulated by factors such as memory demand

and peripheral viewing but also emphasize the usefulness of θ in

quantifying the extent of attentional impact across various contexts.

The inclusion of eye-movement data in models also improves

comprehension of the mechanisms contributing to variability

in choice patterns, like the probability of choosing an option

(Thomas et al., 2019), confidence (Brus et al., 2021), and risk

attitude (Zilker and Pachur, 2023). For instance, Thomas et al.

(2019) reanalyzed data from perceptual and preferential tasks using

GLAM and found that individual difference in task performance

(i.e., probability of choosing the correct item) can be predicted

by the estimated gaze-bias parameter. Zilker and Pachur (2022)

employed the aDDM to simulate and reanalyze data involving

choices between risky (i.e., outcomes with probabilities < 1) and

safe options (i.e., certain outcomes). Their findings revealed that

the aDDM with θ < 1 predicted a positive relationship between

choice and gaze allocation: the probability of choosing the safe

option increased when the likelihood of evaluating the safe option

was higher. Additionally, the strength of the distortion in subjective

probability, as predicted by the Cumulative Prospect Theory (CPT;

Kahneman and Tversky, 1979), exhibited a systematic association

with the probability of fixating on the safe option. Notably, these

associations were not observed when employing aDDMwith θ of 1,

indicating a pivotal role of visual attention in subjective probability
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formation and risk attitude. Overall, although descriptive models of

choice (e.g., CPT) are widely used to quantify individual differences

in decision-making, cognitivemodels incorporating eye-movement

data possibly offer a more fine-grained, mechanistic understanding

of the underlying processes.

3.5 Considerations for implementing
aDDMs and GLAM

The models introduced in Section 3 allow researchers to take

gaze data into account when predicting the relationship between

valuation, attention, and choice. Yet, these model predictions

rely on many, often implicit assumptions. Some of assumptions

have been empirically tested. For instance, Pirrone and Gobet

(2021) tested the implicit assumption that θ has a constant value

regardless of option values. By reanalyzing two existing datasets,

the authors found that the impact of visual attention on choice

are not significantly different between the high and low overall

value condition (but see Ting and Gluth, 2023). Other assumptions,

like the additive or multiplicative role of fixation on valuation (see

Equations 3, 4), are still under debate. In particular, despite the

additive aDDM not predicting a negative relationship of overall

value and response time, some studies found that additive aDDM

outperformedmultiplicative aDDM in the context of reinforcement

learning tasks (Cavanagh et al., 2014; Smith and Krajbich, 2019).

Another assumption of the aDDM under debate is the definition

and measurement of attention (Mormann and Russo, 2021):

whether visual attention is equivalent to the center of gaze if people

can perceive specific visual information without moving their

eyes. For instance, a recent study demonstrated that participants

can selectively use visual features (i.e., the color and direction

of moving dots) to make decisions, even when the stimuli were

concurrently presented at the center of the screen (Shenhav et al.,

2018). The finding implies that people can implement feature-based

attention without moving their eyes. However, whether feature-

based attention biases decisions in a manner predicted by the

aDDM remains an open question at this point.

Last but not least, these models assume that attention plays a

causal role in preference formation. This assumption is supported

by several studies thatmanipulated when or how long each option is

looked at (Armel et al., 2008; Lim et al., 2011; Pärnamets et al., 2015;

Tavares et al., 2017; Ghaffari and Fiedler, 2018; Pleskac et al., 2022).

For example, Pärnamets et al. (2015) found that, in moral decision

tasks, participants were more likely to choose a target option that

they were forced to fixate longer. Similarly, Pleskac et al. (2022)

showed that spatial cueing could successfully alter gaze patterns and

influence final decisions in both perceptual and value-based tasks.

A recent meta-analysis by Bhatnagar and Orquin (2022) looked

at 21 studies using different attention manipulation paradigms,

finding that changes in gaze patterns on average positively affect

final choices, confirming the causal role of gaze in preference

formation. While the assumption about the impact of attention

on choice is consistent with empirical evidence, these models do

not account for the possibility that preference may also influence

gaze allocation: People tend to look at more attractive options

(Shimojo et al., 2003; Fiedler and Glöckner, 2012; Orquin and

Mueller Loose, 2013; Gluth et al., 2018, 2020), suggesting a bi-

directional relationship of valuation and attention. As discussed in

the next section, othermodels have thus been put forward to predict

where and when people move their eyes while making decisions.

4 Models predicting fixation patterns
and gaze-related choice biases

In this section, we will introduce two groups of models that

extend evidence accumulation concept and include algorithms to

allow the prediction of fixation patterns.

4.1 Predicting fixations

Inspired by the fact that fixation patterns are robustly

influenced by bottom-up factors (e.g., the brightness of an option)

and top-down considerations (e.g., maximize payoff) (Awh et al.,

2012; Orquin et al., 2021), some models have attempted to link

fixation allocation to uncertainty about the stimuli (Cassey et al.,

2013; Song et al., 2019), physical salience (Towal et al., 2013) and

the latent option value (Towal et al., 2013; Gluth et al., 2020). With

respect to the latter, Gluth et al. (2020) extended the aDDM by

assuming that the probability of looking at one option i is driven

by accumulated evidence E (see Equation 7 and aDDM in multi-

alternative decisions). This assumption is realized using a softmax

function as follows:

p
(

fixate i
)

=
exp(γ × Ei,t)

∑

j exp(γ × Ej,t)
(11)

where γ is a free parameter determining how strongly fixations

are driven by value (if γ = 0, the probability to fixate at each

option is independent of option value). The algorithm extended

by Equation 11 maintains the original aDDM’s ability to capture

the distribution of choice and RT as well as the gaze-related

choice biases. Additionally, the model accounts for the fact that

people tend to look more and more at the most promising choice

candidates, which aligns with Gaze cascade effect (Shimojo et al.,

2003; Krajbich et al., 2010; Smith and Krajbich, 2019).

4.2 Predicting gaze patterns while
accounting for cognitive costs

The final category of models discussed in this review article

is rooted in the Bayesian framework and inspired by rationality

considerations. Given that information search and acquisition are

time-consuming and (cognitively) costly, these models address

the question of how to move the eyes efficiently in order

to save resources while still making good decisions. Generally

speaking, this question has been raised in different fields, including

neuroscience (Tajima et al., 2016), economics (Sims, 2003), and

psychology (Lieder and Griffiths, 2020). Using the Bayesian

framework, these models assume that beliefs about stimuli are
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updated by integrating the initial value representation of each

stimulus (prior) with new incoming evidence (likelihood).

When participants decide between two options, they may not

initially possess a clear value representation for each stimulus.

As a result, the mean value of each option should be centered

around 0 with high uncertainty (represented by the variance of

the value distribution). The uncertainty in the value representation

of the option decreases as more visual information is sampled

by looking at the option. Figure 3A illustrates this process and

depicts how the integration of prior and likelihood results in a new

distribution where the mean and variance deviate from the initial

value representation. This feature distinguishes Bayesian evidence

accumulation models from aDDM in two key aspects. First, in

aDDMs and GLAM, fixations are used to sample and update a

point of the belief (i.e., the mean of the value representation)

at each time step. In contrast, Bayesian evidence accumulation

models dynamically update both the mean and variance of the

value representation with an increase in the number of fixations

within a trial. Second, the Bayesian evidence accumulation models

offer researchers a means to explore the relationship between

the variance of value representation and fixation patterns. This

concept has been integrated into models to predict the probability

of switching gaze in both two-alternative tasks (Song et al., 2019;

Jang et al., 2021) and multi-alternative tasks (Callaway et al., 2021;

Li and Ma, 2021). For example, the models predict that people

are more likely to look at options that received less attention so

far within a trial, so that the variance of value representation for

those options would be reduced by more samples. They also predict

that the durations of later fixations are longer compared to early

fixations, as more samples are needed to change beliefs when those

beliefs have reached some precision already due to earlier fixations

(Song et al., 2019; Callaway et al., 2021).

Moving eyes to the relevant information takes time and effort

(Gabaix et al., 2006; Manohar and Husain, 2013). Therefore,

sampling information through gaze forever would be irrational

for a decision-maker with limited time and resources, especially

when more than two options are available (Reutskaja et al.,

2011, 2018; Thomas et al., 2021). Thus, decision-makers must

determine when to cease exploration and commit to a choice.

The models address this dilemma by assessing the (expected)

benefits and costs associated with three actions: choose one option,

switch the gaze allocation, or stay in the same option to sample

more information (Figure 3B). While some of these models use

this framework to approximate “optimal observers” capable of

maximizing the accuracy or expected reward of an action (e.g.,

Callaway et al., 2021; Jang et al., 2021), others acknowledge the

high complexity of these computations and build in psychologically

plausible simplifications such as looking only one step ahead (e.g.,

Gabaix et al., 2006). Despite these subtle differences, these models

share the feature of not only predicting eye movements (e.g.,

negative relationship between the number of fixations and value

difference) but also making testable predictions on how changing

the costs of computations should shape information search in

value-based decisions.

It is worth noting that both DDMs and Bayesian evidence

accumulation models predict negative relationship between the

number of fixations and value difference but based on different

assumptions. In DDMs, a larger drift rate (scaling with value

difference) reduces response time and fixations as the decision

threshold is reached faster. By contrast, Bayesian models that

consider the balance between the benefits and costs of additional

fixations find it rational to use fewer fixations when value

differences are larger.

The Bayesian evidence accumulation models effectively capture

behavioral patterns and gaze-related choice biases without

assuming a causal influence of attention on valuation (a key feature

in aDDMs). In binary decisions, however, the Bayesian models

can only account for the positive association of dwell time and

choice probability when assuming that the prior distribution of

option values underestimates the actual values (Callaway et al.,

2021; Jang et al., 2021). This is because by default these models

predict that sampling the better option is as informative as sampling

the worse option. In case of underestimated values, however, more

sampling will lead to more positive updating and thus increase

the probability of choice. It appears at least questionable whether

people systematically underestimate values at the beginning of

a (binary) choice, and future investigations should assess this

speculation empirically.

4.3 Considerations for predicting fixation
patterns

Although models discussed in Section 4 assume that attention

is influenced by factors such as value, physical salience, or

uncertainty, some studies indicate that visual attention can

also be driven by the goal of the task (Kovach et al.,

2014; Sepulveda et al., 2020 for review, see Frömer and

Shenhav, 2022). For instance, Sepulveda et al. (2020) found

that participants devoted more time to looking at low/high

option values when the goal of the task was to choose

unattractive/attractive options, suggesting that gaze allocation

might reflect high-level cognitive processes. However, a recent

meta-analysis suggested that bottom-up factors, like the surface

and the position of the visual stimuli, might exert a similar

or even stronger impact on gaze patterns (Orquin et al.,

2021). These findings highlight an ongoing debate regarding the

factors that influence visual attention toward options in value-

based decisions.

5 Summary and future directions

An emerging body of literature underscores the significance

of eye-tracking data and cognitive models in investigating

the mechanisms of decision-making (Itti and Koch, 2001;

Krajbich, 2019; Wedel et al., 2023). Our review focuses on

the models conceptualizing information processes as dynamic

evidence accumulation (aDDMs and Bayesian sampling models),

where eye movements represent an integral part of this process.

The inclusion of eye-movement data enables the models to

investigate the association between choice and fixation patterns

across decision domains. More importantly, they quantify the

hypothetical role of eye movement in decision formation, offering

a chance for future studies to testify their predictions under

different contexts.
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FIGURE 3

Illustrations of Bayesian updating models that incorporate attention. (A) In the Bayesian framework, a value representation of each option is updated

by integrating prior knowledge and incoming information. Initially, the prior knowledge for two options (red and blue) is modeled as two Gaussian

distributions centered at 0 with equal variance (dashed curves). Upon gathering new evidence (dots), the mean and variance of these distributions are

updated, resulting in posterior distributions (solid curves). Notably, the posterior distributions become narrower when the size of new evidence is

larger and more reliable. (B) Left panel: At each time point, individuals face the decision to choose one of the options, switch gaze allocation (shown

in green), or maintain attention on the same option to sample more information (depicted in orange). When visual attention is directed to a specific

option, momentary information from that option is sampled and utilized to update the value representation in a Bayesian manner. Right panel:

attention-determined momentary information not only updates the value of the option but also reduces the uncertainty associated with the value

representation for the option. This figure is adapted from Jang et al. (2021).

5.1 Future directions of using cognitive
models incorporating eye-movement data

The integration of eye-movement data into cognitive models

provides researchers with a powerful tool to explore the behavioral

and neural mechanisms underlying choice pattern variability. Here,

we propose three potential avenues for future research using the

models introduced in this review. First of all, models incorporating

stopping rules and the parameters quantifying attentional bias

could be further used to investigate inter- and intra-individual

differences in decision processes or in cognitive capacities (e.g.,

workingmemory capacity) between groups. For instance, Reutskaja

et al. (2011, 2018) employed tasks with relatively large set sizes

(e.g., choosing between 4, 9, or 16 options) and found that

both fixation duration and the speed of eye movement increased

linearly with larger set sizes. Reanalyzing these data using the

cognitive models introduced in this review could provide valuable

insights into how final decisions are formed and whether these

models can be generalized to decisions involving more options.

Second, these models offer a pathway to investigate the role

of eye movements in context effects, which refer to changes in

preference between two options triggered by the introduction

of a third option. While many studies have extended SSMs by

incorporating attention components, such as attribute weight and

order of attention allocation, to address individual differences in

context effects (Trueblood et al., 2014, 2022; Spektor et al., 2021;

Hayes et al., 2023; for review, see Busemeyer et al., 2019), only few

attempts have been made to quantify visual attention using eye-

movement data (Noguchi and Stewart, 2018; Molter et al., 2022).

Currently, neither the aDDMs nor Bayesian evidence accumulation

models adequately account for context effects, opening avenues

for further exploration. To bridge these disconnected branches of

decision-making research, future studies could delve deeper into

these concepts by leveraging eye-movement data to identify specific

metrics of gaze patterns that more accurately reflect hypothetical

attention weights. Moreover, future studies could also identify

the gaze allocation before/after the third option is introduced

and implement these observations to inform the refinement or

development of models in this area.

Third, considering SSMs and eye movements often quantify

information processing at high temporal resolution (i.e., each time

step of evidence accumulation lasts just 10 milliseconds or less),

future studies could leverage this feature to delve deeper into the

neural mechanisms underlying the impact of visual attention on

decision-making. Previous studies have looked into the impact

of gaze allocation on the neural valuation system (Hare et al.,

2011a; Lim et al., 2011) and analyzed brain imaging data with

model predictions from SSM (Smith and Ratcliff, 2004; Hare et al.,

2011b; Gluth et al., 2012), separately. The integration of cognitive

models, eye-movement data and neuroscientific methods open

an opportunity for future studies to investigate human behaviors

from different level of analysis simultaneously. Furthermore, the

connection between model predictions and neural signals can

further substantiate the hypothetical role of visual information with

biological evidence (Smith and Ratcliff, 2004).

5.2 Concluding remarks

While numerous models take attention into account, only

those integrating eye movement components, such as data

measured by eye trackers, explain the relationship between visual

attention and choices. Incorporating dynamic visual attention

into decision-making mechanisms via cognitive models not only
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mirror real-life information acquisition and processing but also

enables researchers to explain more variability in choice patterns.

Crucially, these cognitive models provide a framework for future

studies to extensively examine the interaction between visual

attention, options, and preferences, spanning both behavioral and

neural levels.

Author contributions

C-CT: Conceptualization, Software, Visualization, Writing –

original draft, Writing – review & editing. SG: Conceptualization,

Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was funded by the European Research Council (ERC) under the

European Union’s Horizon 2020 Research and Innovation Program

(Grant Agreement No. 948545 to SG) as well as by the German

Research Foundation (Grant no. GL 984/1-1 to SG).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amasino, D. R., Dolgin, J., and Huettel, S. A. (2023). Eyes on the account size:
interactions between attention and budget in consumer choice. J. Econ. Psychol.
97:102632. doi: 10.1016/j.joep.2023.102632

Amasino, D. R., Sullivan, N. J., Kranton, R. E., and Huettel, S. A. (2019). Amount
and time exert independent influences on intertemporal choice. Nat. Hum. Behav. 3,
383–392. doi: 10.1038/s41562-019-0537-2

Armel, K. C., Beaumel, A., and Rangel, A. (2008). Biasing simple choices
by manipulating relative visual attention. Judgm. Decis. Mak. 3, 396–403.
doi: 10.1017/S1930297500000413

Awh, E., Belopolsky, A. V., and Theeuwes, J. (2012). Top-down versus bottom-
up attentional control: a failed theoretical dichotomy. Trends Cogn. Sci. 16, 437–443.
doi: 10.1016/j.tics.2012.06.010

Bhatnagar, R., and Orquin, J. L. (2022). A meta-analysis on the effect of visual
attention on choice. J. Exp. Psychol. Gen. 151, 2265–2283. doi: 10.1037/xge0001204

Brus, J., Aebersold, H., Grueschow, M., and Polania, R. (2021).
Sources of confidence in value-based choice. Nat. Commun. 12:7337.
doi: 10.1038/s41467-021-27618-5

Busemeyer, J. R., Gluth, S., Rieskamp, J., and Turner, B. M. (2019). Cognitive and
neural bases of multi-attribute, multi-alternative, value-based decisions. Trends Cogn.
Sci. 23, 251–263. doi: 10.1016/j.tics.2018.12.003

Callaway, F., Rangel, A., and Griffiths, T. L. (2021). Fixation patterns in simple
choice reflect optimal information sampling. PLoS Comput. Biol. 17:e1008863.
doi: 10.1371/journal.pcbi.1008863

Cassey, T. C., Evens, D. R., Bogacz, R., Marshall, J. A. R., and Ludwig, C. J. H. (2013).
Adaptive sampling of information in perceptual decision-making. PLoS ONE 8:e78993.
doi: 10.1371/journal.pone.0078993

Cavanagh, J. F., Wiecki, T. V., Kochar, A., and Frank, M. J. (2014). Eye tracking
and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol.
Gen. 143, 1476–1488. doi: 10.1037/a0035813

Deubel, H., and Schneider, W. X. (1996). Saccade target selection and object
recognition: evidence for a common attentional mechanism. Vis. Res. 36, 1827–1837.
doi: 10.1016/0042-6989(95)00294-4

Eum, B., Dolbier, S., and Rangel, A. (2023). Peripheral visual information halves
attentional choice biases. Psychol. Sci. 34, 984–998. doi: 10.1177/09567976231184878

Fiedler, S., and Glöckner, A. (2012). The dynamics of decision making in risky
choice: an eye-tracking analysis. Front. Psychol. 3:335. doi: 10.3389/fpsyg.2012.00335

Fisher, G. (2017). An attentional drift diffusion model over binary-attribute choice.
Cognition 168, 34–45. doi: 10.1016/j.cognition.2017.06.007

Fisher, G. (2021). A multiattribute attentional drift diffusion model. Organ. Behav.
Hum. Decis. Process. 165, 167–182. doi: 10.1016/j.obhdp.2021.04.004

Frömer, R., Dean Wolf, C. K., and Shenhav, A. (2019). Goal congruency dominates
reward value in accounting for behavioral and neural correlates of value-based
decision-making. Nat. Commun. 10:4926. doi: 10.1038/s41467-019-12931-x

Frömer, R., and Shenhav, A. (2022). Filling the gaps: cognitive control as a
critical lens for understanding mechanisms of value-based decision-making. Neurosci.
Biobehav. Rev. 134:104483. doi: 10.1016/j.neubiorev.2021.12.006

Gabaix, X., Laibson, D., Moloche, G., and Weinberg, S. (2006). Costly information
acquisition: experimental analysis of a boundedly rational model. Am. Econ. Rev.
96:1043. doi: 10.1257/aer.96.4.1043

Ghaffari, M., and Fiedler, S. (2018). The power of attention: using eye
gaze to predict other-regarding and moral choices. Psychol. Sci. 29, 1878–1889.
doi: 10.1177/0956797618799301

Glickman, M., Sharoni, O., Levy, D. J., Niebur, E., Stuphorn, V., and Usher, M.
(2019). The formation of preference in risky choice. PLoS Comput. Biol. 15:e1007201.
doi: 10.1371/journal.pcbi.1007201

Gluth, S., Hotaling, J. M., and Rieskamp, J. (2017). The attraction effect modulates
reward prediction errors and intertemporal choices. J. Neurosci. 37, 371–382.
doi: 10.1523/JNEUROSCI.2532-16.2016

Gluth, S., Kern, N., Kortmann, M., and Vitali, C. L. (2020). Value-based attention
but not divisive normalization influences decisions with multiple alternatives. Nat.
Hum. Behav. 4, 634–645. doi: 10.1038/s41562-020-0822-0

Gluth, S., Rieskamp, J., and Buchel, C. (2012). Deciding when to
decide: time-variant sequential sampling models explain the emergence of
value-based decisions in the human brain. J. Neurosci. 32, 10686–10698.
doi: 10.1523/JNEUROSCI.0727-12.2012

Gluth, S., Sommer, T., Rieskamp, J., and Büchel, C. (2015). Effective connectivity
between hippocampus and ventromedial prefrontal cortex controls preferential choices
from memory. Neuron 86, 1078–1090. doi: 10.1016/j.neuron.2015.04.023

Gluth, S., Spektor, M. S., and Rieskamp, J. (2018). Value-based attentional capture
affects multi-alternative decision making. Elife 7:e39659. doi: 10.7554/eLife.39659.029

Hare, T. A., Malmaud, J., and Rangel, A. (2011a). Focusing attention on the health
aspects of foods changes value signals in vmPFC and improves dietary choice. J.
Neurosci. 31, 11077–11087. doi: 10.1523/JNEUROSCI.6383-10.2011

Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P., and Rangel, A. (2011b).
Transformation of stimulus value signals into motor commands during simple choice.
Proc. Nat. Acad. Sci. U. S. A. 108, 18120–18125. doi: 10.1073/pnas.1109322108

Hayes, W.M., Holmes, W., and Trueblood, J. S. (2023). Attribute comparability and
context effects in preferential choice [Preprint]. PsyArXiv. doi: 10.31234/osf.io/cq79y

Itti, L., and Koch, C. (2001). Computational modelling of visual attention. Nat. Rev.
Neurosci. 2, 194–203. doi: 10.1038/35058500

Frontiers in Behavioral Economics 11 frontiersin.org

https://doi.org/10.3389/frbhe.2024.1384713
https://doi.org/10.1016/j.joep.2023.102632
https://doi.org/10.1038/s41562-019-0537-2
https://doi.org/10.1017/S1930297500000413
https://doi.org/10.1016/j.tics.2012.06.010
https://doi.org/10.1037/xge0001204
https://doi.org/10.1038/s41467-021-27618-5
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1371/journal.pcbi.1008863
https://doi.org/10.1371/journal.pone.0078993
https://doi.org/10.1037/a0035813
https://doi.org/10.1016/0042-6989(95)00294-4
https://doi.org/10.1177/09567976231184878
https://doi.org/10.3389/fpsyg.2012.00335
https://doi.org/10.1016/j.cognition.2017.06.007
https://doi.org/10.1016/j.obhdp.2021.04.004
https://doi.org/10.1038/s41467-019-12931-x
https://doi.org/10.1016/j.neubiorev.2021.12.006
https://doi.org/10.1257/aer.96.4.1043
https://doi.org/10.1177/0956797618799301
https://doi.org/10.1371/journal.pcbi.1007201
https://doi.org/10.1523/JNEUROSCI.2532-16.2016
https://doi.org/10.1038/s41562-020-0822-0
https://doi.org/10.1523/JNEUROSCI.0727-12.2012
https://doi.org/10.1016/j.neuron.2015.04.023
https://doi.org/10.7554/eLife.39659.029
https://doi.org/10.1523/JNEUROSCI.6383-10.2011
https://doi.org/10.1073/pnas.1109322108
https://doi.org/10.31234/osf.io/cq79y
https://doi.org/10.1038/35058500
https://www.frontiersin.org/journals/behavioral-economics
https://www.frontiersin.org


Ting and Gluth 10.3389/frbhe.2024.1384713

Jang, A. I., Sharma, R., and Drugowitsch, J. (2021). Optimal policy for
attention-modulated decisions explains human fixation behavior. Elife 10:e63436.
doi: 10.7554/eLife.63436.sa2

Kahneman, D., and Tversky, A. (1979). Prospect theory: an analysis of decision
under risk. Econometrica 47:263. doi: 10.2307/1914185

Kovach, C. K., Sutterer, M. J., Rushia, S. N., Teriakidis, A., and Jenison,
R. L. (2014). Two systems drive attention to rewards. Front. Psychol. 5:46.
doi: 10.3389/fpsyg.2014.00046

Krajbich, I. (2019). Accounting for attention in sequential sampling models of
decision making. Curr. Opin. Psychol. 29, 6–11. doi: 10.1016/j.copsyc.2018.10.008

Krajbich, I., Armel, C., and Rangel, A. (2010). Visual fixations and the computation
and comparison of value in simple choice. Nat. Neurosci. 13:10. doi: 10.1038/nn.2635

Krajbich, I., and Rangel, A. (2011). Multialternative drift-diffusion model predicts
the relationship between visual fixations and choice in value-based decisions. Proc. Nat.
Acad. Sci. U. S. A. 108, 13852–13857. doi: 10.1073/pnas.1101328108

Kustov, A. A., and Lee Robinson, D. (1996). Shared neural control of attentional
shifts and eye movements. Nature 384, 74–77. doi: 10.1038/384074a0

Leigh, R. J., and Zee, D. S. (2015).The Neurology of EyeMovements, 5th Edn. Oxford:
Oxford University Press.

Li, Z.-W., andMa,W. J. (2021). An uncertainty-basedmodel of the effects of fixation
on choice. PLoS Comput. Biol. 17:e1009190. doi: 10.1371/journal.pcbi.1009190

Lieder, F., and Griffiths, T. L. (2020). Resource-rational analysis: understanding
human cognition as the optimal use of limited computational resources. Behav. Brain
Sci. 43:e1. doi: 10.1017/S0140525X1900061X

Lim, S.-L., O’Doherty, J. P., and Rangel, A. (2011). The decision value computations
in the vmPFC and striatum use a relative value code that is guided by visual attention.
J. Neurosci. 31, 13214–13223. doi: 10.1523/JNEUROSCI.1246-11.2011

Lombardi, G., and Hare, T. (2021). Piecewise constant averaging methods allow for
fast and accurate hierarchical Bayesian estimation of drift diffusion models with time-
varying evidence accumulation rates [Preprint]. PsyArXiv. doi: 10.31234/osf.io/5azyx

Loschky, L., McConkie, G., Yang, J., and Miller, M. (2005). The limits
of visual resolution in natural scene viewing. Vis. cogn. 12, 1057–1092.
doi: 10.1080/13506280444000652

Manohar, S. G., and Husain, M. (2013). Attention as foraging for information and
value. Front. Hum. Neurosci. 7:711. doi: 10.3389/fnhum.2013.00711

Molter, F., Thomas, A. W., Huettel, S. A., Heekeren, H. R., and Mohr, P. N. C.
(2022). Gaze-dependent evidence accumulation predicts multi-alternative risky choice
behaviour. PLoS Comput. Biol. 18:e1010283. doi: 10.1371/journal.pcbi.1010283

Mormann, M., and Russo, J. E. (2021). Does attention increase the value of choice
alternatives? Trends Cogn. Sci. 25, 305–315. doi: 10.1016/j.tics.2021.01.004

Noguchi, T., and Stewart, N. (2014). In the attraction, compromise, and similarity
effects, alternatives are repeatedly compared in pairs on single dimensions. Cognition
132, 44–56. doi: 10.1016/j.cognition.2014.03.006

Noguchi, T., and Stewart, N. (2018). Multialternative decision by sampling: a
model of decision making constrained by process data. Psychol. Rev. 125, 512–544.
doi: 10.1037/rev0000102
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