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Stressful life events generally enhance the vulnerability for the development of human
psychopathologies such as anxiety disorders and depression. The incidence rates of adult
mental disorders steeply rises during adolescence in parallel with a structural and functional
reorganization of the neural circuitry underlying stress reactivity. However, the mechanisms
underlying susceptibility to stress and manifestation of mental disorders during adoles-
cence are little understood. We hypothesized that heightened sensitivity to stress during
adolescence reflects age-dependent differences in the expression of activity-dependent
genes involved in synaptic plasticity. Therefore, we compared the effect of social stress
during adolescence with social stress in adulthood on the expression of a panel of genes
linked to induction of long-term potentiation (LTP) and brain-derived neurotrophic factor
(BDNF) signaling. We show that social defeat during adolescence and adulthood differ-
entially regulates expression of the immediate early genes BDNF, Arc, Carp, and Tieg1,
as measured by qPCR in tissue lysates from prefrontal cortex, nucleus accumbens, and
hippocampus. In the hippocampus, mRNA levels for all four genes were robustly elevated
following social defeat in adolescence, whereas none were induced by defeat in adulthood.
The relationship to coping style was also examined using adult reactive and proactive coping
rats. Gene expression levels of reactive and proactive animals were similar in the prefrontal
cortex and hippocampus. However, a trend toward a differential expression of BDNF and
Arc mRNA in the nucleus accumbens was detected. BDNF mRNA was increased in the
nucleus accumbens of proactive defeated animals, whereas the expression level in reac-
tive defeated animals was comparable to control animals.The results demonstrate striking
differences in immediate early gene expression in response to social defeat in adolescent
and adult rats.

Keywords: social defeat, stress, adolescence, BDNF, synaptic plasticity, hippocampus, mesocorticolimbic

system, rat

INTRODUCTION
Stressful life events generally enhance the vulnerability for the
development of human psychopathologies such as anxiety dis-
orders and depression. The majority of adult mental disorders
have antecedents and precursors in adolescence. From age 15 inci-
dent rates steeply rise for anxiety disorders (Bernstein et al., 1996),
depressive disorders (Hankin et al., 1998) as well as delinquency
(Landsheer and ‘t Hart, 1999) and substance abuse and depen-
dence (WHO International Consortium in Psychiatric Epidemi-
ology, 2000). Adolescence is a period of dynamic (re)organization
and formation of the neural circuitry underlying stress reactivity
(Andersen, 2003; Romeo and McEwen, 2006). For example, the
density of prefrontal cortex derived axon terminals decreases sig-
nificantly between adolescence and adulthood (Cressman et al.,
2010). A pre-adolescent increase in cortical gray matter is fol-
lowed by a post-adolescent decrease (Giedd et al., 1999). Also,
dopamine D1 and D2 receptors are overproduced prior to puberty

and pruned back to adult levels thereafter in the striatum and pre-
frontal cortex (Gelbard et al., 1989; Teicher et al., 1995; Andersen
et al., 2000). Therefore, stress during this period may have endur-
ing consequences on mental health later in life via its effect on this
process of structural and functional reorganization. However, the
mechanisms underlying susceptibility to stress and manifestation
of mental disorders during adolescence remain little understood.

We hypothesized that heightened sensitivity to stress during
adolescence could reflect age-dependent differences in the expres-
sion of genes required for activity-dependent synaptic plasticity,
and possibly, cognitive adaptation to stress. Brain-derived neu-
rotrophic factor (BDNF) is among the major regulators of synaptic
homeostasis, activity-dependent gene expression, and synaptic
plasticity in the adult mammalian brain (Bramham and Mes-
saoudi, 2005; Greenberg et al., 2009; Minichiello, 2009). Behavioral
stress in animals is frequently correlated with decreased BDNF
expression in the hippocampus and neocortex, while deletion
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of the BDNF gene is associated with heightened aggression
to conspecifics, anxiety, and learning deficits, without affecting
depression-like behavior in standard tests (Duman and Monteggia,
2006; Feder et al., 2009; Ito et al., 2011). Treatment with antidepres-
sant drugs triggers enhanced BDNF gene expression and signaling
that is required for the restorative behavioral effects in animal
models of depression (Alme et al., 2007; Rantamaki et al., 2007;
Adachi et al., 2008).

In the dentate gyrus, expression of the immediate early gene Arc
(activity-regulated cytoskeleton associated protein) is required for
formation of stable, transcription-dependent long-term potentia-
tion (LTP) induced by brief intrahippocampal infusion of BDNF
or by brief high-frequency stimulation (HFS) of the perforant
pathway (Messaoudi et al., 2007; Bramham et al., 2010). Wibrand
et al. (2006) further identified a panel of genes that are robustly
co-up-regulated with Arc in dentate granule cells during both
forms of LTP. These genes were subsequently found to be differen-
tially regulated in brain region-specific manner following chronic
antidepressant treatment in rats (Alme et al., 2007).

The social environment is an important source of stress (con-
flicts and tension) in everyday life of humans. To induce social
stress in rats, we used the social defeat paradigm. Björkqvist
(2001) suggested that the social defeat paradigm is an ecologically
valid model to study the consequences of social stress, victim-
ization, and social subjugation. Social defeat has been shown to
induce long-lasting behavioral, physiological, and neurobiologi-
cal changes. These include changes in social anxiety, heart rate,
body temperature, activity as well as structural and functional
changes in various brain neurocircuitries of rats (Meerlo et al.,
1999; Buwalda et al., 2005). Therefore, we used social defeat on
two consecutive days as a stressor in our experimental animals,
which has been shown to induce reliable long-lasting effects on
behavior and physiology (Meerlo et al., 1996).

We hypothesized that age-dependent differences in stress reac-
tivity could reflect differences in the induction of BDNF-regulated
and synaptic plasticity-linked immediate early genes. Directly
after exposure to social defeat on two consecutive days, mRNA
expression of BDNF (exon IV), Arc, Carp, and Tieg1 was deter-
mined by qPCR in tissue lysates obtained from prefrontal cortex,
hippocampus, and nucleus accumbens.

The BDNF, Arc, Carp, and Tieg1 genes are strongly up-
regulated during BDNF–LTP in the dentate gyrus of the hip-
pocampus (Wibrand et al., 2006). Gene expression of BDNF exon
IV (i.e., exon III prior to Aid et al., 2007) was determined, since
this exon is regulated as an immediate early gene and shows a
peak level 1 h after stimulation (Lauterborn et al., 1996). Carp
(calcium/calmodulin dependent protein kinase (CaMK)-related
peptide), also known as ANIA-4 (Berke et al., 1998) is an alternative
splice variant of the doublecortin-like kinase (DCLK) gene. Tieg1
(transforming growth factor-βinducible early gene) is a member
of the specificity protein/Kruppel-like factor (SP/KLF) family of
zinc finger transcription factors (Subramaniam et al., 1995; Suske
et al., 2005) and functions in enhancement of TGF-β-dependent
gene expression (Johnsen et al., 2002).

The prefrontal cortex was chosen because of its major struc-
tural reorganization during adolescence (Kalsbeek et al., 1988)
and its important role in emotional regulation (Quirk and Beer,

2006) and aggressive behavior (Blair, 2004; Siever, 2008). The pre-
frontal cortex is significantly involved in modulation of social
behavior and in control of mood and motivational drive, func-
tions that are important components of the personality of an
individual (Miller, 2000; Miller and Cohen, 2001). Social defeat
has been shown to have a major impact on hippocampal struc-
ture and functioning (Buwalda et al., 2005; Artola et al., 2006).
In addition, we selected the nucleus accumbens because the
ventral tegmental area–nucleus accumbens (VTA–NAcc) path-
way has been shown to play a major role in the difference in
resilience to social defeat (Berton et al., 2006; Krishnan et al.,
2007).

In addition to age-dependent vulnerability to stress, humans
exhibit large individual variations in vulnerability to stress-
induced disorders and variability in measures of temperament
and personality may largely predict this disease risk. Accordingly,
variability in behaviorally relevant brain circuit functions due to
differences in activity-dependent gene expression and synaptic
plasticity may represent one of the causal factors determining the
vulnerability to disease. In animals, behavioral differentiation in
terms of coping style (personality) reflect trait characteristics that
are stable over time (Koolhaas et al., 1999) and these characteris-
tics are strongly correlated with a differentiation in the underly-
ing neurobiological mechanisms (Veenema and Neumann, 2007;
Koolhaas et al., 2010). For example, high levels of aggressive behav-
ior are generally associated with low levels of brain serotonin and
its metabolite 5-HIAA (De Boer et al., 2010; Koolhaas et al., 2010).
Recent evidence suggests differences in molecular mechanisms of
synaptic plasticity as well. For instance, non-aggressive, reactive
coping male mice show a higher structural neuronal plasticity
(Veenema and Neumann, 2007) and a higher hippocampal and
prefrontal cortex expression of neuronal plasticity-related genes
(Feldker et al., 2003).

To examine a possible link between individual differences in
coping to social stress and expression of plasticity-linked genes,
adult male wild-type Groningen (WTG) rats were individually
characterized for their coping style using their displayed aggres-
siveness in a resident-intruder paradigm. Rats of this strain differ
widely in the level of offensive aggression expressed toward an
unfamiliar intruder male, ranging from no aggression at all (reac-
tive coping) to very high levels of intense aggressive behavior
(proactive coping). It has been shown that this broad individual
variation in aggressiveness can be considered more generally as
a variation in actively coping with environmental challenges (De
Boer et al., 2003).

MATERIALS AND METHODS
ANIMALS
Adolescent and adult male (WTG rats (Rattus Norvegicus; origi-
nally wild-trapped animals and bred under laboratory conditions
for over 50 generations in our own facilities) were used. Animals
were weaned at postnatal day 28 and housed in groups until the
start of the experiment.

All animals were housed in temperature-controlled rooms
(21 ± 2˚C) under a 12-h light:dark cycle (lights off at 1 p.m.) with
food and water available ad libitum. Experiments were approved
by the Groningen University Committee on Animal Experiments.
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CHARACTERIZATION OF ADULT ANIMALS
Adult animals were screened for the level of offensive aggressive
behavior in a standard resident-intruder paradigm at an age of
approximately 120 days. Animals were housed in large observation
cages (80 cm × 55 cm × 40 cm) with a sterilized female (oviduct-
ligated) for 1 week to avoid social isolation and facilitate territorial
behavior. After 1 week, the baseline level of aggressive behavior
was tested in the resident-intruder test in the first half of the dark
phase.

Before testing, the female was removed from the cage. During
the first three tests an unfamiliar male conspecific (intruder) was
introduced into the cage and the attack latency (time between
introduction of the intruder and first attack) was scored. The
intruder was removed after the first attack. If no attack occurred
within 10 min the intruder was removed.

During the fourth test the full range of behaviors was scored
during 10 min. The frequency and duration of behavioral ele-
ments were scored. A total of 12 behavioral acts and postures were
scored and grouped in five behavioral categories: (1) Offense (lat-
eral threat, clinching, keep down, chasing, upright posture); (2)
Social exploration (moving toward, nosing, investigating oppo-
nent, ano-genital sniffing, crawl over, attempted mount, social
groom); (3) Non-social exploration (ambulation, rearing, sniff-
ing, scanning, digging); (4) Inactivity (sitting, lying, immobile,
freezing); (5) Grooming (washing, shaking, scratching).

The behavioral data of the last test and the four attack latencies
were used to classify the offensive behavior of animals. Adult ani-
mals were divided in two groups: proactive (<15% time spent on
offensive behavior) and reactive (>65% time spent on offensive
behavior). All adult animals were solitary housed after aggression
screening.

SOCIAL DEFEAT
The experimental setup is illustrated in Figure 1. Half of the ado-
lescent and adult (proactive and reactive) animals were subjected
to social defeat on two consecutive days for 1 h. Adolescent ani-
mals were defeated at postnatal day (pnd) 45 and 46, whereas adult
animals were defeat at approximately pnd 140. The resident rats
were also WTG rats and were housed in a separate room in large
cages (80 cm × 55 cm × 40 cm) with a female to stimulate territo-
rial aggression. Prior to the experimental procedure, females were
removed from the resident’s cage. Residents were trained to attack a
naïve intruder, only residents that attacked within 2 min were used
for the experiment. By using animals with a more or less similar
readiness to attack we tried to avoid variation in attack intensity.

Experimental animals were moved to the room of the residents.
Animals in the defeat groups were introduced in the cage of the
resident and were attacked for 15 min. Thereafter animals were
placed in a wire mesh cage (30 cm × 15 cm × 15 cm) in the cage of
the resident for 45 min. In this way, animals were protected from
further attacks and injury, but remained in visual, auditory, and
olfactory contact with the resident. This period of psychosocial
stress is known to be highly stressful (Tornatzky and Miczek, 1994).
On the second day of the defeats, animals were directly exposed to
another aggressive resident for 5 min and placed in the wire mesh
cage for 55 min. Defeats took place in the first half of the dark
phase. Brain material was collected immediately after the end of
the second defeat. The control animals were directly taken from the
home cage and were sacrificed at the same time as defeat animals.

COLLECTION OF BRAIN MATERIAL
Directly after the end of the second defeat, rats were anes-
thetized by CO2, decapitated, and the brain was removed. The

FIGURE 1 |Timing of the experiment in adolescent and adult animals.
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prefrontal cortex, hippocampus, and nucleus accumbens were
rapidly dissected on ice. The tissue was immediately frozen in N2

and stored at −80˚C. The 1 h time point after the start of the sec-
ond defeat was chosen because previous studies indicated that the
mRNAs under study are all induced within 1 h after BDNF infusion
into the dentate gyrus (Dagestad et al., 2006; Wibrand et al., 2006).

RNA ISOLATION AND cDNA PREPARATION
Total RNA was isolated using the mirVana™PARIS™miRNA iso-
lation kit (Ambion, AM1556) according to the manual. DNAse
treatment was carried out to remove genomic DNA contamina-
tion prior to cDNA synthesis (Ambion, EN0521). The yield and
quality of the RNA were determined by measuring the absorbance
at 260/280 nm. Single-stranded cDNA was synthesized from 2 μg
of total RNA according to the MMLV reverse transcriptase kit
instructions (Ambion, AM2043).

REAL-TIME QUANTITATIVE PCR
Real-time quantitative PCR was performed on a Roche LightCy-
cler® 480 II (Roche Applied Science) using cDNA from individual
animals. cDNA corresponding to 10 ng total RNA was analyzed in
25 μl reactions using 2× TaqMan PCR mix (Applied Biosystems).
PCR quantification was performed in triplicate and the relative
standard curve method to determine gene expression levels was
used for each animal using the Roche LightCycler® 480 Software
(release-1.5.0 SP4)

Three housekeeping genes were analyzed (hrpt1, ubiquitin B,
and cyclophilin A) and gene expression levels for Arc, BDNF, Carp,
and Tieg1 were determined.

Commercially designed TaqMan® Gene expression assays
were as follows (genes in parentheses): Rn00571208_g1 (Arc),
Rn01484927_m1 (BDNF exon IV), Rn00572049_m1 (Carp),
Rn00579697_m1 (Tieg1), Rn00690933_m1 (cyclophilin A),
Rn03062801_g1 (ubiquitin B), and Rn01527840_m1 (Hrpt1).
Hrpt1 expression was used as endogenous reference for the ado-
lescent samples and adult gene expression was normalized to
ubiquitin expression. The relative gene expression levels are pre-
sented as fold change based on the average group gene expression
level of adolescent control and adult (reactive) control animals.

STATISTICS
Results are presented as mean ± SEM. Statistical analysis was per-
formed using SPSS (version 16). Data of the adolescent social
defeat were analyzed using a Student‘s t -test. Adult data were ana-
lyzed using a two-way ANOVA with coping style and defeat as
between subject factors. A p-value less than 0.05 was considered
to be statistically significant.

RESULTS
SOCIAL DEFEAT DURING ADOLESCENCE LEADS TO BRAIN
REGION-SPECIFIC UPREGULATION OF BDNF–LTP RELATED IMMEDIATE
EARLY GENES
Quantitative real-time PCR was used to determine changes in
the level of mRNA expression of BDNF–LTP related genes in
the prefrontal cortex, hippocampus, and nucleus accumbens after
adolescent social defeat. In the prefrontal cortex (Figure 2A), the
level of Arc (p = 0.04) and Tieg1 (p = 0.04) were significantly

FIGURE 2 | Social defeat in adolescent animals leads to brain

region-specific upregulation of LTP-associated genes. Changes in
mRNA expression following social defeat are expressed as fold change
relative to the control group. (A) Prefrontal cortex (B) Hippocampus (C)

Nucleus accumbens. Data are expressed as mean ± SEM. *p < 0.05,
***p < 0.001 from a Student’s t -test.

up-regulated by social defeat compared to control animals,
whereas the levels of BDNF and Carp did not differ signifi-
cantly between control and defeat animals. In the hippocampus
(Figure 2B), the levels of Arc (p = 0.02), BDNF (p < 0.001), Carp
(p = 0.03), and Tieg1 (p = 0.04) were all increased in social defeat
animals. In the nucleus accumbens (Figure 2C), the level of Arc
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was up-regulated three-fold in defeat animals (p = 0.001), BDNF,
Carp, and Tieg1 levels did not differ between groups.

SOCIAL DEFEAT DURING ADULTHOOD AND EFFECT OF COPING STYLE
Proactive and reactive animals were divided in control and defeat
groups. A justification of the composition of the four experimen-
tal groups and the behavioral profile is given in Table 1. The data
represent the time spent on five different behavioral categories
and the attack latency during the 10-min offensive aggression
test. There are no statistically significant differences between the
various control and defeat groups.

The level of mRNA expression of BDNF–LTP related genes
in adult animals is depicted in Figure 3. The level of Arc
mRNA expression was significantly elevated in the prefrontal
cortex (F 1,19 = 9.29, p = 0.007; Figure 3A) and nucleus accum-
bens (F 1,18 = 7.26, p = 0.015; Figure 3C) of defeated animals,
whereas Arc mRNA levels were not affected in the hippocam-
pus (Figure 3B). BDNF mRNA was significantly increased in
the nucleus accumbens of defeat rats (F 1,19 = 5.00, p = 0.04). A
trend toward a significant interaction between the coping style
of animals and defeat was seen in the level of BDNF mRNA in
the nucleus accumbens (F 1,19 = 3.23, p = 0.09) was found. Tieg1
mRNA expression levels were increased only in the nucleus accum-
bens (F 1,19 = 5.07, p = 0.04). The level of Carp was not affected
by social defeat in any of the examined brain regions. In the hip-
pocampus, none of immediate early genes examined were induced
in adult proactive and reactive rats, whereas all were induced
following social defeat in adolescent rats.

DISCUSSION
This study shows that adolescent and adult social stress leads to
brain region-specific upregulation of genes associated with BDNF-
induced LTP. There is a major age-dependent effect of social defeat
on gene expression in the hippocampus. Arc, BDNF, Carp, and
Tieg1 were all up-regulated by social stress in the hippocampus
of adolescent animals, whereas in adults none of these genes were
induced. Similar age-dependent effects have been demonstrated
by Toth et al. (2008). In young rats, BDNF protein levels in the
hippocampus were increased after chronic mild stress, whereas
decreased levels were found in the hippocampus of adult rats (Toth
et al., 2008). In addition, in young, but not adult, rats hippocam-
pal BDNF protein induces prolonged elevations in corticosterone
secretion (Taliaz et al., 2011).

In the prefrontal cortex of adolescent animals Arc and Tieg1
were up-regulated after defeat. In contrast to the hippocampus,

the prefrontal cortex appears to be more affected by social defeat
in adult animals. Gene expression levels of Arc are almost two-fold
higher in adult defeated animals compared to adolescent defeated
animals. Several studies reported an induction of Arc mRNA in the
prefrontal cortex from both acute and chronic stress paradigms as
well (Ons et al., 2004, 2010; Mikkelsen and Larsen, 2006).

In the nucleus accumbens, Arc gene expression was markedly
increased after social defeat both in adolescent and in adult ani-
mals. BDNF was significantly up-regulated only in adult defeated
animals. This age related difference corresponds with reports
on late developmental changes in neural systems in the nucleus
accumbens (Tarazi et al., 1998, 1999). However these findings are
not unanimous. For example, Leslie et al. (1991) did not show a
change during adolescence in dopamine receptor density (Leslie
et al., 1991).

The results demonstrate region-specific and age-dependent
effects of social stress on immediately early genes linked to LTP and
BDNF signaling. In the hippocampus, the striking age-dependent
effects suggest that social defeat mobilizes a strong immediate
early gene response that is absent in adult animals. This raises
the possibility that hippocampal long-term synaptic plasticity is
selectively engaged in social stress during adolescence. The func-
tion of the gene expression in the hippocampus is not known; it
could reflect a transient adaptive response (resilience) or a step
toward the experience-dependent maturation of the hippocampal
response to social defeat.

It is often assumed that adolescents are more vulnerable to
social stress, since the prefrontal cortex and the hippocampus
are still undergoing structural reorganization during this develop-
mental period (Kalsbeek et al., 1988; Andersen et al., 2000; Ander-
sen, 2003). Based on the current data, we can indeed conclude that
adolescent social stress is qualitatively different from adult social
stress in the expression of synaptic plasticity-related genes.

We expected baseline differences in the level of genes related to
BDNF–LTP in adult animals with different coping strategies. It is
known that reactive coping male mice show a higher expression
of several genes coding for cytoskeletal and signal transduction
proteins in the hippocampus compared to proactive coping mice
(Feldker et al., 2003). In addition, the intra- and infra-pyramidal
mossy fibers terminal fields in the hippocampus of reactive cop-
ing mice are larger (Sluyter et al., 1994). In the rat however, these
observations are not supported by a difference in baseline gene
expression profiles.

No difference was found in the level of gene expression between
proactive and reactive coping after social defeat. However, a trend

Table 1 | Behavioral profile (attack latency in seconds and percentage time spent on the six distinct behavioral categories during a 10-min

resident-intruder aggression test) of the four different groups used for the study.

Attack latency (s) Offense Social explore Social interaction Non-social explore Inactivity Grooming

Control reactive 375 ± 104*** 3 ± 1*** 15 ± 1*** 18 ± 2*** 43 ± 6*** 38 ± 6*** 1 ± 1

Defeat reactive 545 ± 55*** 3 ± 2*** 17 ± 3*** 19 ± 5*** 57 ± 7*** 22 ± 8*** 1 ± 1

Control proactive 33 ± 15 83 ± 5 5 ± 3 88 ± 4 9 ± 3 1 ± 0 2 ± 1

Defeat proactive 28 ± 9 79 ± 5 4 ± 2 83 ± 5 13 ± 3 1 ± 1 3 ± 3

Data are expressed as mean ± SEM. ***p < 0.001 two-way ANOVA.
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FIGURE 3 | Social defeat induces brain region-specific upregulation of

LTP-associated genes in adult proactive and reactive animals. Changes
in mRNA expression following social defeat are expressed as fold change
relative to the reactive control group. (A) Prefrontal cortex (B)

Hippocampus (C) Nucleus accumbens. Data are expressed as
mean ± SEM. *p < 0.05, **p < 0.01 from two-way ANOVA.

toward a differential effect of defeat on proactive and reactive
coping animals was found in BDNF mRNA in the nucleus accum-
bens. Reactive animals show increased levels of BDNF mRNA after
defeat, whereas proactive BDNF mRNA levels are comparable to
levels of control animals.

The differential BDNF mRNA expression after defeat in reac-
tive and proactive animals might be associated with resilience to
social defeat. Krishnan et al. (2007) showed that BDNF mRNA

levels in the nucleus accumbens of mice subjected to social defeat
are equal to control animals. However, in a group of susceptible
mice BDNF protein levels are increased, whereas BDNF levels in
unsusceptible mice are unaffected (Krishnan et al., 2007). Manipu-
lation of BDNF gene expression levels in the mesolimbic dopamine
pathway by local deletion of the BDNF gene reduces the long-
term neural and behavioral response to social defeat stress similar
to effects produced by antidepressant treatment (Berton et al.,
2006).

Arc is a key effector protein for BDNF-induced LTP, but Arc is
multifunctional protein required for other forms of synaptic plas-
ticity such as long-term depression and homeostatic scaling (Rial
Verde et al., 2006; Shepherd et al., 2006; Bramham et al., 2008;
Waung et al., 2008) as well. Homeostatic plasticity may compen-
sate LTP and LTD by scaling neuronal output without changing
the relative strength of individual synapses (Shepherd et al., 2006).
Synaptic plasticity in the developing visual cortex is an example
of this homeostatic plasticity. Arc appears to be required for the
experience-dependent processes that normally establish and mod-
ify synaptic connections in the visual cortex (McCurry et al., 2010).
Arc induction after social defeat might induce a similar process of
homeostatic plasticity.

It is unknown what mechanism determines whether Arc is
selectively engaged in homeostatic plasticity, LTP or LTD. Social
defeat not only reduces LTP in rats, but also enhances long-term
depression (LTD) 7–9 months after repeated defeat experience
(Kole et al., 2004; Artola et al., 2006). Therefore, the increased
level of Arc found after social defeat in the current study might be
functionally involved in the process of homeostatic plasticity.

One confounding factor may be that the current social defeat
procedure includes individual housing after social defeat. Social
isolation appears to be an important factor in the long-term effects
of defeat since social housing has been shown to reduce the impact
of social defeat (Ruis et al., 1999; De Jong et al., 2005). Solitary
housing in itself affects LTP and LTD; LTP is higher in animals that
are housed in an enriched environment compared to individually
housed animals (Artola et al., 2006).

Other possible confounding factors are false-negative results
due to the temporal dynamics of gene expression after social defeat.
The fact that all genes were up-regulated in the hippocampus of
adolescent rats makes it unlikely that there are false-negatives in
the gene expression levels of other brain areas of adolescent and
adult animals.

The temporal dynamics of mRNA expression following BDNF–
LTP and HFS LTP has been studied by Wibrand et al. (2006) using
in situ hybridization. They showed that the kinetics of mRNA
was rapid (40 min following post-HFS) and sustained (3 h post
BDNF) in the dentate gyrus granule cells (Wibrand et al., 2006).
Based on this time course of gene expression it is unlikely that
the chosen time point resulted in false-negative effects of social
defeat.

We did not dissociate between sub-regions of the hippocam-
pus, prefrontal cortex, and nucleus accumbens. However, there
may be a difference in gene expression levels in different regions
of the hippocampus. For example, Grønli et al. (2006) showed
that chronic mild stress inhibits BDNF protein expression in
the dentate gyrus, but not in the hippocampus proper and
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immobilization stress in rats is associated with greater impair-
ments in BDNF mRNA expression in the dentate gyrus com-
pared to the cornus ammonis (CA) region (Smith et al., 1995).
Similarly, the effects of social defeat stress on gene expres-
sion may differ between subdivisions of the prefrontal cor-
tex and nucleus accumbens. Whether subregional differences
in gene expression in response to social defeat stress exist

needs to be determined in future experiments using in situ
hybridization.

ACKNOWLEDGMENTS
This research was supported by NWO via the European Colla-
borative Research (EUROCORES) program EuroSTRESS, of the
European Science Foundation (ESF).

REFERENCES
Adachi, M., Barrot, M., Autry, A. E.,

Theobald, D., and Monteggia, L.
M. (2008). Selective loss of brain-
derived neurotrophic factor in the
dentate gyrus attenuates antidepres-
sant efficacy. Biol. Psychiatry 63,
642–649.

Aid, T., Kazantseva, A., Piirsoo, M.,
Palm, K., and Timmusk, T. (2007).
Mouse and rat BDNF gene structure
and expression revisited. J. Neurosci.
Res. 85, 525–535.

Alme, M. N., Wibrand, K., Dagestad,
G., and Bramham, C. R. (2007).
Chronic fluoxetine treatment
induces brain region-specific
upregulation of genes associated
with BDNF-induced long-term
potentiation. Neural Plast. 2007,
26496.

Andersen, S. L. (2003). Trajectories of
brain development: point of vulner-
ability or window of opportunity?
Neurosci. Biobehav. Rev. 27, 3–18.

Andersen, S. L., Thompson, A. T., Rut-
stein,M.,Hostetter, J. C., and Teicher,
M. H. (2000). Dopamine receptor
pruning in prefrontal cortex dur-
ing the periadolescent period in rats.
Synapse 37, 167–169.

Artola, A., Von Frijtag, J. C., Fer-
mont, P. C., Gispen, W. H., Schrama,
L. H., Kamal, A., and Spruijt, B.
M. (2006). Long-lasting modula-
tion of the induction of LTD and
LTP in rat hippocampal CA1 by
behavioural stress and environmen-
tal enrichment. Eur. J. Neurosci. 23,
261–272.

Berke, J. D., Paletzki, R. F., Aronson,
G. J., Hyman, S. E., and Gerfen, C.
R. (1998). A complex program of
striatal gene expression induced by
dopaminergic stimulation. J. Neu-
rosci. 18, 5301–5310.

Bernstein, D. P., Cohen, P., Skodol,
A., Bezirganian, S., and Brook, J.
S. (1996). Childhood antecedents
of adolescent personality disorders.
Am. J. Psychiatry 153, 907–913.

Berton, O., Mcclung, C. A., Dileone, R.
J., Krishnan, V., Renthal, W., Russo,
S. J., Graham, D., Tsankova, N. M.,
Bolanos, C. A., Rios, M., Monteggia,
L. M., Self, D. W., and Nestler, E. J.
(2006). Essential role of BDNF in
the mesolimbic dopamine pathway

in social defeat stress. Science 311,
864–868.

Björkqvist, K. (2001). Social defeat as a
stressor in humans. Physiol. Behav.
73, 435–442.

Blair, R. J. R. (2004). The roles of orbital
frontal cortex in the modulation of
antisocial behavior. Brain Cogn. 55,
198–208.

Bramham, C. R., Alme, M. N., Bittins,
M., Kuipers, S. D., Nair, R. R., Pai,
B., Panja, D., Schubert, M., Soule, J.,
Tiron, A., and Wibrand, K. (2010).
The arc of synaptic memory. Exp.
Brain Res. 200, 125–140.

Bramham, C. R., and Messaoudi, E.
(2005). BDNF function in adult
synaptic plasticity: the synaptic con-
solidation hypothesis. Prog. Neuro-
biol. 76, 99–125.

Bramham, C. R., Worley, P. F., Moore,
M. J., and Guzowski, J. F. (2008).
The immediate early gene arc/arg3.1:
regulation, mechanisms, and func-
tion. J. Neurosci. 28, 11760–11767.

Buwalda, B., Kole, M. H. P., Veenema,
A. H., Huininga, M., De Boer, S. F.,
Korte, S. M., and Koolhaas, J. M.
(2005). Long-term effects of social
stress on brain and behavior: a focus
on hippocampal functioning. Neu-
rosci. Biobehav. Rev. 29, 83–97.

Cressman,V. L., Balaban, J., Steinfeld, S.,
Shemyakin, A., Graham, P., Parisot,
N., and Moore, H. (2010). Prefrontal
cortical inputs to the basal amygdala
undergo pruning during late adoles-
cence in the rat. J. Comp. Neurol. 518,
2693–2709.

Dagestad, G., Kuipers, S. D., Mes-
saoudi, E., and Bramham, C. R.
(2006). Chronic fluoxetine induces
region-specific changes in transla-
tion factor eIF4E and eEF2 activity
in the rat brain. Eur. J. Neurosci. 23,
2814–2818.

De Boer, S., Caramaschi, D., Natara-
jan, D., and Koolhaas, J. (2010).
The vicious cycle towards vio-
lence: focus on the negative
feedback mechanisms of brain
serotonin neurotransmission.
Front. Behav. Neurosci. 3:52.
doi:10.3389/neuro.08.052.2009

De Boer, S. F., Van der Vegt, B. J.,
and Koolhaas, J. M. (2003). Individ-
ual variation in aggression of feral
rodent strains: a standard for the

genetics of aggression and violence?
Behav. Genet. 33, 485–501.

De Jong, J. G., Van der Vegt, B. J.,
Buwalda, B., and Koolhaas, J. M.
(2005). Social environment deter-
mines the long-term effects of social
defeat. Physiol. Behav. 84, 87–95.

Duman, R. S., and Monteggia, L. M.
(2006). A neurotrophic model for
stress-related mood disorders. Biol.
Psychiatry 59, 1116–1127.

Feder, A., Nestler, E. J., and Charney, D.
S. (2009). Psychobiology and mole-
cular genetics of resilience. Nat. Rev.
Neurosci. 10, 446–457.

Feldker, D. E., Datson, N. A., Veenema,
A. H., Meulmeester, E., De Kloet, E.
R., and Vreugdenhil, E. (2003). Serial
analysis of gene expression predicts
structural differences in hippocam-
pus of long attack latency and short
attack latency mice. Eur. J. Neurosci.
17, 379–387.

Gelbard, H. A., Teicher, M. H., Faedda,
G., and Baldessarini, R. J. (1989).
Postnatal development of dopamine
D1 and D2 receptor sites in rat stria-
tum. Brain Res. Dev. Brain Res. 49,
123–130.

Giedd, J. N., Blumenthal, J., Jeffries, N.
O., Castellanos, F. X., Liu, H., Zijden-
bos, A., Paus, T., Evans, A. C., and
Rapoport, J. L. (1999). Brain devel-
opment during childhood and ado-
lescence: a longitudinal MRI study.
Nat. Neurosci. 2, 861–863.

Greenberg, M. E., Xu, B., Lu, B.,
and Hempstead, B. L. (2009). New
insights in the biology of BDNF
synthesis and release: implications
in CNS function. J. Neurosci. 29,
12764–12767.

Grønli, J., Bramham, C., Murison, R.,
Kanhema, T., Fiske, E., Bjorvatn, B.,
Ursin, R., and Portas, C. M. (2006).
Chronic mild stress inhibits BDNF
protein expression and CREB acti-
vation in the dentate gyrus but not
in the hippocampus proper. Phar-
macol. Biochem. Behav. 85, 842–849.

Hankin, B. L., Abramson, L. Y., Mof-
fitt, T. E., Silva, P. A., Mcgee, R., and
Angell, K. E. (1998). Development of
depression from preadolescence to
young adulthood: emerging gender
differences in a 10-year longitudi-
nal study. J. Abnorm. Psychol. 107,
128–140.

Ito, W., Chehab, M., Thakur, S., Li,
J., and Morozov, A. (2011). BDNF-
restricted knockout mice as an ani-
mal model for aggression. Genes
Brain Behav. 10, 365–374.

Johnsen, S. A., Subramaniam, M., Kata-
giri, T., Janknecht, R., and Spels-
berg, T. C. (2002). Transcriptional
regulation of Smad2 is required
for enhancement of TGFbeta/Smad
signaling by TGFbeta inducible
early gene. J. Cell. Biochem. 87,
233–241.

Kalsbeek, A., Voorn, P., Buijs, R.
M., Pool, C. W., and Uylings, H.
B. (1988). Development of the
dopaminergic innervation in the
prefrontal cortex of the rat. J. Comp.
Neurol. 269, 58–72.

Kole, M. H. P., Costoli, T., Koolhaas,
J. M., and Fuchs, E. (2004). Bidi-
rectional shift in the cornuammonis
3 pyramidal dendritic organization
following brief stress. Neuroscience
125, 337–347.

Koolhaas, J. M., De Boer, S. F., Coppens,
C. M., and Buwalda, B. (2010). Neu-
roendocrinology of coping styles:
towards understanding the biology
of individual variation. Front. Neu-
roendocrinol. 31:307–321.

Koolhaas, J. M., Korte, S. M., De Boer,
S. F., Van Der Vegt, B. J., Van Reenen,
C. G., Hopster, H., De Jong, I. C.,
Ruis, M. A. W., and Blokhuis, H.
J. (1999). Coping styles in animals:
current status in behavior and stress-
physiology. Neurosci. Biobehav. Rev.
23, 925–935.

Krishnan, V., Han, M.-H., Graham, D.
L., Berton, O., Renthal, W., Russo, S.
J., Laplant, Q., Graham, A., Lutter,
M., Lagace, D. C., Ghose, S., Reister,
R., Tannous, P., Green, T. A., Neve, R.
L., Chakravarty, S., Kumar, A., Eisch,
A. J., Self, D. W., Lee, F. S., Tamminga,
C. A., Cooper, D. C., Gershenfeld, H.
K., and Nestler, E. J. (2007). Molecu-
lar adaptations underlying suscepti-
bility and resistance to social defeat
in brain reward regions. Cell 131,
391–404.

Landsheer, J. A., and ‘t Hart, H. (1999).
Age and adolescent delinquency –
the changing relationship among
age, delinquent attitude, and delin-
quent activity. Crim. Justice Behav.
26, 373–388.

Frontiers in Behavioral Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 72 | 7

http://dx.doi.org/10.3389/neuro.08.052.2009
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Coppens et al. Social defeat induces BDNF-regulated genes

Lauterborn, J. C., Rivera, S., Stinis,
C. T., Hayes, V. Y., Isackson, P.
J., and Gall, C. M. (1996). Differ-
ential effects of protein synthesis
inhibition on the activity-dependent
expression of BDNF transcripts:
evidence for immediate-early gene
responses from specific promoters.
J. Neurosci. 16, 7428–7436.

Leslie, C. A., Robertson, M. W., Cut-
ler, A. J., and Bennett, J. P. Jr.
(1991). Postnatal development of
D1 dopamine receptors in the
medial prefrontal cortex, striatum
and nucleus accumbens of normal
and neonatal 6-hydroxydopamine
treated rats: a quantitative autora-
diographic analysis. Brain Res. Dev.
Brain Res. 62, 109–114.

McCurry, C. L., Shepherd, J. D., Tro-
pea, D., Wang, K. H., Bear, M. F.,
and Sur, M. (2010). Loss of Arc ren-
ders the visual cortex impervious
to the effects of sensory experience
or deprivation. Nat. Neurosci. 13,
450–457.

Meerlo, P., Overkamp, G. J., Daan, S.,
Van Den Hoofdakker, R. H., and
Koolhaas, J. M. (1996). Changes in
behaviour and body weight follow-
ing a single or double social defeat
in rats. Stress 1, 21–32.

Meerlo, P., Sgoifo, A., De Boer, S. F., and
Koolhaas, J. M. (1999). Long-lasting
consequences of a social conflict in
rats: behavior during the interaction
predicts subsequent changes in daily
rhythms of heart rate, temperature,
and activity. Behav. Neurosci. 113,
1283–1290.

Messaoudi, E., Kanhema, T., Soule, J.,
Tiron, A., Dagyte, G., Da Silva, B.,
and Bramham, C. R. (2007). Sus-
tained Arc/Arg3.1 synthesis controls
long-term potentiation consolida-
tion through regulation of local actin
polymerization in the dentate gyrus
in vivo. J. Neurosci. 27, 10445–10455.

Mikkelsen, J. D., and Larsen, M.
H. (2006). Effects of stress and
adrenalectomy on activity-regulated
cytoskeleton protein (Arc) gene
expression. Neurosci. Lett. 403,
239–243.

Miller, E. K. (2000). The prefrontal cor-
tex and cognitive control. Nat. Rev.
Neurosci. 1, 59–65.

Miller, E. K., and Cohen, J. D. (2001). An
integrative theory of prefrontal cor-
tex function. Annu. Rev. Neurosci. 24,
167–202.

Minichiello, L. (2009). TrkB signalling
pathways in LTP and learning. Nat.
Rev. Neurosci. 10, 850–860.

Ons, S., Marti, O., and Armario, A.
(2004). Stress-induced activation
of the immediate early gene Arc
(activity-regulated cytoskeleton-
associated protein) is restricted to
telencephalic areas in the rat brain:
relationship to c-fos mRNA. J.
Neurochem. 89, 1111–1118.

Ons, S., Rotllant, D., Marin-Blasco, I. J.,
and Armario, A. (2010). Immediate-
early gene response to repeated
immobilization: Fos protein and arc
mRNA levels appear to be less sensi-
tive than c-fos mRNA to adaptation.
Eur. J. Neurosci. 31, 2043–2052.

Quirk, G. J., and Beer, J. S. (2006).
Prefrontal involvement in the reg-
ulation of emotion: convergence of
rat and human studies. Curr. Opin.
Neurobiol. 16, 723–727.

Rantamaki, T., Hendolin, P., Kankaan-
paa, A., Mijatovic, J., Piepponen, P.,
Domenici, E., Chao, M. V., Man-
nisto, P. T., and Castren, E. (2007).
Pharmacologically diverse antide-
pressants rapidly activate brain-
derived neurotrophic factor recep-
tor TrkB and induce phospholipase-
Cgamma signaling pathways in
mouse brain. Neuropsychopharma-
cology 32, 2152–2162.

Rial Verde, E. M., Lee-Osbourne, J.,
Worley, P. F., Malinow, R., and Cline,
H. T. (2006). Increased expression of
the immediate-early gene arc/arg3.1
reduces AMPA receptor-mediated
synaptic transmission. Neuron 52,
461–474.

Romeo, R. D., and McEwen, B. S. (2006).
Stress and the adolescent brain. Ann.
N. Y. Acad. Sci. 1094, 202–214.

Ruis, M. A., Te Brake, J. H., Buwalda, B.,
De Boer, S. F., Meerlo, P., Korte, S. M.,
Blokhuis, H. J., and Koolhaas, J. M.
(1999). Housing familiar male wild-
type rats together reduces the long-
term adverse behavioural and phys-
iological effects of social defeat. Psy-
choneuroendocrinology 24, 285–300.

Shepherd, J. D., Rumbaugh, G., Wu,
J., Chowdhury, S., Plath, N., Kuhl,
D., Huganir, R. L., and Worley, P. F.
(2006). Arc/Arg3.1 mediates home-
ostatic synaptic scaling of AMPA
receptors. Neuron 52, 475–484.

Siever, L. J. (2008). Neurobiology of
aggression and violence. Am. J. Psy-
chiatry 165, 429–442.

Sluyter, F., Jamot, L., Van Oortmerssen,
G. A., and Crusio, W. E. (1994). Hip-
pocampal mossy fiber distributions
in mice selected for aggression. Brain
Res. 646, 145–148.

Smith, M. A., Makino, S., Kvetnansky,
R., and Post, R. M. (1995). Stress and
glucocorticoids affect the expression
of brain-derived neurotrophic fac-
tor and neurotrophin-3 mRNAs in
the hippocampus. J. Neurosci. 15,
1768–1777.

Subramaniam, M., Harris, S. A., Oursler,
M. J., Rasmussen, K., Riggs, B. L., and
Spelsberg, T. C. (1995). Identifica-
tion of a novel TGF-beta-regulated
gene encoding a putative zinc fin-
ger protein in human osteoblasts.
Nucleic Acids Res. 23, 4907–4912.

Suske, G., Bruford, E., and Philipsen,
S. (2005). Mammalian SP/KLF tran-
scription factors: bring in the family.
Genomics 85, 551–556.

Taliaz, D., Loya, A., Gersner, R., Hara-
mati, S., Chen, A., and Zangen, A.
(2011). Resilience to chronic stress
is mediated by hippocampal brain-
derived neurotrophic factor. J. Neu-
rosci. 31, 4475–4483.

Tarazi, F. I., Tomasini, E. C., and
Baldessarini, R. J. (1998). Postnatal
development of dopamine D4-like
receptors in rat forebrain regions:
comparison with D2-like receptors.
Brain Res. Dev. Brain Res. 110,
227–233.

Tarazi, F. I., Tomasini, E. C., and
Baldessarini, R. J. (1999). Postnatal
development of dopamine D1-like
receptors in rat cortical and stria-
tolimbic brain regions: an autora-
diographic study. Dev. Neurosci. 21,
43–49.

Teicher, M. H., Andersen, S. L., and
Hostetter, J. C. Jr. (1995). Evi-
dence for dopamine receptor prun-
ing between adolescence and adult-
hood in striatum but not nucleus
accumbens. Brain Res. Dev. Brain
Res. 89, 167–172.

Tornatzky, W., and Miczek, K. A.
(1994). Behavioral and auto-
nomic responses to intermittent
social stress: differential protec-
tion by clonidine and metoprolol.
Psychopharmacology (Berl.) 116,
346–356.

Toth, E., Gersner, R., Wilf-Yarkoni, A.,
Raizel, H., Dar, D. E., Richter-Levin,
G., Levit, O., and Zangen, A. (2008).
Age-dependent effects of chronic

stress on brain plasticity and depres-
sive behavior. J. Neurochem. 107,
522–532.

Veenema, A. H., and Neumann, I.
D. (2007). Neurobiological mecha-
nisms of aggression and stress cop-
ing: a comparative study in mouse
and rat selection lines. Brain Behav.
Evol. 70, 274–285.

Waung, M. W., Pfeiffer, B. E., Nosyreva,
E. D., Ronesi, J. A., and Huber,
K. M. (2008). Rapid translation
of Arc/Arg3.1 selectively mediates
mGluR-dependent LTD through
persistent increases in AMPAR
endocytosis rate. Neuron 59,
84–97.

WHO International Consortium in
Psychiatric Epidemiology. (2000).
Cross-national comparisons of the
prevalences and correlates of mental
disorders. Bull. World Health Organ.
78, 413–426.

Wibrand, K., Messaoudi, E., Havik, B.,
Steenslid, V., Lovlie, R., Steen, V. M.,
and Bramham,C. R. (2006). Identifi-
cation of genes co-upregulated with
Arc during BDNF-induced long-
term potentiation in adult rat den-
tate gyrus in vivo. Eur. J. Neurosci.
23, 1501–1511.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 15 June 2011; accepted: 11
October 2011; published online: 02
November 2011.
Citation: Coppens CM, Siripornmong-
colchai T, Wibrand K, Alme MN,
Buwalda B, de Boer SF, Koolhaas JM and
Bramham CR (2011) Social defeat dur-
ing adolescence and adulthood differen-
tially induce BDNF-regulated immediate
early genes. Front. Behav. Neurosci. 5:72.
doi: 10.3389/fnbeh.2011.00072
Copyright © 2011 Coppens, Siriporn-
mongcolchai, Wibrand, Alme, Buwalda,
de Boer, Koolhaas and Bramham. This is
an open-access article subject to a non-
exclusive license between the authors and
Frontiers Media SA, which permits use,
distribution and reproduction in other
forums, provided the original authors and
source are credited and other Frontiers
conditions are complied with.

Frontiers in Behavioral Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 72 | 8

http://dx.doi.org/10.3389/fnbeh.2011.00072
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

	Social defeat during adolescence and adulthood differentially induce BDNF-regulated immediate early genes
	Introduction
	Materials and Methods
	Animals
	Characterization of adult animals
	Social defeat
	Collection of brain material
	RNA isolation and cDNA preparation
	Real-time quantitative PCR
	Statistics

	Results
	Social defeat during adolescence leads to brain region-specific upregulation of BDNF–LTP related immediate early genes
	Social defeat during adulthood and effect of coping style

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


